MA22S3 Tutorial Sheet 3: Solutions

19-20 October 2016

Formulas:

e Definition of hyperbolic cosine and hyperbolic sine:
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coshx = — sinhz = 5

e The complex Fourier series expansion of a function f(t) of period L can be written as
o0
s 27
ft)= Y enem
n=-—oo

where the coefficients are given by

Questions:

1. Write formulas for (a) the simple periodic extension, (b) the half-range even expansion, and (c)
the half-range odd expansion of the following function.
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Solution:

(a)

t for0<t<1
hi(t) = d h1(t+2) = hy(t).
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[t] for 0 < |t| <1
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h3(t) = 1 for 1 <t< 2 s and h3(t + 4) = hg(t).
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2. Compute the complex Fourier series of the following periodic function, and write all the terms with
In| < 3 explicitly.
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f(t) = cosht for —g§t< 5" and f(t+7) = f(t)

Solution: The fundamental period is L = 7, and it is convenient to choose the integration range
between —3 and 7.

Therefore
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The expression above is valid for every integer value of n. We substitute e/™ = =¥ = (—1)",
which appears in every term, and then simplify by combining the two terms over a common
denominator.
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We can make one final notational simplification by recognizing that (e% — e’%) /2 = sinh 5. This
is just a numerical factor that appears in each of the coefficients.

So the coefficients are
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Finally, we can write the full complex Fourier series as
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and the series starts, for |n| < 3, with
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3. Convert the complex Fourier series found in the previous problem to a real Fourier series. Check
that the coefficients are actually real-valued.

Solution:

We could expand each of the exponentials in terms of a cosine and a sine, but it’s not hard to
see that they already appear in complex-conjugate pairs combining to form only cosines. Let’s
separate the constant term and pair up the rest, sorted by magnitude n. All of the coefficients are
even functions of n.
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Now we have a real Fourier cosine series, with real coefficients. This form is consistent with the
fact that our original function f(¢) is even in ¢.



