MA22S3 Tutorial Sheet 2

12-13 October 2016

Formulas:

The Fourier series expansion of a function f(t) of fundamental period L can be written as

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{2\pi nt}{L}\right) + \sum_{n=1}^{\infty} b_n \sin\left(\frac{2\pi nt}{L}\right),$$

where the coefficients are given by the Euler formulas:

$$a_0 = \frac{2}{L} \int_{-L/2}^{L/2} f(t) dt$$

$$a_n = \frac{2}{L} \int_{-L/2}^{L/2} f(t) \cos\left(\frac{2\pi nt}{L}\right) dt$$

$$b_n = \frac{2}{L} \int_{-L/2}^{L/2} f(t) \sin\left(\frac{2\pi nt}{L}\right) dt$$

Questions:

Define the function f(t) as follows:

$$f(t) = t^2 \text{ for } |t| < 1,$$

$$f(t) = f(t+2).$$

- 1. What is the fundamental period of f(t)?
- 2. Sketch f(t) on the interval $-4 \le t \le 4$.
- 3. Is f(t) even, odd, or neither?
- 4. Find the first four terms of the real Fourier series expansion of f(t).
- 5. Without doing any further integration, sketch the following functions and write the first four terms of their real Fourier series.

$$g(t) = 1 - t^2$$
 for $|t| < 1$,
 $g(t) = g(t+2)$.

$$\begin{split} h(u) &= \frac{u^2}{\pi^2} \quad \text{for } |u| < \pi \,, \\ h(u) &= h(u+2\pi). \end{split}$$