MA22S3 Tutorial Sheet 1

5-6 October 2016

- 1. Kronecker delta. Evaluate the following.
 - (a) δ_{02}
 - (b) $\sum_{i=1}^{\infty} \delta_{ik} a_i$
 - (c) $\sum_{i=1}^{\infty} \sum_{j=-\infty}^{\infty} \delta_{ik} \delta_{jl} (-1)^j b_{ii}$
 - (d) $\sum_{i=2}^{4} \sum_{j=-1}^{1} \delta_{ij}$
 - (e) $\sum_{i=2}^{4} \sum_{j=2}^{3} \delta_{ij}$
 - (f) $\sum_{i=2}^{4} \sum_{j=2}^{3} \delta_{ij} (i+j)^2$
- 2. Let V be the vector space of all polynomials in x of degree 2 with real coefficients, with an inner product defined by

$$\langle p(x)|q(x)\rangle = \int_0^1 p(x)q(x) \ dx$$

- (a) What is the dimension of V?
- (b) Is there a real value of c such that the polynomials $x^2 cx$ and x are orthogonal?
- 3. Consider the following three vectors in \mathbb{R}^3 :

$$v_1 = (1, 0, 1),$$
 $v_2 = (1, \sqrt{6}, -1),$ $v_3 = (\sqrt{3}, -\sqrt{2}, -\sqrt{3}),$

- (a) Show that $\{v_1, v_2, v_3\}$ is an orthogonal set with respect to the usual dot product.
- (b) Because the number of vectors in the set above is equal to the dimension of the vector space, they form a basis. Expand the vector v = (1, 2, 1) in terms of this basis: find real coefficients a_1, a_2, a_3 such that

$$v = a_1 v_1 + a_2 v_2 + a_3 v_3.$$

4. Define the following operation on \mathbb{R}^2 :

 $\langle (x_1, x_2) | (y_1, y_2) \rangle = 2x_1y_1 + x_1y_2 + x_2y_1 + 2x_2y_2$

- (a) Show that this operation is symmetric, bilinear, and positive definite. Therefore it defines an inner product on ℝ².
- (b) With this definition, compute the inner products of the following pairs of vectors:
 - (1,0) and (0,1)
 - (1,0) and (-2,1)
 - (0,1) and (-2,1)
- (c) With respect to this same inner product, write an orthonormal set with 2 elements.