An Introduction to Mathematica

Fionn Fitzmaurice

The Notebook

In the notebook, press $\widehat{\mbox{Shift}} + \widehat{\mbox{Enter}}$ to run a command.

Commands are labelled by In[n] := and their output by Out[n] =.

Special Characters

- ▶ Palettes > Writing Assistant
- ► Esc LATEX Esc

Functions

$$\sin\left(\frac{\pi}{4}\right) o \mathtt{Sin}[\mathtt{Pi/4}]$$

Notice:

- Uppercase S (CamelCase),
- square brackets for the argument
- ▶ and uppercase P in Pi.
 Similarly, E for e and I for i.

Variables

```
= is assignment.
In[2] := pi = 3.14
Out[2] = 3.14
== is equality.
In[3] := Pi == pi
Out[3] = False
In[4] := Pi == 2 * ArcSin[1]
Out[4] = True
```

Mathematica often remembers variable assignment when you don't. It even remembers across notebooks.

Use Clear[...] to make it forget.

```
In[6]:= Log[a]
Out[6]= Log[2]
```

Mathematica didn't evaluate $\log(a) = \log(2)$ because it doesn't know I want a number. But I do.

In[7]:= N[%]
Out[7]= 0.693147

 $\ensuremath{\mathtt{N}}$ evaluates expressions numerically and % references the previous output.

%% evaluates the second previous output, etc. I.e. % \cdots % (k times) is the $k^{\rm th}$ previous output.

%n evaluates Out[n].

Functions like N

N is treated as a function just like Sin, Sqrt, etc.

Functions can also be applied after an expression. For example, N[Sqrt[2]] and Sqrt[2] // N are equivalent.

Getting Help

The Mathematica documentation is excellent.

Click on an object (like a function) and hit F1. Or mouseover and click i (for documentation) or \approx (for a brief summary).

Building Functions

In[11]:= f[x_, y_] := x - y
$$f(x, y) = x - y$$

What does := ("SetDelayed") and _ ("blank") mean?

lhs := rhs

assigns rhs to be the delayed value of lhs. rhs is maintained in an unevaluated form. When lhs appears, it is replaced by rhs, evaluated afresh each time.

The $_$ is a pattern-matching symbol. $x_$ stands for anything, but names it x so it can be referred to on the right hand side.

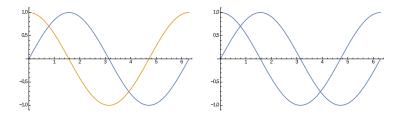
In[12]:= f[1, 1]
Out[12]= 0

/.

/. is ReplaceAll.

expr /. rules applies a rule or list of rules in an attempt to transform each subpart of an expression expr.

For example,

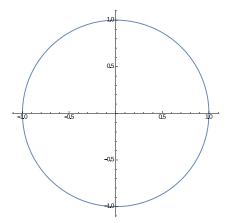

In[13]:= f[x, y] /.
$$x \to 0$$

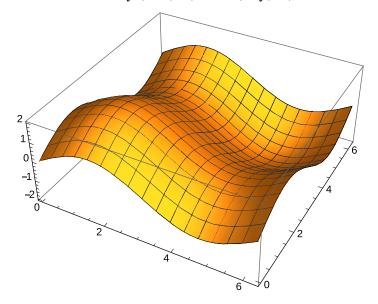
Out[13]= -y

or even

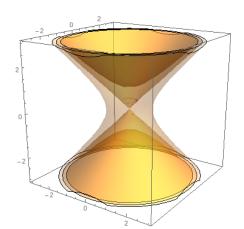
In[14]:= Sin[x] /. Sin
$$\rightarrow$$
 Cos Out[14]= Cos[x].

Plotting


```
In[15] := Plot[{Sin[x], Sin[2 x], Sin[x] + Sin[2 x]},
          \{x, 0, 6 Pi\}
Out[15]=
        1.5
        1.0
        0.5
        -0.5
        -1.0
        -1.5
```



 $\begin{array}{l} {\rm Plot}[\{\sin[x],\;\cos[x]\},\;\{x,\;0,\;2\;{\rm Pi}\}]\;{\rm on\;the\;left\;and}\\ {\rm Show}[{\rm Plot}[\sin[x],\;\{x,\;0,\;2\;{\rm Pi}\}],\;{\rm Plot}[{\rm Cos}[x],\;\{x,\;0,\;2\;{\rm Pi}\}]]\;{\rm on\;the\;right}. \end{array}$

Generally, you should use AxesLabel \rightarrow {"x", "y"}.


ParametricPlot[{Cos[t], Sin[t]}, {t, 0, 2 Pi}]

 $Plot3D[Sin[x] + Sin[y], \{x, 0, 2 Pi\}, \{y, 0, 2 Pi\}]$

Show[{ContourPlot3D[$x^2 + y^2 - z^2 == 1$, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh \rightarrow None, ContourStyle \rightarrow Opacity[0.2]]}, {ContourPlot3D[$x^2 + y^2 - z^2 == 0$, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh \rightarrow None, ContourStyle \rightarrow Opacity[0.3]]}, {ContourPlot3D[$x^2 + y^2 - z^2 == -1$, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh \rightarrow None, ContourStyle \rightarrow Opacity[0.4]]}

Differentiating

The differential operator is D.

$$\frac{\partial}{\partial x} f(x,y) \to \mathsf{D[f[x, y], x]}.$$
 In[16]:= D[x^3, x]
Out[16]= 3 x²
In[17]:= g[x_, y_] := 2 (x y)^2
In[18]:= D[g[x, y], x, y]
Out[18]= 8 x y
In[19]:= D[g[x, y], x, y] == D[g[x, y], y, x]
Out[19]= True
In[20]:= D[D[g[x, y], x], x]
Out[20]= 4 y^2

Integrating

$$\int f(x) \, \mathrm{d}x \to \mathtt{Integrate[f[x], x]}.$$

Notice that the constant is omitted.

With limits,

In[22]:= Integrate[(1/x)^2, {x, 1, Infinity}]
Out[22]= 1.

Limits and Sums

```
 \begin{split} & \ln[23] := \text{Limit}[\text{Sin}[\texttt{x}]/\texttt{x}, \ \texttt{x} \to \texttt{0}] & \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \\ & \text{Out}[23] = 1 \\ & \text{In}[24] := \text{Sum}[\texttt{r}^\texttt{n}, \ \{\texttt{n}, \ \texttt{0}, \ \text{Infinity}\}] & \sum_{n=0}^{\infty} r^n = \frac{1}{1-r} \\ & \text{Out}[24] = 1/(1-r) \end{aligned}
```

Series Expansion

Series generates a power series.

$$\sum_{n=0}^{k} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \to \text{Series}[f, \{x, x_0, k\}]$$

Solving Equations

- ▶ Solve for polynomials, systems of equations, e.g. Solve[x^2 - x - 1 == 0, x].
- Dsolve for differential equations (ordinary or partial) or systems of differential equations, e.g. DSolve[y'[x] == Cos[x], y[x], x].
- **•** . . .

Lists, Tables, Matrices

```
v = \{a, b, c\} is equivalent to v = List[a, b, c].
```

Pick element n from a list v using Part[v, n]. This is the same as v[[n]].

List indices start at 1!

Matrices look like {{a, b}, {c, d}}.

Making Assumptions

```
\label{eq:linear_loss} \begin{split} &\text{Integrate}[x^a, \{x, 0, 1\}, \text{Assumptions} \rightarrow a > -1] \\ &\text{Assuming}[a > -1, \{\text{Integrate}[x^a, \{x, 0, 1\}]\}][[1]] \end{split}
```

Other Functions

- ▶ Dot
- Cross
- ▶ FindRoot
- Do
- ► If
- ► Manipulate

Nobody knows how many functions there are. Use the documentation and the internet to find the ones you need.

Getting Help (Again)

Use the documentation.

- mathematica.stackexchange.com,
- the internet,
- ▶ &c.