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Let f € L}(R) N I*(R) be a complex-valued function. We will use the convention that
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and the slightly clunky notation of F(f(x)) = f(k) to denote the Fourier transformation.
We would like to find an expression for the Fourier transformation of f’(z). The
brutish way is to integrate by parts like
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where the boundary term vanishes since

lim f(z)=0.
|z|—o00
It’s very easy to justify this limit physically; mathematically I think this works since the
existence of the Fourier transformation of f and f’ presumes the integrability of f and
f. If f is unbounded, f will be discontinuous. There’s a myth that flx) = 0asz — o0
because f € I?, which probably comes from this. Again, I think the only functions in I?
which won’t satisfy this will be suitably pathological.
It is simpler to notice that
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where in the last line we make use of the Leibniz integral rule, and we are compelled to
identify F(f'(x)) =ik f(k).
As an aside, the momentum operator P = —iha% has eigenvalues p which represent
observable momenta. Given the above result and the fact that p = Ak, you should be
able to see why (or at least that it is consistent).
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