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To set the scene, we are investigating gauge fields of su(2).
Non-Abelian Gauge Fields

Ay (x) is, for a fixed , x, a Hermitian, traceless, 2 x 2 matrix. We have a basis

{T% a=1,2,3},T%= Tz—a such that
(X,Y)=2tr(XY),

a_b
(1%, 1) :2tr(%%) =54,

X=XT% X%=(X,T%,

for any Hermitian X with tr(X) = 0. Then we can write A, (x) as

a

T
Ay(x) = AZ(x) T = Aﬁ(x)?
in SU(2). To determine the field strength, we calculate the commutator [Dw DV],
where D, =0, +igAy,
[Dy, Dy @(x) = [0, +igAu, 0y + ig A, | p(x)
—igA,0,—igAu0y — g [A,u,Av] }W(x)
- ig{auAv ~0,Au+ig[An Ay }1//(x)
= igFuy () (x).
Fuy(x) =0 Ay —0yA, +ig [AH, AV]

and therefore F,, (x) is Hermitian and traceless. In SU(2),

a

Fuy(x) = F% (x) —
A A
To determine Ffjv(x),
Fiy (%) = (Fuv (), T%)
—21r (F,W (x)%)
=04 (Av(0), T) =0y (Au(x), T*) +ig ([Au(x0), Av(x)], T%)
where we project onto the T¢ basis using the linearity of the scalar product.

.L-Ll
7]

TC

b 7?
Au(X)?,Ai(X)E

Fﬁ’v(x) =0, A7 (x) - OVAZ(x) + ig2tr{
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. 7 1¢) 14
:6#A$(x)—OVAZ(x)+zg2AZ(x)Af,(x)tr{ PE) ?}
Noting that
b _c a d ra dra
T T %7 %7
SR W P N 4
2 2 2 2 2 2
— l-gbcdlada — ligbca — igabc,
2 2

for SU(2) we arrive at
F,(x) = 0, A%(x) — 0y AlL(x) - ge®P AL (0 AS(x),  a=1,2,3.

These are Yang—Mills fields.

We would like to write down a Lagrangian for SU(2) Yang-Mills theory, which
must be Lorentz and gauge invariant. We can make a Lorentz invariant F,, F*".
But how does F,, (x) transform under local SU(2) (gauge) transformations? We
know that

Ay(x) = U A (U (x) + éU(x)OHU_l(x) = A}, (x).

From the transformation A, — A;L, we can work out F, — F;,w' However, it is
easier to note that

1
Fuy(x) = e [Dy, Dy].

We know that v (x) — U(x)w(x) and D,y (x) — U(x)D,y(x) by construction.
Therefore

Dy~ U@D, U™,
0y +igAu(x) = U) (0, +igAu(0))UM) Y,
D,Dy — Ux)D,U(x)"'U(x)D,Ux) ™ =Ux)D,D,U(x)"",
Fiy(x) = Ux)F (x)U = F[W(X),

so unlike the U(1) case, in SU(2) F,,y is not gauge invariant.

To get a Lagrangian density, we need a Lorentz invariant and gauge invariant
field. F,, (x) F*V(x) is Lorentz invariant but not gauge invariant since under a
gauge transformation it becomes U (x) Fy,, (x) F* (x) U ™! (x). Therefore, we will
take the trace.

1
= —Etr Fuy(X)F*Y (x)|,



the Yang-Mills Lagrangian density. In components,
1 74 P
Lyni = —=trd F4 (x) —FPH (x —}
YM > { v ( )2 ( )2
1 TP
= ——F% (x)F"M(x tr(——)
> v (X) (x) > 5

_ 1 a apuv
= - FiF ()

as tr(%% =369,
We can get the SU(2) Yang-Mills field equations by
0Ly (%) _ 0Lym(x)
H0(0,A%(x)  0A¢()
These generalise the Maxwell equations. We can now couple a fermion or boson
to the Yang—Mills field.
The Lagrangian for a fermion and a boson coupled to a SU(2) YM field is

(a=1,2,3,v=0,1,2,3).

1 -
Lx)=- ZFﬁv(x)F““V(x) +(x) (D +m)y(x)
+ (D) DFp0) + mP T () p(x)

where y = (%) , = (ﬁ;) and 1, 2 are flavour indices. These transform as

¢(x) — Ux)p(x), v(x) = UX)y(x).
Most of this is not specific to SU(2). Only small changes are needed to describe
arbitrary SU(N):
[Ta’ Tb] — ifabCTC.
What is the dimension of the space of N x N Hermitian matrices with trace
0?
b1 b2
bikz b22
B=| :
by-1,N-1 bN-1,N
b}kV—l,N bnn

There are N — 1 real numbers on the diagonal and N2 elements. As B = BT,
tr(B) = 0 and N? — 1 real numbers can be picked freely. For example,

b1 b1z b3z
B=|bj, by b3
bis b3 b33

gives us 8 real numbers. Our basis is {77} ,_,
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2.1

The QCD Lagrangian Density

For a quark u,
W u(X)plue
Wu(x) = (Wu(x)green) .
Wy (X)red

We will use i = 1,2, 3 instead of blue, green, red.
For the v, above, we have a local symmetry

Yu(x) = U@y, (x) =y, (x).

In index notation,

3
V()= Uiy, ), U €SUB)colour
j=1

Our Lagrangian is now
1 - .
Lacp(0) =~ tr (Fuv () F*Y () + Y W (%) (iD — mg) w p(x)
f

for f=u,d,s,c,b, t.In component form,

4 3 8
Lauark@) =Y D Y Ur(X)ai (z‘yﬁﬁ [%&7 + ingAz(x) TS| - mfaa,séij)wf(x)ﬁ i
a=

fap=1i,j=1

We are summing over flavour, spinor (Dirac) and colour (SU(3)) indices.

Symmetries of the QCD Lagrangian

* We have an exact local SU(3)c10ur invariance (by construction).

* Gluons are “flavour blind”, i.e. gluons couple to all flavours equally.
We will introduce more compact notation:

Vu
Ya

w: } 1/_/:(1/_/u;1/_/d;---;1/_/t);

Yy
M = diag(my, mgy,...,my),
gquark =y (ibD-Muwy.



2.2

If all masses are equal, m, =mg=---=m;=m,
Yv(iD-My =y (iD-m)elgy.

This implies a global invariance under U(6) transformations (and hence SU(6)).
) - = -1
vy— % Urg¥g W5~ %’/’gUgf
or
v—Uy, Gw—gU ', UeU®6)=UQ1)xSU®).
Experimentally, m, = m; = G(1 MeV),
IL ~ 24,
5 (my +mg)
m. = 1.3 GeV,
myp = 45 GeV,
my = 176 GeV.

How do you weigh a quark? These values are conventional and in some way de-

pend on the renormalisation scheme. Hadronisation is inherently non—perturbative.

If we take only two flavours and set the masses equal, then

Y= (1’””) ) M = diag(m,, my) = diag(m, m)
Va
and we have a global invariance under SU(2) transformation. This is SU(2)isospin-
Historically, SU(2)js0spin is an approximate symmetry between the proton
and neutron, where the proton is the bound state of uud and the neutron is the
bound state of udd.
If we include the strange quark, m, = my = m;, there is an exact global
SU(3)flavour Symmetry (introduced by Gellmann). This leads to the classification
of the hadron spectrum as irreducible representations of this group.

Global Chiral Symmetry
Consider projectors P, = % (1 + y5). The projector properties are
1 1
pl= E(l iyg) = E(li')/g,) =P,
1 1 1 1
p; = 4_1(1 +ys5)(1+ys) = 1 (1+2ys+72) = 1 (2+2y5) = 5 (1£ys)=Ps

1 1
P++P_:§(1+y5)+5(1—y5):1



P,P_.=P,(1-P,)=P,-P>=P,-P,=0
P_P, =0.

Consider Ny massless fermions,

V1

Then

gquarks = 1/_/1D1[/
= 1/7SP+ + PJJIDSP+ +P )y
1 1
=ywP,DP_y+yP_DP,y

as P, P_ terms disappear. Here we used y*P, = Pzy* since y*y® = y>y*, which
implies P,y*P, = P, P_y"* =0.
Recall the QCD Lagrangian

1 _
Locp(x) = -t (Fuv () F*Y () + Y W () (iD — mp) w p(x)
f
where I = y* (9, +igAu(x)). We have exact SU(3) colour symmetry (U(x) €
Su(3)),
v - U@yx), G0 —gr@U®™, Ul eSUB).

Interaction between gluons and quarks is the same for all flavours (“flavour
blindness”). There is an approximate global SU(Nf)favour Symmetry,

Ny =2, my=mg=m, (isospin symmetry)

Ny =3, my=mg=mg=m, (“eightfold way” ~ classification of hadrons).
We also have parity symmetry.
Pixt— = (x° —x) = (1) O xH,
yx) =y (®, P —g@y’,
Au(x) = (D00 A, (%)

(vector fields transform like x*),
T (0, + g Au(0) W (x) 2 1 (R)y"y* (au +ig(—1)1+om A”(fc)) You ().
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The partial derivatives transform too:

o 0 dxv 0 )
- — 6 -1 1+6V0_: -1 1+5v0_.
OxH QXY OxH Z vu(=1) oxY =1 oxY
As 0
ou_] Yy ifu=0 01y 1480
vy ‘{ _yhy® ifp=k=123 [ LD
SO,

Y)Y (0 +igAu() w(x)
P o . N N
— (@) (—1)2;”‘%0) r ((—1)“‘5‘“@ +ig(=1) O AL |y (D)
=y (X)yH 0 +igAu(X) |y (X)
=y (X)y Erm 18 AL(X) [W(X).

Therefore ZLqocp (%) i Zaqcp (%). Note that X! = —x!, dx! = -dx?, so

R —-R R
fdxlz—f dfcl:f dx'.
-R R -R

f d*x Locp(x) — f d*x Loco(%)

Thus, the action

is parity invariant (in contrast to weak interactions).

Chiral Symmetry of Massless Fermions

We have P, = % (1+7s), the chiral projectors. Recall the projector properties:
Pl = P, (Hermitian); P, + P_ =1, P?_r = P,; P, P_ =0. For massless fermions,

Yidy =yi(PL+P_)d(P. + Py
:u_/i(P_'_@P.{_+P+@P_+P_dp++P_dP_)u/.

Note that {ys,y*} = 0, which implies that
Pyt =yHPs, PiyHP. =y"PzP. =0.
Looking at the Dirac term,

Vidy =yPLidP_w+yP_idP,y
=YLi0y L+ YRIGYR.



This is like we have two independent fields which are not coupled. A mass term
couples left and right fields:

myy = my(Py + P_)y = m(YPry +YP_y)

=m(PLyr+WryL).
As an aside:
Y= 1//27’0 = (P+1//)TY0 =y P_yo=y"yoPs = 9Py,
butyy = P_vy.
If m =0, left and right handed fields can be transformed independently. If

V1
Y= ( : ), then

YN

v —ULyp; WL — LU, Ur e SUN)L,
wr—Uryr;  Wr—WrUg',  Ur€SUN)p.

We have a global chiral symmetry SU(N)y x SU(N)g 3 (U, Ug).
Weak interactions are based on a local SU(2); symmetry. This means the
fermions are grouped in left-handed doublets.

(u/u) (w) (wt)

Wd L u/C L 1//19 L
Vel \Vu)p \¥:)p
lst 2nd 3I‘d

Weak Interactions, SU(2); x U(1)y Gauge Symmetry
Consider the first family, only leptons. The free Lagrangian density is

Yy,

ecfo(x):(%e(x),tﬁe(x))Lid( w ) +We r(X)idY o R (X).
L

e

Here we made the assumption that v, is left-handed and hence massless. Recent
experiments indicate that this is not true. Under SU(2); symmetry,

Ve Ve
We,R— U/e,R» 1,[_/e,R - 1,_Ue,R-

(‘”Ve)L~ L(‘”Ve)L, (Fvore), — (v W) UL,

Right-handed fields transform trivially: they are singlets under SU(2);.

10



We now promote SU(2); to a local symmetry (gauge it), Uy — Ur(x), and
introduce the SU(2) gauge field

a

a T
Wu(x) =W, ()=

with field tensor
WIJV = a'uWV - OVWN + ig [WIJ, Wf\/] .

Our interaction Lagrangian becomes

L) = (v, (0, Fel) , i7" (aﬂ " igwﬁ(x)%) (‘fp)
el
_ 1
+ e r(X) i e R(X) — Etr(W,w(x) WH (x)).

Defining WNi =1 (W1 ¥ iWﬁ), the v — e— W interaction is

V2 ©
_ _ _ 77 wve
L'(x)= =g (rve, We) Y Wi (we )L
o L Wi V2w (y
=—g(Wv,We) Y Z(ﬂwu_ —Wﬁ )(‘/’e)L
= _g{ WE [U}Ve,Lyque»L - 1’[_/e’LY“we'L]

+V2W, Py 1Y e + \/EW,Ilpe,LY“wVe,L}-
Notice that
VerY'Wv,1=WePy Py,

= '(’_Ue')/up_wve
1._

= 5%7’” (1-vs)wy,
11 _ -

=S| Fertvn, - s,
2 e— — —_——

vector current  axial vector current
174 — A

This has decay u~ — e™ + Vo +v.

We are still missing some ingredients, i.e. mass. Massless = Coulomb =
long range, but the weak interaction is short range. For now, we will ignore this
problem.
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How do we describe electromagnetism? Wﬁ’ cannot describe a photon since
it couples to v — v and does not couple to ¥, g.
Reconsider £ (x). There are two more global U(1) symmetries:

Vv, ol (V/ve) N ip'
(u/e )L e we L; U/e,R e U/e,R-

¢ and ¢’ are two independent parameters. To incorporate the photon, we need
to gauge only one combination. We choose

Vv, _ iyL)((u/Ve) —, olVRX
(U/e )L e Ve L; Yer— € Ye,R-

YL, Yr are fixed numbers to be determined later. Define

Yvel C (Vvel . yo 0 0
v=|ver |— e [wer =y,  Y=|0 y 0.
Ve,R Ve, 0 0 yr

Y is a generator of the U(1) y group, the weak hypercharge. Promote U(1)y to a
local symmetry, i.e. ¥ = y(x). In order to maintain invariance, we introduce the
Abelian gauge field B, with field tensor

BIJV = aqu - a’v.BlJ.
Now, including the W field as well,
1 1
LX) = St (Wi (0 WH (1)) - ZBWB‘” + Y (x)iy" Dy (x),

Dyy(x) = (au +igWAX T +ig By(x) Y) w(x)

% 0
T = 2 0
0 0 O

and T; is a 2 x 2 matrix. T is the fundamental representation for the doublet
and trivial for the singlet.

where

(14, 1] = ie®bcT¢,  [T%Y]=0.
The interaction part of the Lagrangian is
&L =—yyt (ng T+ig'B, Y) v

12



Wy Wy 1Y Wer + Wy WerY Wy, L

Sl

1 -
=3 [gW[j’ + 2ng’BH] VvtV Wy, L
1 _
+ ) [gwj - Z.VLg,By] VerY Vel
- ng,B,utpe,RYuWe,R-

Either y; or yg can be fixed arbitrarily, since only g’'y; and g’'yr appear. Set
YL = % and define the Z-boson and photon field as

1
Z,=—— (gW3-¢'B,|, A =———— ’W3+gB .
H o2+ g2 (g w8 ”) K o2+ g2 (g K ”)
Define ,
sinfy = L, cosOy = §

g +g? g7+ g2

() (5z0n o))

Ay)  \sin@y  cosfw)\ By,

Then

This matrix is easily invertible. Oy is the weak mixing angle.
How is U(1)gm embedded? Putting Z,;, A, into the Lagrangian,

1._ 1._
L=—\/g%+ g’zZu{vae,LY”UJve,L - EWe,LYpWe,L

— sin? Ow (—L_Ue,LYM'We,L + J/Rlpe,RpreyR) }

!

- LZAIJ{ — Vet Y'Wer + YVRWe,RY ' Wer }

/g2+g/
i 7ryH T evhw e = v i i =—1 88 __
Notice that ¢ y*y + W ry*wr = ¢yHy implies yr L, Veitg? €.

L=t eAﬂng’ ng =yey e

which is the usual term we would expect. ng is the conserved Noether current
of U(1) symmetry. It follows that

e=gsinfy = g’ cosOy = /g% + g"?sinfOy cosOy,

(1F7ys)v,

N | =

YL =Pry =
R

13



VY'Y =y (P + Py (P + Py
=Py Py +y Py Py

=Yty +wryHyr.

Tidying up the Lagrangian,
c%:-..4_ A -1 _—Z .U
€AuJpm sin By cosOyy vINC
e 7 —_ -
e (Wi e+ Wi ey ),
w
where

1 1
N - .2 N
INne = EWVE,LYNUIVE,L - EWe,LYNU/e,L +8in” Oy jpy-
jﬁc is the neutral current density. Ay, Z, are neutral particles, WNi carry an elec-
tric charge. ( o

Consider £ (¢,0,¢), ¢ = : ),qb:(,b’:R(p,REO(N):(1]+ia“T”)¢>.
ON

5X% 5X%
5L = 5 50,6, 5S¢ =ia® T,
rr AT ewree L A A A L
- 92 ia“T“gb+a+$0 ia’T%p
T age(x) a(0,p%x)

etc., and
0= fd?’xaﬂj[j(x) = fd?’xaojg(x) = a"fd?’xjg‘(x) =0°Q°

as we loose terms at infinity, so we forget about the 8'j; term since boundary
terms vanish.

Bosons couple to the Noether current of the symmetry. Take muon decay,
fi— eé+Vve+vy, L, =1andlepton number is a charge conserved in each family
individually.

In U(2) symmetry, U(2) = SU(2) x U(1). We have global symmetry for these

—— —~~

weak doublets, local  global
w e i w e 17 7 7 T —i
(wve)fem(wve)j o)y = (PPl e

The separately conserved currents for global U(1) symmetry provide a lepton
number for each family. However, neutrino oscillations mean this is not an
exact symmetry—neutrinos have mass! For independent symmetries choose
a different a for each family (3 symmetries). This gives a conserved charge—
the lepton number. We recover exact symmetries in the limit m, — 0. There is
indirect evidence of symmetry breaking in neutrino mixing.
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4.1

The Higgs Sector of the Standard Model

Since the photon is massless, the Coulomb law is valid (and vice versa). Our goal
is to introduce mass terms for Wj and Z,, (but not the photon) and mass terms
for fermions. Both break SU(2) x U(1) y gauge invariance. For example, the mass
term for Z,: ~ %mZZZuZ“; and for the electron: ~ YW, = Yo LWe R+ WerVe,L.
These are not invariant under the SU(2) x U(1) y transformation.

Spontaneous symmetry breaking comes to the rescue! Symmetries of the
Lagrangian do not equal symmetries of the vacuum state.

Higgs Sector

Introduce a complex scalar doublet

- (ﬁi) L L=0,0'0-V@), V) =Pelp+A(elg).

For p? < 0 the minimum of the potential is at |¢| = %, implying SSB.
What are the symmetries of £?

SR
¢$2) \@2+ig,
and rearranging as an O(4) vector,

P1
-~ _ | P2 O
¢ 03 2 pP o0m Y (@)
P4
~~_12»2 &a4 ~2_ 2 2 2 2
V((p)—zu [Pl +4|(,0| ) 1PI” = @] + ¢35 + @3+ ¢
We have a global symmetry,
$—Rp, ReO®),
$"9—¢"R"RG=9"
asRTR=1forRe O(4). If one component takes a non-zero vacuum expectation
value, we have a subgroup of the symmetry.

1 00O
) ReO(@3)

0
0 R
0

S o o<
S oo <

15



where ¢ = v is the ground state for the SSB potential. Thus, under sponta-
neous symmetry breaking, O(4)(symmetries of £)—0O(3)(symmetries of the
ground state). As

0@4) =SU((2) x SU(2),

there is a formalism in terms of SU(2) x SU(2) symmetries. Define a 2 x 2 matrix
field

se=( ) lere)=ea] (2 (% 4]
:m(cb;(pz;cpwl ng(p;(pz)

=4(¢101+p3 ) = 49",
The Lagrangian for the Higgs sector is now
1 ,u2 A 2
. Tous| _ ts) - 2 T
Z= EAAEDY ; r(x'z) = (er(="2))
and we have the global symmetry

- UzUl,  T-UEUl, (UL, UR) eSUR) xSUQ),
r(2'2) - tr(U, T Ul U, 20, ) = o (UfU,ETE) = (2.

()

1 0
z0‘”(0 1)’

T
Z,—~ U 2 Uy
=vU, U},
#20

The ground state is

SO

unless Uy = Ug. Xy is invariant under the diagonal SU(2) subgroup SU(2) g,
obtained for U;, = Ug. Under SSB,

SU); xSU@)g, — SU@) L. 5.
~0(4) ~0(3)

16



SU(2)1+r is known as “custodial SU(2) symmetry”. If we embed local SU(2), x
U(1)y symmetry,

0up — Dy = (0y+igWu+3ig'By) ¢
—~Dy2=0,5+igW,2—ig'sB, T

(taking yr = %).
Assume that V(@) is invariant under

p—Rp=(T+ia,T%)p

where R is an element of the symmetry group G and T* are the generators of G,
a=1,...,ng. Invariance implies V(R®) = V(¢). Assume that V(®) has a set of
degenerate minima. Pick one spontaneously: ¢ = 7.
Consider fluctuations around the minimum 7,
oV 0’V )

—0, - M2,
0, p=0 a(l’ia(l’j G=0 Y

Eigenvalues of Ml.zj are the squared masses of the physical particle excitations
around the vacuum.

Assume that the vacuum 7 (the minimum of V(¢)) is invariant under the
subgroup H c G with generators TP, b=1,...,ny (ng < ng).

(1]+abTb) b= = Tlo=0, b=1,... 1z
Invariance of V(¢) under G implies

0=V(RP) - V()
=V(p+a,T@)- V()

L, ov. . . . .
= V(‘P)"‘%laaTij(Pj_V((P)-

i
Differentiating with respect to ¢ and evaluating at ¢ = 7,

2

0= a—ViaaT.“-6,-k+—ViaaT-“.(p~
A T Y TR A P
0’V N

= 3000, @zglaaTijVj

:Ml-zjiaaTi‘;vj,

17



therefore
M,za.(T“ﬁ)l.:O, a=1,...,n¢. (%)

For the subgroup H c G, T?¥ = 0 and (%) holds trivially.
The remaining generators correspond to

ac{ng+1,...,n¢}.

T%D is an eigenvector of M? with eigenvalue 0. Therefore, we have ng — ny
massless particles: Goldstone bosons!
Returning to the Higgs sector, we have a doublet

¥1
_ L ‘P3+i(ﬂl) )
= \/§(<P4+i<l?2 P s
2z
and
| N R - 1 R A
L=20,0"0"p-V(@), V@ =119 + 7151,
with
v o |1 A ’
2 2 2
= —_ + J—
0pi O {2” 20ty (g(pk) }
= 12 +A(Z<ﬂi)<pi-
k
Then
a V(-» — — 2 . —*2 .
) =0=p v+ A0%;
0p; p=v
= v; (U + AD?)
2
~— v;=0 or 172:—%.
A > 0 is required for stability, so 7% = —“72 requires u? < 0. This implies that
2
o=y -%

18



is the minimal field configuration.

, 0%V '
]l a(pja(pi p=0
:u25,-j+/1(2vi)6,-j+2vjv,-
k

=5ij(ﬂ2+/152) +2/1vl-vj
0
:2/11},'1}]'.

Choose a direction by spontaneously picking one of the vacuua:

2
= l}il}jZU 5,’46]'4,

T O O O

coc oo
coc oo
coc oo
> o oo

Looking at our symmetry groups,

G =0(4) — ng = 6 generators

H =0(3) — ny =3 generators } nG = nu =3,

so we have 3 massless Goldstone bosons and one massive particle, a Higgs boson
of mass?®
m2, = 2Av°
H - .

4.2 The Higgs Mechanism

We derived the Goldstone theorem and applied it to an O(4) symmetric La-
grangian

1. . - R .1 5 A
L=20,0T0"5-V@), V@ =111+ L1l
u? < 0 implies spontaneous symmetry breaking, O(4) — O(3), with minimum

2
o
7t = ——

p=7, IR
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The spectrum is 1 massive state (the Higgs boson, m%l =2A7?%) and 3 massless
states (Goldstone bosons).
Return to the complex doublet

i)t

p=iete =5 o) of) =%
=1T = x| = % |-
p=irte =5 o)ot) =5
¢, ¢ are SU(2); doublets with U(1)y hypercharges yy = %, —%. Thus

Dup= (0, +igW,+3ig'Bu) ¢,
Dup=(0,+igW,—3ig'Bu) .

Combine ¢, ¢ in a matrix X,

(l):

and define

Lo _(zan_[® &
vl GO M

Rewriting the Lagrangian in terms of Z,

) , iz =201

2= Lu(o,20s) - Lur(r'z) - L [r(z's)]
O(4) becomes SU(2) x SU(2),
X — U zU}.

For the vacuum, ¢4 = v = |7| and thus

10
Zl(p4:v_20 = U(O 1).

O(3) symmetry of ¥ translates to SU(2) symmetry;,
Yo — UZoU' = 3.
The covariant derivative on X is
DyZ=0,%+igW,2—ig' B,%.

SU@2). x U(l)y € SU@2); x SU@2)g, so U(1)y is the 3 component of SU(2)g.
Gauging the Lagrangian,
1 ,uz A 2
. — Tpes| _ 2 s _ 2 T
Priggs () = 4tr(DyZ D z) ; tr(z z) = [tr(z z)] .
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Decomposing X into radial and angular components,
' =2¢p1=p?1,
> X=p-U, ='x=p*U'U=p*

and therefore U is unitary.
We have a minimum of the action (and thus the potential) for p(x) = v.
Expanding around the minimum,

p(x) =v+ H(x),
1 p* t o, A
ZLiiggs = 50up0"p+ —-r [(D”U) (D”U)] - 7102 - ZP4

das

Making the replacement p = v+ H,

(v + H)?

2
Lhiiggs = %OHH6“H+ tr [(DHU)T (D”U)] - % (v+H)* - % (v+ H)*.

The mass of the Higgs boson is
2
£ 3 H? (_IJ_ - &61/2)
2 4
and using —p? = Av?,

1 3
= H? (+§)Lv2 - E/lvz) = —AVPH
1

2 172
=——m%H",
o MH

qu =202,
The massless Goldstone bosons are encoded in U,

iy%t?

U =exp ( ) — x"?® = Goldstone bosons.

These are massless: no derivative terms ox y“y“ implies mass zero!
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4.3 Unitary Gauge

Take a closer look at tr [(Du u)" (D" U)]

3 3
T T
:tr{[ayUT—z'gU*WH+ig’BN?UT 0“U+igW“U—ig'UB”E

L

Define 1
wy=U'w,Uu+—U",U,
lg
i.e. interpret U = Ul asuE), gauge transformation on W,. We find that the
trace tr [(D#U)Jr (D”U)]

2 - P ”2 ° 1°
=g tr(WNW “)+2tr(—gg W#B“—)+g BuB“tr(——)
2 2 2
1

1
zgzwliawlpa _ gg'W,i3B” + ngEB,uB'u~

Taking W, — W), (unitary gauge) makes U disappear and tr [(D“ v)" (D"U )]
gives mass terms for gauge bosons.
We have

1 v+ H)? 2 A
zHiggs:EauHa“HJF( 4H) tr[(DuU)*(D“U)]—%(HH)Z—Z(HH)“

ara

and since U = ¢!’ )
(0,U'0"U) = (0, (<L) 0 (257)) + 0 (xxxn)

= %%x“@“xl’tr (Ta‘[b)

2
— ﬁauxaapxa

since tr(197%) = 269,
v* 2 aap,,a _ 1 a Gt @
L3~ —50ux 0"y = S0ux "0y ",
1 1
tr [(DHU)T (D“U)] = S8 W, WH —gg WBH + = g” BB,
where W), = UTW, U + é U'0,,U in the unitary gauge, so
t 1, 3 )
tr| (D) (D V)| = S8 Wi W —gg WOBH + - g B, B
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1 1 2 _ ! Wl/.tg
= 5g2 (W”} W+ W W’“Z) 3 (WﬁBy) (_g &8 ) ( ) :

gg g BH
———
G
We want to find the eigenvalues of G. h ps g
tr(G) = g2 + g%,
det(G) = g°g"” - (gg')* = 0.
Recall that
g : g
coslOy = ——, sinfy = ———,
G Y Ve
W/f’ _ [ cosOw  sinbBw)\(Z,
By ) \-sinfy cosOw)\Ay)’
Now,
nT 2 / /
— Z/J
o o R O
—_o! 2 _ ! ! AL
=Gy f )G I 8
:(ZH AH) ?3;88'2,2, —gzg'—g"j’z)( g/ g,) (ZZ)
T\g'gT-8"g —gg“+gg”)\-g g/\A
:(Z B ) gl +g2g?+g%g?+g" g +gg°-gig —g8g) (2*
L 0 0 AH
2 122 u
_ g +g 0\(Z
[ )
So,

1
Phiggs 3 m%\/WIj WH+ EI’YZZZZ”ZN,

2
2 _ 8 o 2 _
mW——4v, my =

2 2
+
g 8 2, m

2 _
2 y=0.

The Lagrangian is thus

1 1 H H? 1 31 A
££Higgs:EOMHG“H—Em%H2+(1+2;+?) (m%/VW/.,t+Wi#+5mZZZ,L,lZ,” —IUH?)—ZHAL.

This gives us:
e the Higgs boson of mass my and self couplings ~ H3, H*,
e mass terms for W, Z bosons,

* interactions HW,; W™+, HZ, Z}, H*W;W™H, H*Z, ZV.
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5.1

Resumé

1. The gauge symmetry SU(2); x U(1)y is still present at the level of the
Lagrangian; it is only hidden by expanding fields about the minimum field
configuration or vacuum state.

2. The 3 Goldstone bosons are eaten by the W*, Z-bosons, which play the
role of longditudinal degrees of freedom.

Remark on SSB

In QFT, SSB is signalled by a non-zero vacuum expectation value (VEV). In the
Higgs doublet, we would have something like

- 0
(01 ¢10)= (L)

V2

which is equivalent to a field configuration minimising the potential.
As an analogy, consider SSB in 2 flavour massless QCD.

u _ _ -
w=(d), v =(ad),
L =yDy =y Dy +YrDyr.

Under SU(2); x SU(2) g symmetry, 1 — Urw. There is a vacuum expectation
R R R

value of

0l |0) # 0.
Yy =W yWr+Wry breaks the SU(2); x SU(2) g symmetry, but

vy — U Uy =gy.

Therefore under SSB, SU(2); x SU(2)g — SU(2)y as in the Higgs mechanism
and we get 3 massless Goldstone bosons. In QCD, the lightest particles are the
ms: ¥, 1° (m,; = 140 MeV). The next heaviest is p, my =770 MeV. Identify the
Goldstone bosons with 7s (pseudo-Goldstone bosons) and add quark masses as
a perturbation. Thus m; x (m, + m, ) are generated.

We could think of the Higgs boson as a composite particle. Could SSB in QCD
generate myy, mz? Yes! However, the scale is much too low.

my = 80 GeV

my ~ 90 GeV } set by v =250 GeV (Fermi scale).
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In QCD, the corresponding scale is f; = 93 MeV. This means myy, mz generated
by SSB in QCD would be too small by a factor f” =0(1073).

The basic idea of technicolour models is to 1ntroduce an additional “charge”
technicolour. The most naive model simply rescales QCD by -~ 7 The simplest
idea is in conflict with data from experiments, but dynamical SSB of electroweak
symmetry is still very attractive.

The Yukawa Lagrangian

Our goal is to obtain masses for the fermions without breaking the gauge sym-
metry. The idea is to couple the Higgs doublet ¢ to the fermions in Zyykawa-
For the first lepton family,

Pyukawa = —CeWe, R(/ﬂL (151 ) —Ce (1,_01/9; We)R OL/P8
e
Under SSB,
i @3+ i) \ unitary L 0
¢ V2 v+ H+ i@y gauge V2 v+ H
and
v _ vV _
Pyukawa 2 —Ce (TWe,RU/e,L + EWe,LWe,R)

= —Ce

\/—T,UeU/e = —MeWeYe.

Proceed analogously for all fermions.
Combining all fields into a multiplet v,

1,Uve,L
y=|""], Dpw:(6“+igWﬁT“+ig'BuY)w.
VbR

For the interaction of fermions with Wui, Z,7,

WiDy = yidy — gy (ngf T%+g'B, Y) v.

S

. + fint
Passingto W=, Z, v,

— H H + M
fint——e{AufEM st costw ZuINe + Trano (W Jeet Wy fc)}
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where
T =0Y"Qy, I =9r*[T° —sin*6wQ]w
=yy* TPy —sin”Ow Jt,
and the charge current is

Jee =" (T'+iT%) .

6.1 Fermion Mass Matrix

We need to form SU(2), singlets by combining the Higgs doublet ¢ with fermion
doublets (4, ), . This can be done by

o) )

using ¢ = it?¢p* = (_¢$* ), and the Hermitian conjugates
1

(w1, w2), 00 (V1,92), 0.

The most general Lagrangian is

Y,
We L

=(£Yuk = (1/_/e,R, 1/_/;1,}?,1/_/1,[() C] QDT +h.c.

+h.c.

~(Wur Wer, WiR) cy P (

_(wd’,R)u_/S',R’be/’R) Cq (/)T wc) +h.c.

This is the full Yukawa Lagrangian, assuming neutrino masses are zero.
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* ¢y, 027, Cq4 are a priori arbitrary complex 3 x 3 matrices.
e We have SU(2); x U(1) symmetry.
e Primed fields v 4, vy, ¥} allow for a mismatch between

1. fields coupling to Wui, 7 bosons,

2. eigenstates of the mass matrix.

We can change the basis of fields with the same quantum numbers, e.g.

Ufe,R We,R
WM,R - Ul V/p,R ’ Ul € U(S)-
1VT,I-? WT,R

Therefore £ is unchanged except for Ly,
C] — U Ir Cl.

Similar changes can be made for left-handed doublets.

Yu Yu
Val; Vi),
Ve - V1 Ve
wS L wS L
Ve Yt
Yl V),

Using the freedom to change basis, we see

cr— U}Lclvb
! T 7
Cq— UchVg,
.‘.
For leptons,
T gt T
¢, ¢ Ulclcl U1-

Choose U, such that ¢, C}L is diagonal.

2 0 0 ce 0 0
t_ 2
¢, ¢ = 0 ¢, 0O => ¢=|0 ¢ O0|W
0 0 ¢ 0 0 ¢
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where W is arbitrary. Choose V; = W'. Then

ce 0 O
0 0 ¢
It is the same for quarks:
c, 0 O
0 0 Ct
cg 0 O
T i T — il
CqCq = U3cchU3 => ¢=10 ¢ 0|V
0 0 Cp

s cannot be reduced further as V, has been used up for c;. The standard form
for ¢, is to use the Us transformation to obtain

cg 0 O
cg=V]|0 ¢ 0|V, V=vexu
0 0 ¢

Zyuk in the unitary gauge is

ce 0 0)(ver
Lyuk =X — ({Ue,R’lp,u,R’lpT,R) 0 Cu 0 Yu,L +h.c.
0 0 ¢)\yreL
cu 0 0\ (yuL
- (wu,Rﬂpc,R’fUt,R) 0 ¢ O0]|lver +h.c.
0 0 c)\ysL

ca 0 O VaL

. . - v
- (ujd'.R) ws’,R’Wb’,R) Vekm|[ 0 ¢ O VCTKM Vsl |+ h.c. 7 (1 + ;)
0 0 ¢ YL 2
We can now get the masses:
v v
Mme=C—, ..., Mp=Cph——.
) V2

The Higgs coupling is proportional to the fermion mass. We have mass eigen-
states

Va W'd
Vs |= VCTKM U/s .
Vb v,
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