Dimensional Regularisation of the
Photon Self-Energy

The photon self-energy is a modification to the photon structure by a virtual
electron-positron pair.
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In d-dimensional spacetime with d € C and Minkowski metric 7, we
can define the Dirac matrices as operators generating the Clifford algebra
C1,4—1(R) using the anticommutation relation {v#,~v"} = 2n*¥, with tr(1) =4
for d ~ 4.

For a closed loop of fermion propagators we get a fermion loop factor of
—1 and a trace of Dirac matrices. Feynman rules give us
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the second-order contribution to the photon polarisation tensor.
Using our trace technology,
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as the trace of an odd number of gamma matrices is zero. Then
tr [ kv v ko] = tr [y Y"1 ko]
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tr [V kv Y7 o] = tr [V P Y ko]
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and

tr [y*my'm] = 4n*'m?,

SO
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Returning to our amplitude,
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Introducing the Feynman parameter zx,
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where we have shifted the loop momentum to £ = k + xq, so the denominator
depends only on ¢2. We will be more succinct and say

(0 +z(1—2)¢* - m2)2 = (1?2 — A)?

where A = —z(1 — x)¢? + m? can be thought of as an effective mass term.
In terms of ¢, the numerator becomes

k1KY + kg 4 (m® — K — kg,
= 20H0Y — 0% — 22(1 — 2)g"q” + ' (m? + 2(1 — 2)¢?)

+ (terms linear in /).



Now d%k = d%¢ and we can rewrite our momentum integral. The Minkowski
metric is preventing us from integrating over d-dimensional spherical co-
ordinates, so we will Wick-rotate the contour by defining the FKuclidean
d-momentum ¢ = (¢, £g) as

O =i L=05.

We have the momentum line element (> = (3 — £2, so (2 — —(2, for
(2, = (%2 + £? to have a Euclidean signature.
Unsuppressing Feynman’s ie-prescription, we have poles at

(P —A+ie) =0 eozj:(\/m—ie).

In terms of Euclidean momentum, the denominator becomes (—¢%—A)? =
(EQE + A)2. We can again suppress the ie as we are far from the poles.
Now our amplitude is also being integrated over the Feynman parameter:
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We have dropped the terms linear in /g because, for the n' root of a
denominator D™ only dependent on the magnitude of ¢,
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by symmetry. A similar line of reasoning also give us
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Contracting the numerator with the metric gives 1, 0F0" = {0V = 22, but
N 0 = 17/%2 = (5ﬁ£2 = df?, so we must divide by d to maintain Lorentz

invariance. Then
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and our amplitude looks like
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In order to attack this, let’s split up the momentum integral.
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The second integral is simpler, so we’ll solve it now. Consider
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where Qg is the surface area of a d-dimensional unit sphere S and
the radial contribution of the Jacobian. Since the Gaussian integral gives us
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The z integral can be solved in terms of the I' function by substituting for
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we get
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The second factor can be solved by first making a similar substitution:
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Let x = Then u = A(L — 1) and

u+A

d d
o AS-1L_qyg1
/ N ; Wl G-e

w\m

2
2 0
But the beta function B(«, 3) is defined in terms of the beta integral as
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Finally putting this together, we get the all important
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This means that the second term in our momentum integral (with n = 2) is
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Consequently,
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so the first term in our momentum integral (n = 2) is
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using the recursion relation I'(z 4+ 1) = 2I'(z).
We are now in a position to evaluate the momentum integral.
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We are still integrating over the Feynman parameter, so the polarisation



tensor is
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where we have separated the tensor part and bundled most of the physics
into
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I'(z) is meromorphic in (C, with simple poles at z € —N. Thus, in 4-
dimensional spacetime our amplitude is strongly ultraviolet-divergent. This
violates the Ward identity. Pauli—Villars regularisation fails since, for a
momentum cutoff /g = A, it would give a photon mass of m, oc eA which
becomes infinite once the regulator is removed.

We can instead use dimensional regularisation by calculating IIs in a
spacetime with arbitrary dimension d € C, taking the limit d — 4.

The Weierstrass definition of the I' function is
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where v ~ 0.5772 is the Euler-Mascheroni constant.
This means we can expand I' around d = 4 as
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We also get



and
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Then

o2
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This no longer violates the Ward identity, but the integral is still divergent
in the d — 4 limit.

However, if d = 2 (i.e. 1 + 1 dimensional spacetime) we can recover a
convergent amplitude. Note that our trace identities made use of tr(1) = 4.

Ifd=2, tr(1) = 2% = 2 and
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which is finite.

9§ Corrections to fionn@maths.tcd. ie.
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