Noether's Theorem and Massive Electromagnetic Fields

By Noether's theorem, there exists a conserved stress-energy tensor

$$T_{\text{Noether}}^{\mu\nu} = \sum_{a} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi_{a})} \partial^{\nu} \phi^{a} - \eta^{\mu\nu} \mathcal{L}.$$

In order to ensure symmetry of $T^{\mu\nu}=T^{\nu\mu}$ (required for conservation of angular momentum), we may have to add a total divergence:

$$T^{\mu\nu} = T^{\mu\nu}_{\text{Noether}} + \partial_{\lambda} \mathcal{K}^{[\lambda\mu]\nu}$$

where $\mathcal{K}^{[\lambda\mu]\nu}(\phi,\partial\phi)$ is some 3-index Lorentz tensor antisymmetric in λ,μ . Regardless of the form of $\mathcal{K}^{[\lambda\mu]\nu}$,

$$\partial_{\mu}T^{\mu\nu} = \partial_{\mu}T^{\mu\nu}_{\text{Noether}}, \qquad P^{\mu}_{\text{net}} = \int d^3x \, T^{0\mu} = \int d^3x \, T^{0\mu}_{\text{Noether}}.$$

To see this, we take the 4-divergence

$$\begin{split} \partial_{\mu} T^{\mu\nu} &= \partial_{\mu} \left[T^{\mu\nu}_{\text{Noether}} + \partial_{\lambda} \mathcal{K}^{[\lambda\mu]\nu} \right] \\ &= \partial_{\mu} T^{\mu\nu}_{\text{Noether}} + \partial_{\mu} \partial_{\lambda} \mathcal{K}^{[\lambda\mu]\nu}. \end{split}$$

Since $\partial_{\mu}\partial_{\lambda}$ is symmetric and $\mathcal{K}^{[\lambda\mu]\nu}$ antisymmetric in λ, μ , we conclude that $\partial_{\mu}\partial_{\lambda}\mathcal{K}^{[\lambda\mu]\nu}=0$. To check conservation,

$$\begin{split} \partial_{\mu}T^{\mu\nu} &= \partial_{\mu} \left[\sum_{a} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi_{a})} \partial^{\nu}\phi^{a} - \eta^{\mu\nu}\mathcal{L} \right] \\ &= \sum_{a} \partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi_{a})} \partial^{\nu}\phi^{a} \right] - \partial^{\nu}\mathcal{L} \\ &= \sum_{a} \left[\partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi_{a})} \partial^{\nu}\phi^{a} + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi_{a})} \partial_{\mu}\partial^{\nu}\phi^{a} \right] - \partial^{\nu}\mathcal{L} \\ &= \sum_{a} \left[\frac{\partial \mathcal{L}}{\partial \phi_{a}} \partial^{\nu}\phi^{a} + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi_{a})} \partial_{\mu}\partial^{\nu}\phi^{a} \right] - \partial^{\nu}\mathcal{L}, \end{split}$$

but

$$\partial^{\nu} \mathcal{L} = \sum_{a} \left[\frac{\partial \mathcal{L}}{\partial \phi_{a}} \partial^{\nu} \phi^{a} + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi_{a})} \partial_{\mu} \partial^{\nu} \phi^{a} \right],$$

so the derivative becomes

$$\partial_{\mu}T^{\mu\nu} = \partial^{\nu}\mathcal{L} - \partial^{\nu}\mathcal{L} = 0$$

and the tensor is conserved.

Now

$$\begin{split} P_{\rm net}^{\mu} &= \int \! \mathrm{d}^3 x \, T^{0\mu} \\ &= \int \! \mathrm{d}^3 x \, \left[T_{\rm Noether}^{0\mu} + \partial_{\lambda} \mathcal{K}^{[\lambda 0]\mu} \right] , \end{split}$$

so we wish to show that $\int d^3x \, \partial_{\lambda} \mathcal{K}^{[\lambda 0]\mu} = 0$.

$$\int d^3x \, \partial_{\lambda} \mathcal{K}^{[\lambda 0]\mu} = \int d^3x \, \left(\partial_0 \mathcal{K}^{[00]\mu} + \partial_i \mathcal{K}^{[i0]\mu} \right)$$
$$= \int d^3x \, \partial_i \mathcal{K}^{[i0]\mu}$$

by symmetry and

$$\int d^3x \, \partial_i \mathcal{K}^{[i0]\mu} = 0$$

when integrated over a surface.

 $T_{
m Noether}^{\mu\nu}$ is symmetric for real or complex scalar fields but loses this property for vector, tensor or spinor fields. This is the case for a theory of free electromagnetic fields, where

$$\mathcal{L}(A_{\mu}, \partial_{\nu} A_{\mu}) = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}.$$

With this Lagrangian,

$$\begin{split} T_{\text{Noether}}^{\mu\nu} &= \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\lambda})} \partial^{\nu} A_{\lambda} - \eta^{\mu\nu} \mathcal{L} \\ &= -\frac{1}{4} \frac{\partial (F_{\rho\sigma} F^{\rho\sigma})}{\partial (\partial_{\mu} A_{\lambda})} \partial^{\nu} A_{\lambda} + \frac{1}{4} \eta^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma}. \end{split}$$

But

$$F_{\rho\sigma}F^{\rho\sigma} = (\partial_{\rho}A_{\sigma} - \partial_{\sigma}A_{\rho})(\partial^{\rho}A^{\sigma} - \partial^{\sigma}A^{\rho})$$

$$= \partial_{\rho} A_{\sigma} \partial^{\rho} A^{\sigma} - \partial_{\rho} A_{\sigma} \partial^{\sigma} A^{\rho} - \partial_{\sigma} A_{\rho} \partial^{\rho} A^{\sigma} + \partial_{\sigma} A_{\rho} \partial^{\sigma} A^{\rho}$$

$$= 2 \partial_{\rho} A_{\sigma} \partial^{\rho} A^{\sigma} - 2 \partial_{\rho} A_{\sigma} \partial^{\sigma} A^{\rho}$$

$$= 2 \partial_{\rho} A_{\sigma} (\partial^{\rho} A^{\sigma} - \partial^{\sigma} A^{\rho}),$$

SO

$$\frac{\partial(F_{\rho\sigma}F^{\rho\sigma})}{\partial(\partial_{\mu}A_{\lambda})} = 2\frac{\partial(\partial_{\rho}A_{\sigma})}{\partial(\partial_{\mu}A_{\lambda})}(\partial^{\rho}A^{\sigma} - \partial^{\sigma}A^{\rho}) + 2\partial_{\rho}A_{\sigma}\frac{\partial(\partial^{\rho}A^{\sigma} - \partial^{\sigma}A^{\rho})}{\partial(\partial_{\mu}A_{\lambda})}$$

$$= 2\delta^{\mu}_{\rho}\delta^{\lambda}_{\sigma}(\partial^{\rho}A^{\sigma} - \partial^{\sigma}A^{\rho}) + 2\partial^{\rho}A^{\sigma}\frac{\partial(\partial_{\rho}A_{\sigma} - \partial_{\sigma}A_{\rho})}{\partial(\partial_{\mu}A_{\lambda})}$$

$$= 2\delta^{\mu}_{\rho}\delta^{\lambda}_{\sigma}(\partial^{\rho}A^{\sigma} - \partial^{\sigma}A^{\rho}) + 2\partial^{\rho}A^{\sigma}(\delta^{\mu}_{\rho}\delta^{\lambda}_{\sigma} - \delta^{\mu}_{\sigma}\delta^{\lambda}_{\rho})$$

$$= 2(\partial^{\mu}A^{\lambda} - \partial^{\lambda}A^{\mu}) + 2(\partial^{\mu}A^{\lambda} - \partial^{\lambda}A^{\mu})$$

$$= 4F^{\mu\lambda},$$

giving

$$T_{\text{Noether}}^{\mu\nu} = -F^{\mu\lambda}\partial^{\nu}A_{\lambda} + \frac{1}{4}\eta^{\mu\nu}F_{\rho\sigma}F^{\rho\sigma}.$$

This stress tensor is neither symmetric nor gauge invariant. The second term is obviously symmetric and gauge invariant, since $\eta^{\mu\nu}$ and $F_{\mu\nu}F^{\mu\nu}$ are both symmetric and gauge invariant, so we will focus on the first term.

$$F^{\mu\lambda}\partial^{\nu}A_{\lambda} \xrightarrow{\lambda \leftrightarrow \nu} F^{\mu\nu}\partial^{\lambda}A_{\nu}$$

$$(\partial^{\mu}A^{\lambda} - \partial^{\lambda}A^{\mu})\partial^{\nu}A_{\lambda} \xrightarrow{\lambda \leftrightarrow \nu} (\partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu})\partial^{\lambda}A_{\nu}$$

$$\partial^{\mu}A^{\lambda}\partial^{\nu}A_{\lambda} - \partial^{\lambda}A^{\mu}\partial^{\nu}A_{\lambda} \xrightarrow{\lambda \leftrightarrow \nu} \partial^{\mu}A^{\nu}\partial^{\lambda}A_{\lambda} - \partial^{\nu}A^{\mu}\partial^{\lambda}A_{\nu}$$

and $\partial^{\mu}A^{\lambda}\partial^{\nu}A_{\lambda} \neq \partial^{\mu}A^{\nu}\partial^{\lambda}A_{\lambda}$, so $T_{\text{Noether}}^{\mu\nu}$ is asymmetric. Under a gauge transformation $A_{\mu} \to A'_{\mu} = A_{\mu} + \partial_{\mu}\alpha$,

$$(\partial_{\mu}A_{\lambda} - \partial_{\lambda}A_{\mu})\partial^{\nu}A_{\lambda} \to (\partial_{\mu}A_{\lambda} - \partial_{\lambda}A_{\mu} + \partial_{\mu}\partial_{\lambda}\alpha - \partial_{\lambda}\partial_{\mu}\alpha)(\partial^{\nu}A_{\lambda} + \partial^{\nu}\partial_{\lambda}\alpha)$$
$$= (\partial_{\mu}A_{\lambda} - \partial_{\lambda}A_{\mu})(\partial^{\nu}A_{\lambda} + \partial^{\nu}\partial_{\lambda}\alpha)$$

and

$$(\partial_{\mu}A_{\lambda} - \partial_{\lambda}A_{\mu})\partial^{\nu}A_{\lambda} \neq (\partial_{\mu}A_{\lambda} - \partial_{\lambda}A_{\mu})(\partial^{\nu}A_{\lambda} + \partial^{\nu}\partial_{\lambda}\alpha),$$

so $T_{\text{Noether}}^{\mu\nu}$ is not gauge invariant.

A candidate symmetric and gauge invariant stress-energy tensor is

$$\Theta^{\mu\nu} = -F^{\mu\lambda}F^{\nu}{}_{\lambda} + \frac{1}{4}\eta^{\mu\nu}F_{\kappa\lambda}F^{\kappa\lambda}.$$

However, it remains to be shown that this has the form of

$$\Theta^{\mu\nu} = T^{\mu\nu}_{\text{Noether}} + \partial_{\lambda} \mathcal{K}^{[\lambda\mu]\nu}.$$

Assume this to be the case,

$$-F^{\mu\lambda}F^{\nu}{}_{\lambda} + \frac{1}{4}\eta^{\mu\nu}F_{\kappa\lambda}F^{\kappa\lambda} = -F^{\mu\lambda}\partial^{\nu}A_{\lambda} + \frac{1}{4}\eta^{\mu\nu}F_{\rho\sigma}F^{\rho\sigma} + \partial_{\lambda}\mathcal{K}^{[\lambda\mu]\nu} - F^{\mu\lambda}F^{\nu}{}_{\lambda} = -F^{\mu\lambda}\partial^{\nu}A_{\lambda} + \partial_{\lambda}\mathcal{K}^{[\lambda\mu]\nu}$$

SO

$$\begin{split} \partial_{\lambda}\mathcal{K}^{[\lambda\mu]\nu} &= F^{\mu\lambda}\partial^{\nu}A_{\lambda} - F^{\mu\lambda}F^{\nu}{}_{\lambda} \\ &= (\partial^{\mu}A^{\lambda} - \partial^{\lambda}A^{\mu})\partial^{\nu}A_{\lambda} - (\partial^{\mu}A^{\lambda} - \partial^{\lambda}A^{\mu})(\partial^{\nu}A_{\lambda} - \partial_{\lambda}A^{\nu}) \\ &= \partial^{\mu}A^{\lambda}\partial^{\nu}A_{\lambda} - \partial^{\lambda}A^{\mu}\partial^{\nu}A_{\lambda} - (\partial^{\mu}A^{\lambda} - \partial^{\lambda}A^{\mu})(\partial^{\nu}A_{\lambda} - \partial_{\lambda}A^{\nu}) \\ &= \partial^{\mu}A^{\lambda}\partial_{\lambda}A^{\nu} - \partial^{\lambda}A^{\mu}\partial_{\lambda}A^{\nu}, \end{split}$$

showing that $\Theta^{\mu\nu}$ indeed has the desired form, for $\partial_{\lambda}\mathcal{K}^{[\lambda\mu]\nu}$ as above.

We'll now consider a massive relativistic vector field A^{μ} with Lagrangian

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}m^2A_{\mu}A^{\mu} - A_{\mu}J^{\mu}.$$

This is the Proca Lagrangian with sources. The equations of motion are given by the Euler-Lagrange equation:

$$\partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\nu})} - \frac{\partial \mathcal{L}}{\partial A_{\nu}} = 0.$$

Taking derivatives,

$$\begin{split} \frac{\partial \mathcal{L}}{\partial A_{\nu}} &= \frac{1}{2} m^2 \eta^{\rho \lambda} \frac{\partial (A_{\rho} A_{\lambda})}{\partial A_{\nu}} - \frac{\partial A_{\rho}}{\partial A_{\nu}} J^{\rho} \\ &= \frac{1}{2} m^2 \eta^{\rho \lambda} (\delta^{\nu}_{\rho} A_{\lambda} + A_{\rho} \delta^{\nu}_{\lambda}) - \delta^{\nu}_{\rho} J^{\rho} \\ &= m^2 A^{\nu} - J^{\nu} \end{split}$$

since $F_{\rho\sigma}F^{\rho\sigma}$ does not depend explicitly on A_{ν} and

$$\partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\nu})} = -\partial_{\mu} F^{\mu\nu}$$

as before, since the mass and source terms are independent of $\partial_{\mu}A_{\nu}$. Thus, our massive spin-1 field obeys

$$\partial_{\mu}F^{\mu\nu} + m^2A^{\nu} - J^{\nu} = 0.$$

This does not force conservation of current, as

$$\partial_{\nu} \left[\partial_{\mu} F^{\mu\nu} + m^2 A^{\nu} - J^{\nu} \right] = 0,$$

$$\begin{split} &\partial_{\nu}\partial_{\mu}F^{\mu\nu} + m^{2}\partial_{\nu}A^{\nu} - \partial_{\nu}J^{\nu} = 0, \\ &\partial_{\nu}J^{\nu} = \partial_{\nu}\partial_{\mu}F^{\mu\nu} + m^{2}\partial_{\nu}A^{\nu} \neq 0 \end{split}$$

necessarily.

$$\begin{split} \partial_{\nu}\partial_{\mu}F^{\mu\nu} + m^{2}\partial_{\nu}A^{\nu} &= \partial_{\nu}\partial_{\mu}(\partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}) + m^{2}\partial_{\nu}A^{\nu} \\ &= \partial_{\nu}\partial_{\mu}\partial^{\mu}A^{\nu} - \partial_{\nu}\partial_{\mu}\partial^{\nu}A^{\mu} + m^{2}\partial_{\nu}A^{\nu} \\ &= \partial_{\mu}\partial^{\mu}\partial_{\nu}A^{\nu} - \partial_{\nu}\partial^{\nu}\partial_{\mu}A^{\mu} + m^{2}\partial_{\nu}A^{\nu} \\ &= (\partial_{\mu}\partial^{\mu} - \partial_{\mu}\partial^{\mu} + m^{2})\partial_{\nu}A^{\nu} \\ &= m^{2}\partial_{\nu}A^{\nu} \end{split}$$

so if $\partial_{\nu}J^{\nu}=0$, $\partial_{\mu}A^{\mu}=0$ since $m^{2}\neq0$ necessarily. This is the Lorenz gauge condition, which we expected to emerge since the Proca Lagrangian is the Stueckelberg Lagrangian with gauge fixing. Going backwards a little bit, we can remove a term using our inherited gauge condition to get

$$\begin{split} \partial_{\nu}\partial_{\mu}\partial^{\mu}A^{\nu} + m^{2}\partial_{\nu}A^{\nu} &= \partial_{\nu}J^{\nu} \\ &= \partial_{\nu}\left[\left(\partial_{\mu}\partial^{\mu} + m^{2}\right)A^{\nu}\right] \\ &= \partial_{\nu}\left(\partial_{\mu}\partial^{\mu} + m^{2}\right)A^{\nu}, \end{split}$$

so on integrating,

$$\left(\Box + m^2\right)A^{\nu} = J^{\nu},$$

the Klein-Gordon equation with sources.

☼ Corrections to fionnf@maths.tcd.ie.