SO(n) Invariant Scalar Field Theory

The Lagrangian
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describes a SO(n) symmetric theory of n real scalar fields.
The classical field equations are derived via

oL oc
%007 o5 =" (&-L)

Taking it slowly,
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Up next is
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Taking the 4-divergence 0y,
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Thus, the field equations from (£-L) are
00" + m?®” + AP @ d° = 0

or

(D +m?+ A<I>bc1>") P = 0.

In order to study the Hamiltonian H = [d3z H, we must introduce the
canonical momenta 7 satisfying

{7(2),"(y)} = 06 (z — ).

7 is defined as
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This can be reduced slightly by breaking the kinetic term into space and
time.
This theory is symmetric under A € SO(n),
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or, infinitesimally,
" — O + 7,
where
ATA =1, A=1+e, €t = ¢,

and we will find the corresponding Noether currents J%,. An infinitesimal
transformation ® — ® + aAd is a symmetry if the action is invariant up to
a surface term, so
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for some J*. Looking at the deformation of the Lagrangian,
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and if the field is on-shell, the second term vanishes. Demanding that the
remaining term be ad,J" yields
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Unsupressing indices,
oL
o . _ gH
Jab a(aucbi)eab J ab
= 0"®;i €, ;5 — Ty,

where the matrices €., are the generators of the Lie algabra so(n), defined as

3 1 if (a,b) = (4,7)
Ejijb = -1 if (CL, b) = (j7 Z)
0 otherwise

where i, j are obviously over so(n), not space.
We are free to let J* — O, giving

Jh = 01D, €90,
To check that this current is conserved,
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by symmetry, so J!, is conserved when ®, obeys its equations of motion.
The Noether charge is

Qab = /Qsdgl' J(Sba

where Q3 is all space and Q is constant in time. We can express J° in terms
of m and ® as
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From the definition of €,,, the Noether charge becomes
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When summing over SO(n) indices, we pick up a factor of % since the skew-
symmetry of € causes us to double-count.

The Noether charges Q. generate the SO(n) transformations on fields
under the Poisson bracket
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To see this, we need the first term in the bracket:
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Now,
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There appears to be a sign error ®. However, if we define our Poisson bracket
backwards, we get {€"Qy., P?}p = + €%®.. Then §®* is a generator of an
infinitesimal “rotation” in ®-space.

~» Corrections to fionnf@maths.tcd.ie.
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