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1 The XY Model

The XY model is an O(2) model for simulating statistical mechanics on a 2-dimensional
latticeΛ. Specifically, it is useful for simulating spin-statistics. It is the special case of
n = 2 in the n-vector model and is thus analogous to the Ising (n = 1) and Heisenberg
(n = 3) models.

In comparison to the more familiar Ising model whose spins take discrete values,
i.e. σx ∈ (↑,↓), the spins of the XY model take on continuous values, σx ∈ U(1). Here
x = (x1, x2) ∈Λ⊂Z2 is the lattice site on which the spin takes values. We can therefore
represent the spins as σx = exp(iθx) with θx ∈ (−π,π].

The action of the XY model is given by

S(θ) = ∑
x,y∈Λ

1−ℜ(σx
∗σy)

= ∑
x,y∈Λ

1−cos(θx −θy). (1.1)

Assuming only nearest neighbour interactions,

y ∈ n(x) = {(x1 +1, x2), (x1 −1, x2), (x1, x2 +1), (x1, x2 −1)},

the set of nearest neighbours to x.

σ(x1,x2+1)

σ(x1−1,x2) σ(x1,x2) σ(x1+1,x2)

σ(x1,x2−1)

2 The Count of Monte Carlo

The law of large numbers implies that expectation values may be calculated by sam-
pling the value and computing the sample mean. Thus, we may in principle use Monte
Carlo methods to evaluate expectation values of stochastic variables.

The lattice∗ is initialised with a “hot start”, i.e. the spins are brought into life in a
disordered phase. We must generate new states from this via a Markov process.

The Metropolis algorithm is used to generate a Markov chain of spin configurations.
This procedure reversibly creates a new spin at a lattice site, computes the action for
the new spin configuration, S′, and compares the two actions S,S′. The comparison is
made using the fixed-point sampling probability density

π(S) = 1

Z
exp(−βS)

∗The latticeΛ is topologically a torus, as each dimension has been compactified cyclically.
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where Z is the partition function given in equation 3.2 and β= 1
kB T is the Boltzmann

factor. The ratio

π(S′)
π(S)

= e−βS′

e−βS

= eβ(S−S′) = r,

so if r > 1, we accept the new spin configuration as it has minimised the action. If r < 1,
we accept the new configuration with a certain probability, determined by drand48(),
else it is rejected.

A function then runs Metropolis over all lattice sites and updates the lattice ac-
cordingly. This is done in a checkerboard fashion, running over first the even and then
odd sites.

In this manner, for a given β and a large enough number of iterations, the system
will reach a stable state. This state will be one of either order or disorder, determined
by β. The mysterious transition between these states is the topic of §3.

3 The Kosterlitz–Thouless Transition

The Mermin–Wagner theorem states that in dimension d ≤ 2, spontaneous symmetry
breaking at finite energy cannot occur in systems with short-range interactions. This
admits a new class of phase transitions, topological phase transitions, which allow for
distinct stable states.

The transition is called “topological” because the existence of the high temper-
ature stable state is dependent on topological defects in the configuration. These
topological defects are manifest as vortices, whose existence becomes thermodynam-
ically favourable above the transition energy. Thus, the phases before and after the
transition are different topological spaces in the homotopic sense and the transition
brings these different topologies about.

The Kosterlitz–Thouless transition is an infinite order topological phase transition.
In the Ehrenfest classification, this means there does not exist a finite n such that(

∂n g1

∂T n

)
6=

(
∂n g2

∂T n

)
,

(
∂n g1

∂P n

)
6=

(
∂n g2

∂P n

)
for g1, g2 the specific Gibbs free energy of the distinct phases. In a more modern sense,
this means the transition is continuous and breaks no symmetries.

By Hamilton’s principle, the variation of the action δS gives the equations of
motion. Note that when θx ≈ θy, cos(θx −θy) ≈ 1. Therefore in the limit,

lim
θx→θy

S = 0.
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Figure 1: 〈|M |2〉 against β. The difference between the two plots is the number of
iterations of the Metropolis algorithm performed for each value of β. The lower
resolution curve was iterated 10000 times, whilst the smooth curve underwent 100000
iterations, both in Metropolising the lattice and in evaluating 〈|M |2〉.

Accordingly, there exists a stable low temperature configuration of quasi-long range
order. This is assured by the Mermin–Wagner theorem which precludes the existence
of Goldstone modes disrupting this order.

At higher energies, the system takes on another state of disordered spins. The
transition between these two states is the Kosterlitz–Thouless transition.

The total magnetisation M is determined by the orientation of the spins,

M = ∑
x∈Λ

σx.

Note that by this definition, M ∈C. As inhabitants of the (real-valued) macroscopic
world, we are interested in the expectation value 〈|M |2〉. In general, for any observable
O depending on θ,

〈O〉 = 1

Z

∫ π

−π

∏
x∈Λ

dθx O(θ)e−βS(θ), (3.1)
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Figure 2: This is the smooth curve plotted in figure 1 with points instead of lines
for clarity. For β ∈ [0.3,1], the resolution was increased from increments of 0.05 to
increments of 0.01 in order to better observe the Kosterlitz–Thouless transition whilst
not allocating large computer resources to less interesting regions.

where the partition function Z serves as a normalising factor and is given by

Z =
∫ π

−π

∏
x∈Λ

dθx e−βS(θ). (3.2)

Therefore, by (3.1) the expectation value of the observable |M |2 is

〈|M |2〉 = 1

Z

∫ π

−π

∏
x∈Λ

dθx |M |2e−βS(θ)

= 1

Z

∫ π

−π

∏
x∈Λ

dθx

∣∣∣∣∣∑x∈Λσx

∣∣∣∣∣
2

e−βS(θ)
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= 1

Z

∣∣∣∣∣∑x∈Λσx

∣∣∣∣∣
2∫ π

−π

∏
x∈Λ

dθx e−βS(θ)

=
∣∣∣∣∣∑x∈Λσx

∣∣∣∣∣
2

. (3.3)

As an aside, consider a complex variable z ∈ C. Any such z may be written as
z = x + i y , so

|z|2 = |zz̄|
= (x + i y)(x − i y)

= x2 + y2.

Therefore, by (3.3) we can write

〈|M |2〉 =
(∑

x
ℜ(σx)

)2

+
(∑

x
ℑ(σx)

)2

=
(∑

x
cos(θx)

)2

+
(∑

x
sin(θx)

)2

.

In this manner, 〈|M |2〉 was computed over an energy region of β ∈ [0,5]. It is in this
region that the elusive Kosterlitz–Thouless transition was observed.

In figure 1 we can clearly see the Kosterlitz–Thouless transition as a steep curve
from low magnetisation to large magnetisation as β increases. It occurs in the region
of β≈ 0.5,0.6. The variations in the lighter curve represent statistical uncertainty and
arose because the system had not “settled down” sufficiently. This was accounted for
in the smooth curve, which was afforded more time (much of the night) by increasing
the number of Metropolis iterations.

In order to reduce on the computational expense, the resolution inβ, i.e. how small
the increment in β is per iteration, was variable depending on which region it was in.
Indeed, as the configuration enters the Kosterlitz–Thouless transition, β increases in
value by 0.01 per iteration in order to view the transition with more accuracy. As the
system leaves the transition and enters its new topology, the β-increment returns to
its relaxed value of 0.05. This is illustrated in figure 2.

In all results,Λ should be taken as a (32,32) lattice.

4 The Two-Point Correlation Function

The correlation between spins on neighbouring lattice sites is described by

C (d) = ∑
x∈Λ

cos(θx −θx+dex )

6



 1

 0  5  10  15  20  25  30

lo
g

 C
(d

)

d

1 million iterations
10 million iterations

Figure 3: log(C (d)) against d . The different plots emphasise the dependence of the sys-
tem on stochastic variables. Three of the plots are the result of iterating the Metropolis
algorithm 100000 times, one from an iteration of 1 million and one from 10 million.
As we expect, the 10 million curve is roughly the average of the others.

for separation in the x-direction, where ex = (1,0) and d ∈Z. The behaviour of this
function changes depending on which side of the KT singularity one finds oneself.
In the quasi-long range ordered phase (high β), the correlation function decays as a
power law, whereas in the disordered phase (low β) it decays as an exponential.

The correlation function C (d) is plotted logarithmically against d forβ= 1 in figure
3. In this graph, d = 0 refers to the correlation of a lattice site with itself. Thus, C (d)
was normalised such that C (0) = 1. As the lattice is periodic, C (32) =C (0). This is why
we expect the correlation function to be symmetric. Indeed, C (d) is symmetric about
d = 16, the centre of the lattice.
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5 Tarball

The following files are contained in the tarball Fionn_Fitzmaurice_XY.tgz.

1. xy.cpp. This is the source code used to generate all the data in this report (see
item 2). The main function, aside from initialising the lattice, consists of three
separate entities. Each of these corresponds to §§2–4 respectively.

2. xy.pdf. “XY”, i.e. this document, corresponding to §§1–5.
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