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1 Introduction

In this code, the Gauss-Seidel algorithm was applied to solve the partial differential
equations that describe electrostatic fields. The fields were evaluated throughout a
bounded region R, whose boundary ∂R was held at a constant potential.

2 Tubes Within Tubes

The physical problem is concerned with a region R whose boundary is held at a fixed
potential. Contained inside this region is a smaller region R ′, where the potential is
constant on this smaller inner boundary just as before.

The outer boundary is held at a potential u = 1 and the inner boundary held at
u = 0. For the electromagnetic field, this u = u(x, y) is the voltage.

The sides of the outer boundary are of unit length. The inner boundary has sides
of length 0.3, 0.2. Finally, we will define the lower right corner of the boundary to be at
the point (a,b).

The dependence of u on x and y is governed by the Laplace equation

∇2u(x, y) = 0, (1)

the vanishing case of the Poisson equation ∇2u = f . Here ∇2 =4 is the Laplacian
operator in Euclidean space and u and f are real-valued functions mapping R2 7→R.

Equation 1 is an elliptic second-order partial differential equation. The solution to
this equation, and its behaviour, will be the subject of the remainder of this report.

3 High-Sidelity

Now that we have abstracted our physical problem to that of solving a PDE, we must
then think of a way to do this. We are looking for a harmonic function u(x, y) which
satisfies certain boundary conditions.

By representing the second-order derivative using a Taylor expansion, we may
transform our problem into one of solving a set of coupled ODEs.

Equation 1 may be approximated by finite difference as

ui+1, j +ui−1, j +ui , j+1 +ui , j−1 −4ui , j = 0.

Notice that this equation allows us to consider ui , j as the average of its nearest neigh-
bours. In matrix form,

A~u =~0,

where the matrix A is sparse. We are thus looking for the kernel, or null space, of A.
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We can rewrite A~u =~0 as P~u = −(A −P )~u, which is suggestive of the iterative
scheme

Puk+1 =−(A−P )uk .

Defining the difference as uk −uk+1 ≡ dk , we can write

dk+1 = (I −P−1 A)︸ ︷︷ ︸
χ

dk

provided P is invertible. This scheme converges if the eigenvalues λ of χ lie within the
unit circle, |λ| ≤ 1. That is, uk+1 = uk +ε for a sufficiently small ε.

The Gauss-Seidel algorithm is an iterative technique for solving such linear systems
(both homogeneous and inhomogeneous). We must choose P such that it is close to
A and easy to invert. Decomposing A = L+D +U , the Gauss-Seidel method chooses
P = D +L. In this scheme, we may then describe our equation as

uk+1
i , j = 1

4

(
uk

i+1, j +uk+1
i−1, j +uk

i , j+1 +uk+1
i , j−1

)
. (2)

This shall be our iterative scheme for solving our physical problem.
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Figure 1: The potential u(x, y) as it varies in space. Here, x, y ∈ N < 100 are the
discretised spatial variables and (a,b) = (0.4,0.4).
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Figure 2: Ex ,Ey varying over space.

4 The Electrostatic Potential u

Once the boundary conditions are initialised, the Gauss-Seidel algorithm computes
the potential u(x, y) as we have seen in §3. This is done by creating a class Potential
which takes two arguments, i and j, like an array, and iterating over them.

The boundary of the inner region, ∂R ′, is held at zero, which implies that u(x, y) = 0
for the entire inner region, i.e. u(x, y) = 0 for (x, y) ∈ R ′. This means for (x, y) ∈ R \ R ′

near ∂R ′, the slope becomes large very quickly. This can be seen in fig. 1.

5 The Electric Field

The electric field is defined as

~E ≡~∇u, (Ex ,Ey ) ≡
(
∂u

∂x
,
∂u

∂y

)
.

The uniqueness theorem for the Poisson equation states that the solution has
a unique gradient. This ensures that if we find an electric field which satisfies our
boundary conditions, it is the entire electric field.

This was evaluated everywhere in R by approximating the derivatives as three-
point finite difference quotients, i.e.

∂u

∂x
≈ u(x +h, y)−u(x −h, y)

2h
,

∂u

∂y
≈ u(x, y +h)−u(x, y −h)

2h
.

These expressions approach the true derivative in the limit h → 0.
We can now visualise how the x- and y-components of the field change over space,

as seen in fig. 2.
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Figure 3: Ex versus y at x = 1
2 . Here, our mesh size is n = 500.

Choosing x = 1
2 defines a vertical line in our region. It is useful to consider how

Ex changes with y along this cross-section. This is visualised in fig. 3. As we expect,
the field is close to vanishing inside the smaller region as there is no curvature in
the potential here. As we move from the smaller region to the larger one, there is a
discontinuity in the potential which is manifest in the gradient as a large spike, which
falls off as we approach the outer boundary ∂R.

Gauss’s law states that over a closed surface ∂Ω,

ΦE ≡
∮
∂Ω

~E ·d~A = Q

ε0
, (3)

where Q is the total enclosed charge. By the divergence theorem, (3) can be rewritten
in its differential form as

~∇·~E = ρ

ε0
, (4)

for ρ the charge density.
Fig. 4 illustrates the behaviour of the electric field Ex for increasing mesh size. As

n increases, the curvature of the field in the inner and outer regions approaches 0.
Hence, in the continuum limit, ∂xEx → 0 and, by symmetry, ∂y Ey → 0. Thus,

~∇·~E n→∞−−−−→ 0.

By equation 4, this implies ρ→ 0. As we are considering cross-sections of an infinitely
long tube, we must have a zero charge density. Thus, these results are compatible with
Gauss’s law.
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Figure 4: Fig. 3 replotted for mesh sizes of n = 700,1000.

We are also free to evaluate the integral

L =
Ï
R

~E 2 dA

=
∫ 1

0

∫ 1

0
(E 2

x +E 2
y ) dx dy.

This can be done by considering L as double Riemann or Darboux integrals and
approximating them by their corresponding summation, so

L ≈∑
i

∑
j

1

n2
~E ·~E ,

where n is the size of our discretised space and (i , j ) are the points.
For a fixed (a,b), L will obviously evaluate to a number. Indeed, for (a,b) = (0.5,0.5),

the program outputs

The integral is L = 6.04447.

However, we may be more interested to see the behaviour of L as the inner region
moves in space. Indeed, we will consider L = L(b), for a = 0.2 and b ∈ [0.05,0.95]. This
is plotted in fig. 5.
There is a discontinuity here at b ∼ 80, where the inner region hits the outer region. In
this situation the area of the inner region decreases and the area of the outer region
which the field can change in increases, so we are dealing with a different physical
problem.
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Figure 5: L as b varies in [0.05,0.95].

6 Successive Over-Relaxation

If we consider uk+1
GS (i , j ) to be the uk+1

i , j element of the Gauss-Seidel sequence as in
equation 2, the over-relaxed Gauss-Seidel method is given by

uk+1(i , j ) = (1−ω)uk+1
GS (i , j )−ωuk (i , j )

= (1−ω)
1

4

(
uk

i+1, j +uk+1
i−1, j +uk

i , j+1 +uk+1
i , j−1

)
−ωuk (i , j )

for some free parameter ω. As ω→ 0, we recover our original scheme. For appropriate
values ofω, this method will converge faster than the traditional Gauss-Seidel method.

Choosing (a,b) = (0.5,0.5), it was found that the best choice is ω= 0.92. This can
be seen in fig. 6.
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Figure 6: ω versus iteration time. We can see that ω= 0.92 is the optimal value.

7 Tarball

The following is a list of files included in the tarball Fionn_Fitzmaurice_Assignment2.tgz.

1. electric_field.cpp. This file mostly concerns itself with the trials of part two,
discussed in §5.

2. relax.cpp. This file concerns itself with over-relaxation, such as is discussed in
§6.

3. seidel.pdf. “The Capacitance of Concentric Containers”, i.e. this document.

The omission of a C++ file for part 1, §§3-4, is not a serious one, as all of the code
used to generate data in these sections is a subset of the two included .cpp files.
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