
THE LEAP-FROG AND THE SOLAR SYSTEM
A STABLE ORBIT IN THE 3-BODY PROBLEM

Practical Numerical Simulations
Assignment 1

Michælmas Term 2011

Fionn Fitzmaurice
fionnf@maths.tcd.ie

1 Introduction

In this code, the leap-frog integrator was employed in order to solve the equations
of motion for an n-body system interacting gravitationally. This was used to
simulate the motion of celestial bodies in a simple solar system, consisting of a
sun, planet and moon.

2 Symplectomorphisms & The Leap-Frog Integrator

Simple integrators such as the Euler method diverge for oscillatory motion,
hence we must choose a method that is more suited to solving our problem.

Since we are dealing with classical mechanics, it seems appropriate to con-
sider Hamilton’s equations. The symplectomorphic time evolution of these
equations preserves the symplectic 2-form dp ∧ dq. An integrator that also pre-
serves this form is called a symplectic integrator, and is particularly suitable for
problems which can be formulated in Hamiltonian mechanics as it clearly pre-
vents energy drift. The leap-frog integrator falls within this class of integrators. It
also has the advantages of being time-reversible and second-order, compared to
the first-order Euler method, despite requiring the same number of evaluations
per step.

The method updates position and momentum as follows:

xk+ 1
2
= xk +

h
2

pk,

pk+1 = pk + h f (xk+ 1
2
, t h

2
),

xk+1 = xk+ 1
2
+

h
2

pk+1,

where f = ṗ.

3 Conservation of Energy

The function print_energy was written to calculate the total energy of the system.
It did this by evaluating the kinetic and potential energies of the system and
summing them.

If we live in a Newtonian world, we know that, for the ith particle, the kinetic
and potential energies are, respectively,

Ti =
1
2

miv2
i , Vij = −G

mimj

rij
, i 6= j,

2

where mi is the mass of the ith particle, vi is the velocity of the ith particle, rij

is the distance between the the ith and jth particles and G is the gravitational
constant. Then

T = ∑
i

Ti, V = ∑
i>j

Vij,

E = T + V.

At this stage, our program considers the number of “planets” to be 2. I
use quotation marks here as we will see later the term “planet” will eventually
generalise to refer to a sun and a moon too.

3.1 Energy Evolution Over Time

As we expect, the total energy of the system is conserved. We can see this by
checking the energy after each update of the leap-frog integrator.

If we label each iteration of the update function a, then we see a variation
in the energy for small values of a which quickly converges to a constant. This
value is also dependant on the step-size h. For three values of h, the (convergent
value of the) energy is tabulated in table 1.

Step-size 0.5 0.1 0.01
Energy 136.586 58.8776 486.427

Table 1: Variation of energy with step-size.

We can equally tabulate the time it takes for the energy to converge , as seen
in table 2.

Step-size 0.5 0.1 0.01
Iterations 11 53 40

Table 2: The number of iterations required for the energy to converge.

The energy as a function of simulation time is now plotted below in figure 1,
for our three values of h.

4 Conservation of Angular Momentum

Angular momentum is given by

L = x× p.

3

Figure 1: Energy as a function of simulation time for three different step-sizes.

If we consider the motion of the two planets to be in the xy-plane, then the
angular momentum vector will have a z-component only. This allows us to
compute the cross product relatively simply. For a single particle of mass m, its
angular momentum is thus

L =

∣∣∣∣∣∣
0 0 ẑ
x y 0
px py 0

∣∣∣∣∣∣ = m

∣∣∣∣∣∣
0 0 ẑ
x y 0
vx vy 0

∣∣∣∣∣∣ = m(xvy − yvx)ẑ,

where ẑ is the unit vector in the z-direction. So L = ‖L‖ = m(xvy − yvx). Of
course, x = (x, y, 0) is meaningful only relative to some reference point. We
define this point to be the origin, (0, 0, 0), described in the program as the array
origin[].

4.1 Evolution of Angular Momentum Over Time

The value of L does not evolve in time. This is exactly as expected, as we again
know from Noether’s theorem that it is a conserved quantity.

For sufficiently small iterations, the angular momentum is not prone to varia-
tion, unlike the energy as we saw above. Additionally, the angular momentum
is extremely insensitive to changes in the step-size h. This is tabulated in table 3.

4

Step-size 10 0.1 0.0000001
Angular momentum 2.34 2.34 2.34

Table 3: Variation of angular momentum with step-size.

Figure 2: Angular momentum as an uninteresting function of simulation time.

The angular momentum as a function of simulation time is now plotted in
figure 2, for our three values of h. The value of the angular momentum remains
constant over all time, so the graph is somewhat redundant.

5 That’s No Moon

We now introduce a third “planet”, and simulate a simple earth-moon-sun solar
system. This done by creating a new input file containing all the data necessary
to determine the solutions of the equations of motion for 3 bodies. See §A for
more details on this operation.

5.1 Collisions

As our planets are point-like particles, they can get arbitrarily close to each other.
This is what I will refer to as a “collision”. Due to the inverse square law of

5

the gravitational force −∇V, these particles receive an enormous energy in a
collision and this jettisons them far from the safety of the solar system we created
for them. Hence, our initial conditions must be finely tuned in order to avoid
such collisions. This is the problem of creating a stable orbit.

5.2 A Stable Orbit

Through what I attribute to luck, rather than a keen physical intuition, a small
number of adjustments to the planetary initial positions and initial momenta, a
stable orbit was achieved. The values used were those in test3.dat, expanded
upon in §A.2

“Stability” here is used in a loose sense. It is taken to mean that the solar
system survives for at least 10 years, rather than an infinite number of years. To
prove this strong case of stability, it would suffice to show that the solar system
returns exactly to its initial conditions periodically. This condition does not
hold for our weak stability. The solar-system is particularly fragile and sensitive
to small variations in the initial conditions. This behaviour is to be expected –
indeed, our own solar system is a chaotic system.

An orbit using the initial conditions outlined in §A.1 was found to be stable
over 15000 iterations and a step-size of 0.01. This orbit is depicted in figures 3–6.

Figure 3: 11 long years.

6

Figure 4: A section of the orbit.

Figure 5: Would you want to live here?

7

Figure 6: The celestial dance.

6 Simulated Calendar

The output data for this section is contained in the files month.out, year.out
and monthandyear.out, attached in the tarball.

6.1 A Good Year

The planet initially makes its way around the sun starting on the x-axis, so its y
coordinate is zero. This formulation affords us a natural way to count the years,
as it is equivalent to counting the number of times the planet crosses the x-axis
in the inertial reference frame of the sun. This is done by detecting a sign change
in the y coordinate.

This prescription would double-count, however, as the planet crosses the
axis twice in a single revolution. The code corrects for this by requiring that the
y coordinate moves from negative to positive or, equivalently, that the planet
makes the transition between the fourth and first quadrant. It is without loss of
generality that we ascribe a specific direction, as the system has parity symmetry
and our initial positions are arbitrarily chosen.

My fragile planet traces out the year, diligently recorded by the program.

8

Here is the output:
1 Iteration Simulation time Orbit

2 1315 13.15 1 earth orbits

3 2631 26.31 2 earth orbits

4 3947 39.47 3 earth orbits

5 5263 52.63 4 earth orbits

6 6579 65.79 5 earth orbits

7 7894 78.94 6 earth orbits

8 9211 92.11 7 earth orbits

9 10526 105.26 8 earth orbits

10 11842 118.42 9 earth orbits

11 13158 131.58 10 earth orbits

12 14474 144.74 11 earth orbits

The number in the first column is the iteration a in which the transition takes
place. The simulation time is, as usual, the iteration by the temporal step-size,
a ∗ h.

This averages to give a year corresponding to a simulation time of 13.1581
time steps.

6.2 Synodic Periods

One might expect the calculation of a month to be a painful process. Perhaps
the mind wanders to ideas about boosting into the planet’s reference frame and
repeating the prescription used above. However, the method employed in this
code involves more trickery.

We know that at the beginning of time, the sun-earth vector and the earth-
moon vector are aligned along the x-axis with zero y component. This means
that their cross product vanishes. One synodic month is defined as the time
taken for the moon to reach the same point again with reference to the sun and
earth. This configuration will again satisfy the condition of a vanishing cross
product.

It is tempting, therefore, to introduce a scheme which counts a month as the
interval in time between one vanishing cross product and another. This would
also count the instances where the moon is between the earth and the sun, the
half-month.

In order to avoid this double-counting, one could simply divide by two. Once
again, rather than taking the simple route, we will employ some trickery. By
calculating the distances between the moon and sun and earth and sun, d(s, m)
and d(s, e) respectively, we can require that a month is considered to have passed
only if the cross product vanishes and d(s, m) > d(s, e).

There then arises the problem of determining when the cross product goes
to zero. One could say that the cross product, X, vanishes if it satisfies |X| ≤ ε.

9

This is not sufficient, as one cannot determine an appropriately small value of ε
such that the value of X will lie within [−ε, ε] when it approaches zero, nor can
one conclude that it will not fall into this range more than once.

The solution is to set ε relatively large and prime the counter such that it
counts when X enters the range, but only once. The counter was primed when
X becomes negative and “unprimed” when the month is counted, meaning that
the program only wants to count the month when X is in the lower half-plane.

For a step-size of h = 0.01 and running over a = 15000 iterations, the planet
experiences 126 months.

The result is a month of average simulation time 1.1890. Therefore, an average
year consists of 11.0665 average months.

A Input Data

The program was written to accept a data file from the command line using
<fstring> and <sstring> in the SolarSystem class. This data file contained all
the initial conditions for an arbitrary number of planets.

The format of the input data is illustrated in the following sample.
1 Number of planets

2 Mass of planet

3 x y v_x v_y

x, y, v_x and v_y are the components of the initial position and velocity, respec-
tively. Lines 2 and 3 are repeated for each additional planet.

A.1 2-Body Data

1 2

2 1.23

3 -0.5 0.0 0.0 -1.0

4 3.45

5 0.5 0.0 0.0 1.0

A.2 3-Body Data

1 3

2 1000.0

3 0.0 0.0 0.0 0.0

4 1.0

5 30.0 0.0 0.0 20.0

6 0.2

7 31.0 0.0 0.0 17.0019

10

