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Canonical Quantisation

The mathematical method of quantisation moves one from a classical theory to
a quantum theory. There are several ways to do this. One possible prescription is
canonical quantisation, which is in some ways advantageous due to its similarity
to the axiomatic quantisation of discrete systems.

Consider a classical field ϕ(x, t ) with conjugate momentum

π(x, t ) = ∂L

∂(∂0ϕ)
.

In quantum field theory, fields are promoted to operators. This is a natural
extension in the same vein as position is an operator in quantum mechanics,
as fields are simply a promotion of position from classical mechanics. We then
impose the canonical commutation relations[

ϕ(x, t ),ϕ(y, t )
]= [

π(x, t ),π(y, t )
]= 0; (1)[

ϕ(x, t ),π(y, t )
]= iδ(3)(x−y). (2)

Equation 1 preserves causality, while equation 2 is analogous to [Qi ,P j ] = iδi j .
This approach retains the Hamiltonian form of the classical theory, but it is

not without its inadequacies. For example, in equations 1 & 2, space and time
are on a different footing. We lose manifest Lorentz symmetry at the expense of
viewing our theory through a Hamiltonian lens.

Feynman’s Path Integral Formalism

An alternative to canonical quantisation is the path integral, introduced in the
mid–20th century by Richard Feynman.

The path integral uses the Lagrangian formalism, so differential symmetries
of the theory are explicit. There are also similarities with statistical mechan-
ics, allowing quantum field theories to draw from the sophisticated technolo-
gies of this well-established branch of mathematical physics. This formalism is

1

https://www.maths.tcd.ie/~fionn/notes/pathintegral/


symmetric in space and time and thus has a moral advantage over canonical
quantisation, as it more directly lends itself to a relativistic theory.

Roughly speaking, for some integration measure Dq , the path integral de-
scribes a propagator

〈
ψ1

∣∣ψ2
〉

as

〈
ψ1

∣∣ψ2
〉 =

∫
Dq e

i
ħS , S =

∫
dt L,

where S is the action of the theory. For S Àħ, we recover the classical path.
Intuitively, this approach involves a “sum over histories” of the trajectories

of the particle we wish to study. It can be thought of as a logical extension of
the famous two–slit experiment to an n–slit experiment. Instead of travelling
through two slits simultaneously, the particle travels through n distinct paths
simultaneously. As n → ∞, there is a contribution of an infinite number of
trajectories. This is known as “Feynman’s screen”.

We wish to evaluate the amplitude for a particle to evolve from an initial
position and time q ′, t ′ to a final position and time q ′′, t ′′.

In the Schrödinger picture, we would write this as〈
q ′′∣∣e−i H(t ′′−t ′) ∣∣q ′〉

where e−i H(t ′′−t ′) is the unitary time translation operator from time t ′ to time t ′′,
H is the Hamiltonian and

∣∣q ′〉,
∣∣q ′′〉are eigenstates of the position operator Q.

An equivalent formulation can be made in the Heisenberg picture, in which
the time dependence of the system is encoded in the operators. In this picture,

Q(t ) = e i H tQe−i H t .

As
∣∣q, t

〉= e i H t
∣∣q〉

,

Q(t )
∣∣q, t

〉= e i H tQe−i H t e i H t
∣∣q〉

= q
∣∣q, t

〉
.

Then the transition amplitude we so desire can be expressed as〈
q ′′∣∣e−i H(t ′′−t ′) ∣∣q ′〉= 〈

q ′′, t ′′
∣∣q ′, t ′

〉
. (3)

To compute this in Feynman’s scheme, we divide the time interval into N +1
equal steps of duration ε,

t ′′− t ′ = (N +1)ε.

By completion, ∫ ∞

−∞
dq

∣∣q〉〈
q
∣∣=1,

∫ ∞

−∞
dp

∣∣p〉〈
p

∣∣=1,
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so we can insert a complete set of eigenstates into equation 3. For position
eigenstates

{∣∣q〉}
, this gives

〈
q ′′, t ′′

∣∣q ′, t ′
〉 =

∫ ∞

−∞

N∏
j=1

dq j
〈

q ′′∣∣e−i Hε
∣∣qN

〉〈
qN

∣∣e−i Hε
∣∣qN−1

〉· · ·〈q1
∣∣e−i Hε

∣∣q ′〉.

Due to the e−i Hε term, we must make explicit the form of our Hamiltonian. Take

H(P,Q) = P 2

2m
+V (Q), [Q,P ] = i . (4)

To evaluate the exponential, we first need to exponentiate non-Abelian operators.
To do this, we use the Baker–Campbell–Hausdorff (BCH) formula:

exp
(
λ (A+B)

)= exp(λA)exp(λB)exp
(
λ2

2 [A,B ]
)
· · ·

where [A,B ] 6= 0 necessarily. Thus, for small ε we can express e−i Hε as

exp(−i Hε) ≈ exp
(
−i P 2

2mε
)

exp
(− iV (Q)ε

)
by neglecting O (ε2) terms. This approximation is valid as we will be taking the
limit ε→ 0 later.

Instead of using position eigenstates
{∣∣q〉}

, we can insert a complete set of
momenta

{∣∣p〉}
. For a small time translation ε between q1 and q2, this can now

be expressed as

〈
q2

∣∣e−i Hε
∣∣q1

〉= 〈
q2

∣∣e−i
P 2

2m εe−iV (Q)ε
∣∣q1

〉
=

∫
dp1

〈
q2

∣∣e−i
P 2

2m ε
∣∣p1

〉〈
p1

∣∣e−iV (Q)ε
∣∣q1

〉
=

∫
dp1 e−i

ε
2m p2

1 e−iV (q1)ε 〈
q2

∣∣p1
〉〈

p1
∣∣q1

〉
and noting that we have plane wave solutions

〈
q j

∣∣pi
〉 = 1p

2π
e i pi q j ,

= 1

2π

∫
dp1 e−i

p2
1

2m εe−iV (q1)εe i p1(q2−q1)

= 1

2π

∫
dp1 e−i H(p1,q1)εe i p1(q2−q1).

For q0 ≡ q ′, qN+1 ≡ q ′′,

〈
q ′′, t ′′

∣∣q ′, t ′
〉 = 1

2π

∫ N∏
j ,k=0

dqk dp j e i p j (q j+1−q j )e−i H(p j ,q j )ε.
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Defining the integration measure

Dp ≡
N∏

j=0
dp j , Dq ≡

N∏
k=0

dqk

and taking the formal limit as ε→ 0, N →∞, we arrive at

〈
q ′′, t ′′

∣∣q ′, t ′
〉 ε→0−−−−→

N→∞

∫
Dp Dq exp

[
i
∫ t ′′

t ′
dt

(
p(t )q̇(t )−H(p, q)

)]
.

In order to interpret this, we need a result from the Riemann–Lebesgue lemma.

Theorem (Riemann–Lebesgue lemma): Let f :R⊇ I →C be a measurable func-
tion. If f ∈ L1, then

lim
z→±∞

∫
I

dx f (x)e i zx = 0,

i.e. rapidly oscillating functions integrate to zero.

We therefore desire the longest wavelengths in our phase, as it is those which
will contribute the most to the integral. This provides a natural and fundamen-
tal quantum mechanical motivation for Hamilton’s principle of least action.
Extremising the phase,

∂

∂p
(pq̇ −H) = 0 ⇒ q̇ = ∂H

∂p
⇒ p = p(q̇)

and
∂

∂p
i
∫

dt (pq̇ −H) = 0 ⇒ i
∫

dt
∂

∂p
(pq̇ −H) = 0.

We can thus remove the Dp measure, and

〈
q ′′, t ′′

∣∣q ′, t ′
〉 =

∫
Dq exp

[
i
∫ t ′′

t ′
dt (pq̇ −H)

]

=
∫

Dq exp

[
i
∫ t ′′

t ′
dt L(q, q̇)

]
=

∫
Dq e i S = Z (5)

by Legendre transformation. Equation 5 is the path integral.
The Green function in quantum mechanics is given by

G1,2,...,n(t1, t2, . . . , tn) = 〈0|TQ1(t1)Q2(t2) · · ·Qn(tn) |0〉,
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where T is the time ordering operator and |0〉 is the vacuum state. The path
integral allows us to write this as

〈0|T Q1(t1)Q2(t2) · · ·Qn(tn) |0〉=
∫

Dq q1(t1)q2(t2) · · ·qn(tn)e i S∫
Dq e i S

= 1

Z

∫
Dq q1(t1)q2(t2) · · ·qn(tn)e i S .

In general, we will assume that our operators ϕ(xi ) are time ordered (t1 > t2 >
·· · > tn) and omit the T operator from the Green function.

The Wick Rotation

In anticipation of the lattice, we will re-express the path integral in imaginary
time. This is done by rotating time through π

2 in the complex plane C.

t →−iτ, x0 →−i x4.

Under a Wick rotation, the Minkowski invariant line element

ds2 = dt 2 −dx2 −dy2 −dz2

becomes
ds2 =−dx2 −dy2 −dz2 −dτ2.

In other words, it gains a Euclidean signature. When Minkowski spacetime is
rotated in this way, we end up in Euclidean spacetime: M 1,3 →R4. This naturally
affects differential operators. The d’Alembertian operator becomes

�=
4∑

µ=1
∂µ∂µ = ∂µ∂µ,

the Laplacian 4 in four dimensions.
For the Hamiltonian given by equation 4,

S =
∫

dt

[
1

2m

(
dq

dt

)2

−V

]
, SE =

∫
dτ

[
1

2m

(
dq

dτ

)2

+V

]
where SE is the Minkowski action rotated into Euclidean space. Thus,

i S →−SE . (6)

Wick rotating our path integral of equation 5, we get the expression

Z =
∫

Dq e i S → ZE =
∫

Dq e−SE
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In this form, we may deduce the principle of least action without the allusion to
harmonic analysis, as it is obvious that the smallest values of S will contribute
the most to Z . Thus δS = 0 recovers the equations of motion in the classical
limit. We have restricted our Hamiltonian to the form of equation 4, however
operation 6 (i S →−SE ) remains valid for Lagrangians which are not quadratic
in velocities (such as those appearing in fermionic systems).

The Path Integral for Quantum Field Theory

So far, we have developed the path integral only within the context of discrete
systems, i.e. quantum mechanics. This leaves a lot to be desired—specifically,
we desire a field theoretic path integral.

To translate into a system with infinite degrees of freedom, we make the
following substitutions:

q i (t ) →ϕ(x, t ), Q i (t ) →ϕ(x, t ),

Dq →Dϕ=∏
x

dϕ(x).

This allows us to express a scalar field in terms of the path integral,

Z =
∫

Dϕe i S . (7)

Then, the Green function for some points in spacetime x1, x2, . . . , xn is

G(x1, x2, . . . , xn) = 〈0|Tϕ(x1)ϕ(x2) · · ·ϕ(xn) |0〉

=
∫

Dϕϕ(x1)ϕ(x2) · · ·ϕ(xn)e i S∫
Dϕe i S

= 1

Z

∫
Dϕϕ(x1)ϕ(x2) · · ·ϕ(xn)e i S .

Notationally, this is often expressed as 〈ϕ(x1)ϕ(x2) · · ·ϕ(xn)〉. Wick rotating,

〈ϕ(x1)ϕ(x2) · · ·ϕ(xn)〉 = 1

ZE

∫
Dϕϕ(x1)ϕ(x2) · · ·ϕ(xn)e−SE

where xi now represent points in Euclidean spacetime.

The Path Integral is Well-Defined on the Lattice

What does the path integral (7) mean? We are integrating over an infinite number
of degrees of freedom, which leads us to a modern ultraviolet catastrophe—the
integral is not well defined.
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In order to force the integral to converge, we could introduce a momentum
cut-off. However, for a divergent Feynman integral, such a regularised inte-
gral would be strongly dependent on the value of the cut-off. This would be
accounted for by renormalising the Green functions such that they converge
as the cut-off is lifted, which requires the bare parameters of the theory to be
dependent on the cut-off.

A different approach uses the lattice as a regulator of quantum field theory.
Discretising spacetime means there are no longer an infinite number of degrees
of freedom, so the path integral in lattice spacetime is not divergent. Then the
continuum limit is taken to bring us back to reality. This works, as the lattice
presents a natural momentum cut-off since, for x = na a point on the lattice, a
function f ∈ L2 has a Fourier transformation

f (na) = 1

2π

∫ ∞

−∞
dk f̃ (k)e i kna

where f̃ is cyclic in momentum, i.e. f̃ (−π
a ) = f̃ (πa ). This means the momentum

integral is restricted to the [−π
a , πa ] Brillouin zone and f̃ (k) has a Fourier series

representation. This cuts off the momentum at the order of a−1, so the path
integral is well defined on the lattice.
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