Homotopic Proof of Cauchy's Theorem

Let

$$\gamma_1, \gamma_2 : [a, b] \to \Omega \subset \mathbb{C}$$

 $\gamma_1(a) = \gamma_2(a), \quad \gamma_1(b) = \gamma_2(b)$

be piecewise smooth paths. For $t \in [a, b], s \in [0, 1]$, assume there exists a homotopy $\Phi(t, s)$ between γ_1, γ_2 relative to $\{a, b\}$:

$$\Phi(t,0) = \gamma_1(t) \quad \Phi(t,1) = \gamma_2(t)$$

$$\Phi(a,s) = \gamma_1(a) = \gamma_2(a)$$

$$\Phi(b,s) = \gamma_1(b) = \gamma_2(b).$$

Let $f: \Omega \to \mathbb{C}$ be holomorphic. Then

$$\int_{\gamma_1} f \, \mathrm{d}z = \int_{\gamma_2} f \, \mathrm{d}z.$$

Proof: $\Phi: [a,b] \times [0,1] \to \Omega$ and $\forall (t_0,s_0), \Phi(t_0,s_0) \in \Omega$. Since Ω is open, this implies that for $\varepsilon > 0, \Delta_{\varepsilon}(\Phi(t_0,s_0)) \subset \Omega$, $\exists \delta > 0$ such that

$$\Phi\left(\triangle_{\delta}(t_0, s_0)\right) \subset \triangle_{\varepsilon}\left(\Phi(t_0, s_0)\right).$$

Therefore, there exists a covering of $[a,b] \times [0,1]$ by $\triangle_{\frac{\delta}{2}}(t_0,s_0)$. $[a,b] \times [0,1]$ is compact, so there exists a finite subcover of $\triangle_{\frac{\delta}{2}}(t_0,s_0)$,

$$[a,b] \times [0,1] = \bigcup_{k}^{N} \triangle_{\frac{\delta_k}{2}}(t_k, s_k),$$

where

$$a = t_0 < \dots < t_N = b,$$
 $0 = s_0 < \dots < s_N = 1,$

are chosen such that the distance

$$\sqrt{(t_k - t_{k-1})^2 + (s_l - s_{l-1})^2} < \min\left\{\frac{\delta_k}{2}\right\}.$$

Consider the region $[t_{k-1}, t_k] \times [s_{l-1}, s_l]$ and the point $\alpha = (t_k, s_l), \ \alpha \in \Delta_{\frac{\delta_{\mu}}{2}}(t^{\mu}, s^{\mu})$. Then $\forall \beta \in [t_{k-1}, t_k] \times [s_{l-1}, s_l]$,

$$\|(t^{\mu}, s^{\mu}) - \beta\| \le \|\underbrace{(t^{\mu}, s^{\mu}) - \alpha}_{\le \frac{\delta_{\mu}}{2}}\| + \|\underbrace{\alpha - \beta}_{\le \frac{\delta_{\mu}}{2}}\| < \delta_{\mu}.$$

This implies that

$$\beta \in \triangle_{\delta_{\mu}}(t^{\mu}, s^{\mu}),$$

SO

$$[t_{k-1}, t_k] \times [s_{l-1}, s_l] \subset \triangle_{\delta_{\mu}}(t^{\mu}, s^{\mu}),$$

$$\Phi([t_{k-1}, t_k] \times [s_{l-1}, s_l]) \subset \triangle_{\varepsilon_{\mu}}(\Phi(t^{\mu}, s^{\mu})).$$

Since a disc is star-shaped, there exists an antiderivative F of f. Thus, for

$$\tilde{\gamma}_1(t) = \Phi(t, s_{l-1}),$$

$$\tilde{\gamma}_2(t) = \Phi(t, s_l),$$

we conclude that

$$\int_{\tilde{\gamma}_1} f \, \mathrm{d}z = \int_{\tilde{\gamma}_2} f \, \mathrm{d}z,$$

so for

$$\gamma_i = \sum_{\text{all } \tilde{\gamma}_{\text{s}}} \tilde{\gamma}_i,$$

we have

$$\int_{\gamma_2} \mathrm{d}z = \left[\int_{\gamma_1} \mathrm{d}z + \int_{\gamma'} \mathrm{d}z + \int_{\gamma''} \mathrm{d}z \right].$$

This gives

$$\int_{\gamma_2} f \, \mathrm{d}z = \int_{\gamma_1} f \, \mathrm{d}z$$

and proves Cauchy's theorem.

Corrections to fionnf@maths.tcd.ie.