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Einstein–Maxwell Theory
The electromagnetic Lagrangian density is defined by

LE = −
√
−g

8π gµνgλσFµλFνσ

with Fµν = Aµ,ν − Aν,µ. Varying this with respect to the metric gives

δLE

δgµν
=
√
−g

4π

(
gλσFµλFνσ −

1
4gµνFλσF

λσ
)

=
√
−gEµν

where
Eµν = 1

4π

(
gλσFµλFνσ −

1
4gµνFλσF

λσ
)

is the Maxwell energy-momentum tensor.
Properties of Eµν are:

• Eµν = Eνµ,

• Eµ
µ = 0,

• Eµν
;ν = −F µνJν (in source-free regions, Eµν is conserved).

The Einstein–Maxwell equations (for source-free regions) are

Gµν = 8πEµν

or
Gµν = 2gλσFµλFνσ −

1
2gµνFλσF

λσ

with Fµν = Aµ,ν − Aν,µ and F µν
,ν = 0. (Equivalently, Rµν = 8πEµν .)
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The Reissner–Nordström Solution
We consider the static, spherically symmetric solution of the Einstein–Maxwell
equations.

The line element has a general form

ds2 = −ep(r)dt2 + eq(r)dr2 + r2
(
dθ2 sin2 θ dφ2

)
along with the asymptotic flatness boundary condition

lim
r→∞

p(r) = 0, lim
r→∞

q(r) = 0.

Static, spherical symmetry implies the magnetic field is zero while the electric
field is purely radial.

~B = (B1, B2, B3) = 0, ~E = (E(r), 0, 0) ,

F(a)(b) = Fµνλ
µ
(a)λ

ν
(b)

=


0 −E(r) 0 0

E(r) 0 0 0
0 0 0 0
0 0 0 0

 .
An appropriate orthonormal tetrad is

λµ(0) =
(
e−

1
2p(r), 0, 0, 0

)
, λµ(1) =

(
0, e− 1

2 q(r), 0, 0
)
,

λµ(2) =
(
0, 0,+1

r
, 0
)
, λµ(3) =

(
0, 0, 0, 1

r
sin θ

)
.

We have that F(a)(b) ≡ 0 except

F(0)(1) = −F(1)(0) = F01e
− 1

2p(r)e−
1
2 q(r)

and hence we have Fµν ≡ 0 except

F01 = −F10 = −e 1
2 (p+q)E(r).

Similarly, F µν ≡ 0 except

F 01 = −F 10 = e−
1
2 (p+q)E(r).

Now, since F µν
;ν = 0,

∂

∂xν

(√
−gF µν

)
= 0

2



using Γµµλ =
√
−g,λ√
−g where √−g = r2 sin θ e 1

2 (p+q). Then

∂

∂t

(√
−gF 10

)
+ ∂

∂r

(√
−gF 01

)
= 0

∂

∂r

(
r2 sin θ e 1

2 (p+q)e−
1
2 (p+q)E(r)

)
= 0

∂

∂r

(
r2E(r)

)
= 0

r2E(r) = constant = Q

⇒ E(r) = Q

r2 ,

the Coulomb form if we interpret Q as a charge.
The field equations are

Gµ
ν = 2gλσF µ

λFνσ − 1
2δ
µ
νFλσF

λσ.

Define Qµν = FµλFν
λ. Then

Gµ
ν = 2Qµ

ν − 1
2δ
µ
νQ

σ
σ, (þ)

Qµν = Fµ0Fν
0 + Fµ1Fν

1

= g0λFµ0Fνλ + g1λFµ1Fνλ

= −e−p(r)Fµ0Fν0 + e−q(r)Fµ1Fν1.

Therefore Qµν ≡ 0 except

Q11 = −e−p(r)F10F10 = −e−q(r)E2(r) = −e
qQ2

r4 ,

Q00 = e−q(r)F01F01 = ep(r)E2(r) = epQ2

r4 .

Hence

Qσ
σ = gσλQσλ

= g00Q00 + g11Q11

= −2Q2

r4 .

The right hand side of (þ) is therefore
−Q2

r4

−Q2

r4
Q2

r4
Q2

r4


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and the left hand side of (þ) is

G0
0 = Gt

t = − 1
r2 + 1

r2 e
−q
(

1− r∂q
∂r

)
,

G1
1 = Gr

r = − 1
r2 + 1

r2 e
−q
(

1 + r
∂q

∂r

)
.

The field equations are

− 1
r2 + 1

r2 e
−q
(

1− r∂q
∂r

)
= −Q

2

r4 , (A)

− 1
r2 + 1

r2 e
−q
(

1 + r
∂q

∂r

)
= −Q

2

r4 . (B)

A−B yields
∂q

∂r
+ ∂p

∂r
= 0 ⇒ p+ q = constant.

Asymptotic flatness implies constant = 0, so
p+ q = 0.

From A,
d
dr
(
re−q

)
= 1− Q2

r2 ,

re−q = r + Q2

r
+ c,

e−q = 1 + c

r
+ Q2

r2 .

To retrieve the Schwarzchild solution in the Q → 0 limit, we must have
c = −2M .

e−q = 1− 2M
r

+ Q2

r2 = ep.

The line-element reads

ds2 = −
(

1− 2M
r

+ Q2

r2

)
dt2+

(
1− 2M

r
+ Q2

r2

)−1

dr2+r2
(
dθ2 + sin2 θ dφ2

)
,

the Reissner–Nordström metric.
Similar to the Schwarzchild case, the Reissner–Nordström solution also

has a black hole interpretation. The metric is singular at r = 0 and at

1− 2M
r

+ Q2

r2 = 0
(
⇔ r2 − 2Mr +Q2 = 0

)
r = r± = M ±

√
M2 −Q2.

The solution looks very different depending on the sign of M2 −Q2.
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Case I: M2 − Q2 < 0
r2−2Mr+Q2 has no real roots and hence there is only a curvature singularity
at r = 0. The metric is maximal and r = 0 is known as a “naked singularity”.

“Nature abhors naked singularities.”
—Cosmic censorship conjecture, Penrose (1969).

Case II: M2 − Q2 > 0
There are two distinct coordinate singularities at r = r±, which may be
removed by an appropriate change of coordinates.

The surface r = r+ is very much like the event horizon in the Schwarzchild
black hole case (i.e. when an observer at infinity never “sees” a particle
crossing the r = r+ surface, infinite red-shift, etc.).

In the region 0 < r < r−, the observer need not reach the singularity r = 0.
In fact, we can cross the r = r− surface again if we like. In this case, r takes
on the nature of a time coordinate again but with the opposite orientation
and the observer is forced to move toward the r = r+ surface. He gets spit
out of the r = r+ surface (much like emerging from a white hole) into a copy
of the universe he started in.

Case III: M2 = Q2

Two horizons coincide,
r = r+ = r− = M.

This is an extreme Reissner–Nordström black hole (very unstable). In this
case, the coordinate r is never timelike in the region 0 < r < M . We can
avoid the singularity and in fact pass through the r = M surface into another
copy of the universe we started in.
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