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Einstein—-Maxwell Theory
The electromagnetic Lagrangian density is defined by
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with F,, = A,, — A, ,. Varying this with respect to the metric gives

5£E vV —9g Ao 1 Ao
Sghv = Ar (9 FpF,e — EQWF,\UF )

=V _gEuV

where
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is the Maxwell energy-momentum tensor.
Properties of E,, are:

° E;u/ = Eu;m
. E““ =0,
o EW., = —F"], (in source-free regions, £, is conserved).

The Einstein-Maxwell equations (for source-free regions) are
G, =81k,

or
1
G,uu = 29)\UF;L)\F1/U - ig,uz/F)\ch/\g

with F,, = A,, — Ay, and F* , = 0. (Equivalently, R, = 87FE,,.)
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The Reissner—Nordstrom Solution

We consider the static, spherically symmetric solution of the Einstein-Maxwell
equations.
The line element has a general form

ds? = —eMdt? 4 e"dr? + 1 (d6?sin? 0 do?)
along with the asymptotic flatness boundary condition

lim p(r) =0,  lim ¢(r) =0.
Static, spherical symmetry implies the magnetic field is zero while the electric
field is purely radial.
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An appropriate orthonormal tetrad is
B P 1o
Ny = (e7270,0,0,0), Ny = (0,e727,0,0)
My = (0,0,+%,0) LNy = (0,0,0, %sme) .
We have that Fq)s) = 0 except
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and hence we have [, = 0 except
FOl = —Flo = —6%(p+q)E<7’>.
Similarly, F'** = 0 except
FO = —FY0 = e300 gy,

Now, since ", = 0,
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using ')\ = \\/F_i; where /—¢ = r2sinf e2®+9 . Then
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the Coulomb form if we interpret ) as a charge.
The field equations are

G*, = 29" F'\F,, — 160 F\,F*.
Define @, = “,\Fl,)‘. Then
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Therefore @, = 0 except
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The right hand side of (b) is therefore
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and the left hand side of (b) is
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The field equations are
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A—B yields
0 0
872 8717[“) =0 = p+ q= constant.
Asymptotic flatness implies constant = 0, so
p+q=0.
From A,
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To retrieve the Schwarzchild solution in the Q — 0 limit, we must have
c=—2M.

The line-element reads
oM Q2 oM Q*\ !
ds? = — (1 -+ %) dt2+<1 - =+ Q) dr?+7? (d6 + sin® 0 dg?) ,
r r

the Reissner—Nordstréom metric.
Similar to the Schwarzchild case, the Reissner—Nordstrém solution also
has a black hole interpretation. The metric is singular at » = 0 and at

0 (& r-2Mr+Q*=0)

r=ry =M%\ M?—- Q2

The solution looks very different depending on the sign of M? — 2.
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Case: M2 —Q* <0

r2 —2Mr+@Q? has no real roots and hence there is only a curvature singularity
at r = 0. The metric is maximal and » = 0 is known as a “naked singularity”.

“Nature abhors naked singularities.”

—Cosmic censorship conjecture, Penrose (1969).

Case II: M2 —Q? >0

There are two distinct coordinate singularities at » = r4, which may be
removed by an appropriate change of coordinates.

The surface r = r, is very much like the event horizon in the Schwarzchild
black hole case (i.e. when an observer at infinity never “sees” a particle
crossing the r = r, surface, infinite red-shift, etc.).

In the region 0 < r < r_, the observer need not reach the singularity r» = 0.
In fact, we can cross the r = r_ surface again if we like. In this case, r takes
on the nature of a time coordinate again but with the opposite orientation
and the observer is forced to move toward the r = r, surface. He gets spit
out of the r = r surface (much like emerging from a white hole) into a copy
of the universe he started in.

Case III: M? = Q?

Two horizons coincide,
r=ry=1r_=M.

This is an extreme Reissner-Nordstrom black hole (very unstable). In this
case, the coordinate r is never timelike in the region 0 < r < M. We can
avoid the singularity and in fact pass through the r = M surface into another
copy of the universe we started in.



