DIFFERENTIAL GEOMETRY

Fionn Fitzmaurice fionn@maths.tcd.ie

These notes correspond to the differential geometry course taught by Peter
Taylor in Michaelmas term 2011— essentially the first half of the general
relativity course.
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1 Manifolds

1.1 Topological Spaces

Let p € R". A neighbourhood of p is any set V' C R” such that V' contains
an open solid sphere of centre p.

Properties:
(i) p € any neighbourhood of p.
(ii) If V' is a neighbourhood of p and V' C U, then U is a neighbourhood of
p.
(iii) If U, V are neighbourhoods of p, then U NV is a neighbourhood of p.

(iv) If U is a neighbourhood of p, 3 a neighbourhood V' of p such that V' > U
and V' is a neighbourhood of each of its points.

Definition. A topological space is a set of points M along with an assignment
to each p € M of collections of subsets called neighbourhoods, satisfying
properties (i)—(iv).

1.2 Charts

Let M be a topological space, p € M be
some point in this space and U be an open
neighbourhood of p. A chart on U is an in-
jective map

¢: U — ¢(U) C R™.

The ¢(p) € R™ constitutes a local coordinate
system defined in an open neighbourhood U'.
We usually write

o(p) = {="(p)}
= (z'(p),....2"(n)) -

Note that the choice of chart is arbitrary,
implying Einstein’s equivalence principle.




1.3 Meshing Conditions: Coordinate Transformations

Suppose we have two charts ¢;, @2 on U C M. Since these charts are injective,
they are invertible!, e.g.

o7t 41 (U) CR™ — UL

We may define

gbzogbl_l R" - R”
11 (U) = ¢2(U).

We require these maps to be smooth (C'*°) where they are defined. For p € U,
the map ¢, o ¢, ' (p) defines a coordinate transformation from the coordinates

to the coordinates

6a(p) = (X (p),.., X"(0)) -

Example 1.3.1. Let M = R2, let ¢; map p to the Cartesian coordinates
(x,y) and ¢ map to the Cartesian coordinates (X, Y’) obtained from the first
set by a rotation through the constant angle «.

njections can be made bijective by replacing codomain with range.



¢2 0 ¢y maps
(r,y) = (X =zcosa+ysina, Y = —zsina + ycosa).

We can define a derivative matrix

gx  ox cosa sina
-1\ _ [ oz 0, _
D(¢z0¢17) = (%ﬁ %%) a (—sina cosa) '
The Jacobian J = det(D) = 1. Recall that J # 0 implies an invertible
transformation. J non-singular implies ¢, ¢o are C*-related.
Introduce another chart ¢3 which maps p to polar coordinates (r,#). Then

606" (myy) = (r = /a2 4 g2, 6 =tan'()),

1
J =det(D) = —.
r
o1, @3 are C™-related except at r = 0. To cover all of R?, we would need at

least two sets of polar coordinates with different origins.

1.4 Definition of a Manifold

Informally, a manifold is a set of points M that locally looks like a subset of
R™. The simplest example of a curved manifold is S2.

A set of C*-related charts such that every point p € M lies in the domain
of at least one chart is a C'*° atlas for M. The union of all such atlases is
known as the C*° maximal atlas.

We define a C*° n-dimensional manifold by a set M along with a maximal
atlas.

2 Tangent Vectors and Tangent Spaces

In our familiar treatment of vectors in R"™, they represent “directed magni-
tudes”. This is no longer a useful notion. Rather, to each point p € M we
have a set of all possible vectors at p known as the tangent space T,(M).

We prefer to describe the geometry of M from intrinsic properties alone;
we won't rely on embedding in a higher dimensional space.

2.1 Smooth Functions
Let M be a manifold and f be a real function.

fM—=R

b}



How do we define the “smoothness” of f? Introduce a chart ¢ and a new
function F' such that

F:R" =R, F=fo¢ "

F=fog¢!

We say that f is smooth iff ' is smooth in the usual sense.
Theorem 2.1.1. The smoothness of f is chart independent.

Proof. Let ¢1, ¢2 be two meshing charts, ¢ € {1, 2}.

F,=fo¢ ",
Fy=fog!
= fody ooy’
= Fyopyo0¢;!

and ¢, o ¢! is smooth since ¢y, ¢, are meshing charts. Hence, the smoothness
properties of Fi are the same as Fs. O

The definition of smooth functions may be generalised to a function mapping
a manifold M to another manifold N,

f:M—=N.

Let ¢1 be a chart in M (dim(M) = ny) and ¢, be a chart in A (dim(N') = ny).
Define F = ¢y 0 f o 7. f is smooth iff F is smooth. It is easy to prove that
this is chart independent.

Note that the notation —— really means
oxH
Of _OF _ddgofodr’
Oxt — Ozr Oxh '



2.2 Smooth Curves

Let I = (a,b) be an open interval of R. We define a curve on M as a map
vy:RDI— M.

The curve 7 is smooth if its image

poy:I—=R", por(s) = (¢'(7(s)),-.., 2" (1(s)))

is smooth.

2.3 The Tangent Space as a Space of Directional Deriva-
tives

We wish to construct the tangent space at p € M (i.e. T,(M)) using only

intrinsic properties of M.

We combine the concept of smooth functions, f, and smooth curves, ~,

and define

F:I—-R, s F(s)

Il
~

[©]

2
—~

»
~

i.e. F evaluates f along the curve 7.

The rate at which F changes, Ccll—f, gives the rate of change of f following
the curve 7.

The tangent vector to the curve v at p (where without loss of generality
we take s = 0 at p) is the map from the set of real functions to R, defined by

;Yp:fHﬁ/pr;Yp(f): [dfO’Y]
s=0

ds
_ (4
C\ds ),
Claim. Let ¢ be a chart such that
¢ p— z*(p).
Then 1 " oF 4
= | — — il g
0= |guen| =X (), [&0w)



Proof.

F(s)=foy=fod  ogony
=Fogoy

where the function ¢ oy maps s to the coordinates of v(s). Identify

F(s)=F (¢ (1), .-, 2"(1(s)))

= (om),, | (o), [

n o
-y <8F> [dx (7(8))] . (Or use Einstein notation.) [
o(p) s=0

oxH ds

Example 2.3.1. Let M = R2. Take y = 222 — 3 to be a parabola in R?. We
parametrise this by z = s, y = 2s? — 3.

dov(s) = (x(s),y(s)) = (5’252 o 3) ’
F(s) = F(s,25* = 3).

AF(s) _OF dv OF dy
ds Oor ds Oy ds
_OF oF
=5 ay.

T - VF'is the rate of change of F' in the direction of the vector 7T'.

The map 4, : f — [%} , e called a tangent vector at p. We must further
S=
show that these maps live in a vector space of dimension n = dim(M).

Theorem 2.3.1. The set of tangent vectors at p, T,,(M), form a vector space
(i.e. are closed under addition and scalar multiplication).

Proof. X,,Y, € T,(M). We want to show that

X, +Y, € T,(M), aX, € T,(M).



With X, Y, we associate smooth curves y(s), A(s) such that v(0) = A(0) = p,
Xp =" Yp= ).‘p-
Two curves in M may be added by considering their coordinate image in R",
{z" (v(s))},  {2" (A9))},
which gives a new curve
v:se=A{a(y(s) + 2" (Ms)) —a"(p)} (P =¢ov)

which is a parametric representation in R™ of some curve in M with v(0) = p.
For any function f, we have

(3, i

~(om) AL

:%f‘i‘)"pf:pr‘i‘Y;f‘

Since f was arbitrary, we associate 1, = X, + Y. Therefore the space is
closed under addition. A similar proof holds for a.X, (consider the coordinate
image). Therefore, the maps 4, form a vector space. O

. dF
/yp ‘ f "~ <ds>s=0

()., [

and 7, is closed under addition and scalar multiplication, i.e. they form a
vector space.

Theorem 2.3.2. dim (7,(M)) = dim (M).
Proof. We consider a chart ¢,

To recap:

¢ :p 2t (p).

We assume that z#(p) = 0 for all u (p gets mapped to the origin of R™). We
consider curves 7,(s) through p such that its coordinate image in R" is

A,(s) = (0,...,0,s,0,...,0).
/I\

vth component



Obviously, there are n such curves. They satisfy

s u=v
0 otherwise -

zHoy,(s) = {

Therefore,

Furthermore,

i.e. (4,), maps

We will show that {(%,),} form a basis for T,(M) and, since there are n such
vectors, this will prove

n = dim (7,(M)) = dim (M) .

We need to show that {(4,),} span 7,(M) and are linearly independent.
To determine the span, let A\, € T,,(M). Then

W= (), [Tm)

= ().\M)p(f)c“, ot — [W] R

This is true for all f, hence \, = ¢*(}\,), and therefore {(},),} span T,(M)

(i.e. any element of 7,,(M) can be written as a linear combination of {(A,),}).
For linear independence,

a*(u)p = 0.

10



Consider the function ¥ : M — R™.

atd, =0,
a’ =0

and therefore {(¥,),} are linearly independent.
Hence, {(,),} form a basis for T,,(M), so

dim(7,(M)) = dim(M) = n. O

We usually write

0= (3s) =00

This is known as a coordinate basis for the tangent space T,,(M). It corre-
sponds to setting up the basis vectors so that they point along the coordinate
axes.

Note that a change of coordinates induces a change of basis.

2.4 Transformation Rule for Vector Components

We have shown that every element of the tangent space is naturally decom-
posed into a coordinate basis, i.e. if

Ve T(M), V:V“<a>, w:l

oz

dx“(s)]
ds 0

where V# are the components of the vector in the coordinate basis.
Introduce a change of coordinates

T (zH)

(new coordinates as a function of old ones).

8 ’ a ’ 81’” 8
_ye( 2 oy () oy (Y9
V=V <8x“>p v <8x“'>p v ((%”’ &cl‘)p'

Comparing, we see that

ozt Vi Oxt Vi

[T y 4
v v oz = Ozt

11



This is the vector coordinate transformation rule in a coordinate basis.
Note that vectors, tensors, etc. are invariant under a change of coordinates
or a change of basis, but their components are not.
We are not limited to a coordinate basis for 7),(M). Any linearly indepen-
dent set {e,} that spans the vector space is an appropriate basis.

V =Vte,

where V# are the components with respect to the basis {e,}. This basis is
related to any other basis {e,,} by a non-singular set of transformations.

Cu = A‘u#/ €u-
Since A*, is non-singular, it is invertible and satisfies
’ -1
A AR, =0 (ATA=1).

We then have
V=Vhe, =V¥e, =V"AN e,
giving the vector component transformation law in an arbitrary basis
Ve = A" V.
_ da’

For the coordinate basis, A", = o
Note that if A#, are further constrained to satisfy

Aaﬂ = AM aAV 677/‘«/1’/

where n = diag(—1,1,1,1), then A represents the Lorentz transformations of
special relativity.

3 Covectors and Tensors

3.1 Co-Tangent Space

All vector spaces have a corresponding dual space of equal dimension, com-
prising the set of linear maps from the vector space to the real line.

The dual space of T, (M) we denote by T,;(M), the co-tangent space
consisting of maps

n:T,(M)—R.

Elements of T (M) are known as covectors or 1-forms.

12



The action of a linear map n on X, € T, (M) is

n(Xp) = (1, Xp)-

For a tangent space T, (M) with basis {e,}, there is a corresponding dual
basis of T (M) satisfying

wh(e,) = (W', e,) = .

3.2 The Gradient/Differential

Perhaps the most important example of a covector is the gradient or differential
of a function f. Let p € M and f : M — R be a smooth function. For
X, € T, (M), we define df to be

df : T, M) =R, df(X,) = X,(f).

3.3 Coordinate Induced Dual Basis

For a particular chart, we may associate with the coordinate z* the covector
dz* defined by
dz(X,) = Xp(a").

Claim. The set {dz"} form a basis for Ty (M) dual to the coordinate basis
{(32:)} of T, (M).
Proof.

1. Duality.

(dz*,0,) = ( 0 > xh = ok,
p

2. {dz"} form a basis for T,y (M).

n = nuda” = 0.

- ((3))
()

= 77/155 ="My

which implies that {dz*} are linearly independent.

13



3. Take w € T,y (M) and set

n=w-—(w,(9),) dz".

Then
v = <777 (8zz>p>
= (w, (D)) = ({w, (D)) dz*, (D,),,)
= {w, (a”)p> — (W, (au)p> o0, =0
and

n=0 = w=(w(9,),) dz"
Therefore {dz"} spans T, (M).

{da#} forms a basis of Ty (M) dual to {(@)p}.

Since

w = (w,(0,),) da",

we notice that

Af = (A, (B,),) da*

0 H
~(5m) 10

= (3{1) dx*.
57 o)

(®)

The components of the gradient in the basis {dz*} are partial derivatives of

the function.

3.4 Transformation Rule for Covector Components

As before, a coordinate transformation induces a change in coordinate basis

of Ty (M). We introduce

o = g ().

! M/
dzt = ((‘?)ﬂc“> da*.
L @(p)

From (®),

14



For n € Ty (M),

i aﬂ:u/
n = nudat = neda =, <axu> e

Ozt ox*
N = M ozr )’ Nw = D Ny

This is the covector transformation rule in a coordinate-induced basis.
As before, we are not restricted to a coordinate basis. In general,

Nw = A”wﬁu, Auu’A'u/z/ = 557

the transformation rule in an arbitrary basis.

3.5 Transformation Rule for Tensor Components

We can generalise vectors and covectors to define the notion of a tensor, which
is a multilinear map

ST, (M) x - X Ty (M) XT3 (M) x - x T3 (M) = R.

S r

This is known as a tensor of rank (or type) (%) at p.
We define the tensor product operation. If 77 is an (5! ) tensor and T is
an (s2) tensor then the tensor product is defined by

Ty @To(T1y oy Tsytsgy My v oy Mrytrg) = D1(T1, ooy Ty My v My)
To(Tsy a1y o s Toyhsns Mt ts - Mryra) -
An appropriate coordinate basis for an arbitrary () tensor is
{de"" ® - @dz” @0y, @+ ® 0, }-
In this basis, an arbitrary tensor
T=TM", ,dz" @ - @d2" @0, @ @0,

It is now easy to see that under a coordinate transformation, the components
change according to

! !
b orh OxHr Oz ox"s
TH1 HTI//---I// — e e
s Qg Oxtr Ozt Oxs

This is the tensor component transformation rule in a coordinate basis.
Note that

ST

15



« a (}) tensor is a vector,
e a (9) tensor is a covector (1-form),

« we can’t add tensors of different types (ranks).

For example, the Kronecker delta ¢# transforms like the components of a (1)
tensor. , ) ,

Ozt Ozt Ox¥ Oxt  Oxt Jx”

oxv — Ox# Oxv Oxv'  Oxw Oxv ¥

From an (%) tensor, we can obtain an (Zj) tensor by contraction. This

corresponds to multiplication by a Kronecker delta. E.g.

o =

m contraction m B
T apy — 7 T apy — 5MT afy-

We introduce the Bach bracket notation:

(ab) represents symmetrisation of indices,
[ab] represents antisymmetrisation of indices.

If Sisa (1) tensor, then

1

St = o1 (S"un+S"\)
1

S'u[zz)\} = 5 (SMV)\ - SM)\V) .

In general, we have

= —(sum over all permutations of indices),

Ty = -
1

Ty = —'(sum over all permutations with the sign of the permutation).
7!

For example,

1

Tlagm = (Tapy — Torys + Thap — Typa + Tpyva — Thary) -

4 Tensor Fields and the Commutator

4.1 The Tangent Bundle and Vector Fields

The union of all tangent vector spaces for each point of the manifold defines
the tangent bundle, T'(M).

TM)= U T,(M).

pEM

16



Then a vector field on M is a map that specifies one vector at each point of
the manifold.
X M—=>TWM), p—X,eT,(M).

In a coordinate chart {z*}, we take X, to be

0
X, =X} (W) ;X=X (at).
p

A similar definition holds for covectors and tensors.
If X is a vector field and f is some function, we define the map X (f)
which is a function such that

X(f): M =R, p»—>X1’f<aF> :
¢(p)

Oz
This is a linear map,
X(af +bg) =aX(f)+bX(g), a,beR, fg: M—=R,

and satisfies the Leibniz rule,

X(f-9)=X(f)-g+f X(9).

4.2 Commutator

Let X, Y be vector fields and f an arbitrary function. We can consider the
composition

x i) = x5 (v50)

v 2
_ W YIOF L,

ozt Ox” + ozrox’

The Lie bracket is defined as

(X, Y]f = XY () =Y (X))
Claim. The Lie bracket is a vector field.
Proof. We just need to check that it satisfies linearity and the Liebniz rule.
L. (X, Y](af +bg) = a[X,Y](f) +b[X, Y] (9).

This is trivial.

17



2. [XYI(f-9) = glX,YI(f) + FIX, Y](9)

Y(f)-X(g) -
—g[X Y](f)+ fIX,Y](g

Since it is a vector field, it has the following representation (in a coordinate

basis):
0

20Y] = XY

This implies that

X YI(0) = (XY

= XY (f) - Y(X(f)

oYY OF O*F
_ oy o py v
X oxH dzv XY oxtoxv
B LO0XY OF vy 0*F
oxH Oxv oxHoxv
oYy" oXV\ OF
_ p _yu
(X ot Y 8x“> ox”
JOYR_9XK\ OF
_<X o D )axu'
Comparing (A) with (B), we see that
oYt oOXH
XYHF=X"— -Y" .
X, Y] oxv oxv

These are the components of the commutator in a coordinate-induced basis.

The commutator satisfies the following properties:
1. [X,X]=0,

2. [X,Y] =Y, X],

XY + 2] = [X)Y]+ [X, Z],

3
4. [ X, fY] = fIX. Y]+ X(f)Y, f:M—=R,

ot

18
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5 Maps Between Manifolds

We now consider maps between two manifolds M and N or, in most cases,
between M and itself.

We say a map h : M — N is smooth if, for every smooth function
f: N — R, the function foh: M — R is also smooth.

ML N

N

R

Assuming h is smooth, then it maps a smooth curve v in M to a smooth
curve ho~vin N.
Let X, be a tangent vector to v at p. Then there exists a map

hy = T, (M) — Thp) (N)

known as the push-forward to h o v and it maps the tangent vector at p in
M to the tangent vector at h(p) in N.
One can show that h, is a linear map such that for every smooth function
N =R,
(hXp)(f) = Xp(f 0 h).

Analogously, there is a map between covectors that goes in the opposite
direction,

known as the pull-back. This maps the tangent covectors at h(p) in N to the
tangent covectors at p in M.
If n € Ty, (N) and X, is any vector in T, (M), then h*n € T, (M) is
defined by
h'n(Xp) = n(h.Xp).

The pull-back of the covector acting on a vector is the same as the covector
acting on the push-forward of the vector. (Again, h*n is a linear map since
the right hand side is linear in X,.)

Example 5.1. Let M = R? with coordinates (z,y,z) and N' = R? with
coordinates (z,y). Let h be the map h(z,y, z) = (x,y). Then for any f: N —
R,

foh(z,y,z) = f(h(x,y,2))
= f(m,y)-

19



Suppose X, has coordinates (X,Y, Z). Then

dg dg dg

and
Jg dg
(hXp)(9) = Xp(g o h) = Xp(g(2,y)) = X o~ + Ya—y,

i.e. h,X, has components (X,Y). If n € T, (N) such that
n = Adz + pdy,
then

hn(Xp) = n(hXp) = (X0 +Y0,)
= (Adz + pdy, X0, +YO0,)
=X +pY
= (Adz + pdy + 0d2) X,

i.e. components of h*n are (A, i, 0).

The definition of h* as a map from tangent vectors in N to tangent vectors
in M naturally extends to functions. If f : N'— R, then h*f is defined by

f: M—=R, f~ foh.
Claim. h* commutes with the gradient, i.e.
h(df) = d(h*f).
Proof. Let df € Ty, (N) and take X, € T}, (M).

(h*df)(Xp) = df (h.Xp)
- (h*Xp)f
= Xp(foh)
= X,(h"f)
= d(h"f)(X))

and therefore
r*df = d(h*f). O

20



6 Lie Derivatives and the Commutator
Revisited

6.1 Integral Curves

Let X be a vector field on M. An integral curve of X in M is a curve 7 such
that at each point p of 7, the tangent vector is X,.
v(s) is an integral curve iff
Yo(8) = Xp=y(s)-

To see existence and uniqueness of such curves (at least locally), we
consider a chart {z#} and a test function f. Then

W) =X(f) & <cis(f07)> =% <6F>¢(p)

oxH
p

<(9F> dz* (7(s)) _ s (3F>
Ozt ) 4y ds P\Ot ) 4

Since this is true for arbitrary f,

W = Xp (2 (), (2(s)) (©)

We also have a set of initial conditions

2" (v(s = 0)) = 2(p).

Note that there exists a chart {z#} in a neighbourhood of p such that
X = % = (1,0,...,0) corresponding to integral curves of varying x! and

constant 22,..., 2"

6.2 Congruence of Curves

If equation C is globally valid (holds for all s) for an integral curve, we say
the curve is complete.
The set of complete curves is a congruence (one at each spacetime point).
Given a congruence, we may define a 1-parameter family of transformations

he : M — M

such that hg(p) is a point on the integral curve through p a parameter
“distance” s from p. Then

hs(he(p)) = hewt(p) = he(hs(p))-
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Clearly we have an identity map hg such that ho(p) = p and we have an
inverse map h;' = h_,. Together these properties show that the maps h
form an Abelian group of transformations M — M.

6.3 The Commutator Revisited: A Geometric
Interpretation

We let X, Y be vector fields on M with groups hg, k; respectively. Starting
from a point p, we move a distance ds along the integral curve of X to a
point r = hgs(p) followed by moving a distance d¢ along the integral curve
of Y to reach some point v = kq,(r). Starting again from p, we now move a
distance dt along the integral curve of Y to the point g = kq;(p) followed by
a distance ds along the integral curve of X to the point u = hqs(q).

u g
ds
=8
q.
Yy \\dt
dE\\Y
k T
/
P

What can we say about the difference z#(v) — z*(u)? We choose a chart
such that {z#(p)} = 0. Using a Taylor expansion,

H 1 2.1
z(q) = ="(p) + <dx> dt + - <d ’ ) dt* + - -
p P

dt 2\ dt?

But 2#(p) = 0. Let Y} = (%“) , SO
P

2t _(dy®\  (oYHda”
dez )\ dt oz dt
p P p

ovr_
p

— (Y",¥Y),
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where 9,Y* = Y*# . This gives
I H 1 I v 2
" (q) :Y;,dt—i—i(Y LY )pdtt 4

Furthermore, we have

dz* 1 [(d2z+
" _ b - 24 ...
" (u) x(q)+<d5>qu+2< . )qu +

1
= a"(q) + X}\ds + 5(Xﬂ,,,X'f)qu? + -

1 v
= {Yp“dt + (VY )pdt? + - ]

dxn
p+< at )p +

Noticing that (dX”>p = <8X“ de>p = (X", YY),

_|_

1
ds + 5(X/{V)(V)pols2 4o

dt oz dt
M (u) = Yp“dt—i—Xz’,‘ds—i—;(Y“yyY”)pdt2+(X“7yY”)pds dt+;(X“,VX”)pd32—|—- e
Similarly, by interchanging X < Y, s <> t, we have
M (v) = X;ds+yzﬁdt+;(X“,VX”)pds%r(w,VX”)pds dt+;(w,yyu)pdt2+- o

Subtracting, we get

a#(v) — at(u) = (Y, XV = X*, YY) dsdt + - -
= (X, Y)rdsdt 4 -

The commutator [ X, Y] measures the discrepancy between the points u and
v obtained by following the integral curves of the vector fields X and Y in
different orders, starting from p and moving infinitesimal distances along the

curves. Now [X, Y] = 0 implies u = v.
We say a basis {e,} is coordinate-induced if [e,, e, ]

the coordinate-induced basis {0, }, !

B 0% f B 0*f B
 Oxrdzrv OxvOxt

9,.0,], f
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6.4 Lie Derivatives

Claim 6.4.1. Suppose X is a smooth vector field and X, # 0. Then there is
a coordinate chart {y*} defined in a neighbourhood U of p such that X = 8%1
inU,ie. X =(1,0,...,0).

Proof. (For n = 4.) By continuity, there exists a neighbourhood U of p such
that X # 0 in U. Choose a 3-surface > in U nowhere tangent to X and
arbitrary coordinates (y?,y3,y?) on X. There exists at each point of 3 a
unique integral curve with parameter ¢ through each point, where ¢ = 0 at
that point. Define y* = [ dt along such curves and define y2, 43, y* on these
curves to be constant. Then {y*} is the required chart. O

6.5 Lie Derivatives of a Function

The Lie derivative of a function with respect to a vector field X at p is

[f(hdt(p)) - f(p)l |

(ﬁxf)p = lim

dt—0

dt

To rewrite this in a more useful form, we introduce the chart of claim 6.4.1,
{y"}, such that the vector field X = (1,0,...,0). ha(p) = (y' +dt, y?, ..., y")
in coordinates {y*} (only moving in y'). Then the right hand side of our
definition evaluates to

OF
— =X L =X, [
<8y1 ) o(o) Pfa ( Xf)p pf

This is the rate of change of f along the integral curve X.
If two scalars are equal in one chart, they are equal in all charts.

6.6 Lie Derivatives of a Vector Field
We wish to compute (LxY), for X,Y vector fields. It is tempting to define

i [Y“(hdt(p)) — Y“(p)] |

dt—0 dt

but this is not well-defined since vectors at different points live in different
tangent spaces.

We use the push-forward (hq;). which maps a point p € M on v to a
point hq:(p) € M on . Therefore if Y, is a vector field at p, we can define
(hat)«Yhq,(p) Which is also a vector at p. We define

Y, = (hat).Ya,,
(‘CXY)p _ dl%glo [ P ( 3’52 hq (p)] ] (1)
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In the adapted chart {y*}, only y' changes along the integral curves of X, so

K n
(ha)Yiai)" = V" (0} (0) = dt,52 (). " (D)
Then the right hand side of (1) is simply

oY H
oyt

since X” = (1,0,...,0) in this chart.
But Y* , X" is not a vector field. Note that X* ,Y” = 0 in this chart, so

=Y¥, X"

(LxY)h =YH X" — X" Y
= [X ) Y]g
which is a vector field at p.
If two tensors have equal components in one chart, they are equal in all

charts.
(LxY), = [X,Y],.

This is the rate of change of Y along integral curves of X.

6.7 Lie Derivatives of Covectors and Tensors

For 1 a covector and X, Y vector fields, we use the fact that (Y") is a function
and the Liebniz rule to calculate the Lie derivative of a covector.

Lx(n(Y)) = (Lxn)(Y) +n(Lx(Y)),

SO

(Lxm)(Y) = Lx(n(Y)) = n(Lx(Y))
=X(n(Y)) —n[X,Y]
= X"0,(n,Y") —n,(Y" X! — X" ,YH).
Recall that
nY)=(nY)

= (n, dz", Y"9,)
= nuyu<dxlj> aﬂ>
= "3,
=n,Y".
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Back to our Lie derivative
(Lxn)(Y) = Xt YV 4+ Xt Y, =YY XV +n, X" Y
= X", YY" +n, X" YH

so (u <> v)
(Lxn) Y = (XN + 0, X7 )YV

which is true for all Y. Therefore
(‘CXU)M = Xynu,u + UVXV,M-

Example 6.7.1. We will compute the derivative of a ({) tensor. We must
use the fact that T'(n,Y) is a scalar for covector fields 1 and vector fields Y.
The Leibniz rule implies

Lx(T(n,Y)) = (LxT)(n,Y)+T(Lxn,Y)+T(n LxY),
(LxT)(n,Y) = Lx(T(n,Y)) = T(Lxn,Y) = T(n, LxY)
=X(T(n,Y)) =T(Lxn,Y)—T(n, LxY)
= XMOu(TAmY") = T, (nux X + X )Y
— T YV 2 XN — XY, Y.

Recall that

T(n,Y)=1T",0,® dx"(ndz*,Y70,)
=T, Y70, ® dz*(dz?,9,)
= TH,mY76)6"
=T, mY".

Returning to our Lie derivative,

(‘CXT) (777 Y) = X#(T)\I/,,un)\yy + T/\I/T])\”LLYV + TAV”AYV,;J
— TH (un X+ XA )Y = T, (Y XA — XYY
=T, X'Y? + TH, XY\, Y =T, XY mY”.

This can be written as
(LxT)" nY" =T\ XYY +TH X 0 Y — T, X" \n,Y".
This is true for all n,Y, so

(LxT)*, = TH, X+ T X, — T X",
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Claim. Lx and d commute, i.e.
Lxdf =d(Lx[)

Proof.
Lx(df(Y)) = (Lxdf)(Y) +df(LxY),

therefore

= X(df(Y)) = (LxY)(f)
= X(df(Y)) - [X,Y](f)
= X(Y(f) = XX (f) + Y (X))
=Y (X(/))
=Y (Lx(f))
=d(Lxf)(Y) VY.
Since Y is arbitrary,
Lxdf =d(Lxf). O

7 Linear Connections and Covariant
Differentiation

We require some concept of differentiation on a manifold that is chart indepen-
dent (covariant) and we would like a derivative operator whose components
transform like a tensor.

Notice, for example, that the partial derivative of a vector field does not
transform like a tensor.

oVH oz’ 0 or*
=V v — 7 / VH
ox? ’ ox? Ozv {ax“ }
_ Ox¥ Ozt v oxV  O%xt -

- s Y
oxv Oz Y Oz OxY Oz

These are not the components of a (}) tensor.

In order to properly define a derivative operator on a manifold, one needs
to be able to compare vectors (or tensors) at different points. The machinery
that allows us to do this is the “linear connection”.
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7.1 Linear Connections

We define a linear connection V to be a map which sends every pair of smooth
vector fields X, Y to a smooth vector field,

V: XY — VyY,
satisfying

Vixiv(Z) = fVx(Z) + Vy(2).

It also satisfies

and the Liebniz rule
Vx(fY) = fVx(Y)+ X(f)Y.

VxY is the covariant derivative of Y with respect to X.
It is important to note that V is not a tensor since the Liebniz rule implies
it is not linear in Y. However, considered as a map from X — VY, ie.

VY : X = VyxY

which is a linear map T, (M) — T}, (M) which takes a vector and outputs a
vector, VY is a (1) tensor known as the covariant derivative of Y.

7.2 Covariant Derivative of a Vector Field

In an arbitrary basis {e,}, V., is a map taking e, to some vector field.
Ve, 60 = Ve,

Since this is a vector field for each e,, we may write V e, as a linear combi-

nation of basis vectors
A
V“e,, = Fu,uek

where F;\u are known as the connection coefficients and are not the components
of a tensor.
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Since X = X*e,, Y = Yte,, we have

VXY = (VXY)“GH = (YN;VXV)GM

== VX(Y“GM)

= (VXY“)eH + Y“VXeu

= X(Y“)eﬂ + Y“queyeu

= X", Ye, +Y"X"V,e,

= e, Y"X e, + Y"X'T) e,

=e,Y"X e, + Y X"T% e,.
Therefore

(Y*, X )e, = e, (Y")X"e, + XY T4 e,.
This is true for all e, and X, so
Vi, =e (Y") + YA]‘—‘,;\V
=Y", +YIY,

in a coordinate-induced basis.
To see how the Ff;,,s transform under a coordinate transformation, we will
look at
Veu,e,,/ = Fl)j\:”/€)\/ = Fl),\:H/Aa)\’ea-

We also have

Ve e = Via e, (M yep)
= Ay Vo (A )es + A%y AN,V e
= Aaufea(AB,/)eg + A“M/Aﬁyffgae,\.
= Aﬁu/eﬁ(AaV/)ea + A)‘M/Aﬁ,/rgkea.

Together, this gives us
F,i\/M/Aaxea = Aﬁﬂ,eg(/\a,,/)ea + A)‘MIA’B,,/F%AGOC.
This is true for all e, and implies
N el @ A o
]‘—‘I/’M’A X = Aﬁ“,eb’(A I//) + A N/AﬁV/F,BA‘

Then
Fl’},H,AaXAV o=\ aAﬂu,eﬂ(Ao‘y/) + A7 QAAH/AB,,/FE‘/\
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and since A® A, = 5}:, we conclude that
T = Aol ep(A%)) + A7 WA A%, TG,
The presence of the first term on the right hand side shows that Ffw does not
transform like a tensor. In a coordinate basis, we have
v 02" 2% 9 (0x° ox" ox dxP _,
VI Oge 9zt xB \ O Oz dzr dxv' PN
One can show that Y*,, transforms like a (1) tensor.

Yi,= Y*, + Th Y.
S~~~ ~——
not a tensor not a tensor

a tensor
Lemma 7.2.1. Let V.,V be two connections on M. Then their difference
D(X,Y)=VxY —VxY
is always a tensor.

Proof. We must show that the map D is multilinear. We have already seen
that V is linear in X, so we must show linearity in Y.

D(X, fY) = Vx(fY) - Vx(fY)
= fVx(Y)+ X(f)Y — fVx(Y) = X(f)Y

= f(VxY = VxY)

— fD(X,Y).
It is trivial to show that D(X,Y + Z) = D(X,Y) + D(X, Z). Therefore D is
a tensor. 0

7.3 Covariant Derivative of Covectors and Tensors
We will use the fact that n(Y) =n,Y" is a scalar.
VM(T}VY’/) = (VMTIV)YV + T]VVMYV7
SO
(V;ﬂ?u)YV = VM(UVY") - nvvuyy

= 0u(mY") = (Y i + FKuYA)

=0 Y A Y =Y =I5 Y

= DY =I5,V

= (771/,# - nAF,i\M)YV-
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This is true for all Y, so

V;ﬂ)u =MNvp — T])\Fl)/\p,'

These are the components of the covariant derivative of a covector. Note the
negative sign; this was positive for vectors.

Example 7.3.1. We will compute the covariant derivative of a (}) tensor,
using the fact that T%,n,Y" is a scalar.

v/\(THﬂ]uYV) = (v/\T“V)nuYV + T”V(V/\nu)yy + T“VT]#(V)\YV),
SO

(VaT",) ), Y'Y = VAT YY) = T, (Van)Y" = TH,n,(VAY")
= W\(T"m.Y") =T, (s — UVFZA)YV =T (Y 2+ FZ/\YFY)
=T YY" +TEn Y + T n.Y"
= ' Y + T, DY =T Y'Y 5 =T g%, Y7
= WYY+ TP, DT — TV, T, Y
=T" .Y + T LYY — T, 0,10, Y
= (T" \+ T, 00 =TT )n.Y".

This is true for all n,,Y", so
VATH, =TV, \ =T A+ T, 1%, =TT,
These are the components of a (1) tensor.

In general, we have

1H2 — 1H2 M1 rouig B2 rppg e
VT vivge T (e vivge A T Fa)\T : vivge Fa)\TH vivge T
_ T THipz _ o THipz ...
o s, T TR,

8 (seodesics and Parallel Transport

8.1 Parallel Transport Along a Curve

We need a curved space generalisation of moving a vector along a path while
keeping the vector constant. In curved space, the result of parallel transporting
a vector (or tensor) from one point to another depends on the path taken.
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We say that a tensor 7' is parallel transported with respect to X a vector
if
VxT =0.
Let v(7) be some curve and ¢ o v = {z#(7)} be the image of v in R™.
Then T is parallel transported along the curve ~ if VxT = 0 holds, with X
being the tangent vector to the curve, i.e.

(1) ()

dat DT
—V,T=—=0.
dr Vi dr 0

Then VxT = 0 becomes

In particular, for a vector field V', this gives

dv# dx®
- I‘:“
dr t e dr

dr oxzv  dr

vi_o (dm” ove dW)

the parallel transport equation for a vector field.

8.2 The Geodesic Equation

A geodesic in flat space is a straight line, i.e. the shortest distance between
two points. Equivalently, geodesics are paths that parallel transport their own
tangent vector.

In curved space, we have not yet introduced the metric and therefore have
no well-defined notion of distance. We must use the second definition of a
geodesic.

The tangent vector to a path z*(7) is simply %‘ . These components must
satisfy the parallel transport equation, so

A2zt i dz® da?
+ -
dr2 B qr dr

This is the geodesic equation. Note that we also have initial conditions
2#(0) = p, #(0) = X}, so that locally there is a unique solution. This is not
true globally.
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8.3 Normal Coordinates

Given a point p € M and a chart {z"}, we may find a new chart {2/} such
that [ y/\)( ) = 0, i.e. the geodesics at p satisfy 2 = 0 so that they are locally
linear funct1ons of 7. These coordinates are connected by a unique geodesic,
which defines the normal neighbourhood of p.

To construct normal coordinates, we take z#(p) = 0" and set

1
Tt =t + iQ“M:ﬁ”azA
where Q¥ = Q" (,,) are constants. Let
ol = |2 * + %) + -+ |27

and we note that 2# = z# + O(|z|*). Thus
1

at =zt Q“w\x z,

which may be solved iteratively to obtain

1
=it — 5@@@%@* + O(|z]?).

Therefore,
ozt
oy :55+QM’YA$)\_|_... ,
Oxt N
g = @

Recall that I, is related to T, by

. ozt 9x® Pz OXF 07 028

wo_
— - —_— i
VAT 9xe 922 0xBOzr | Oz 93> Oiv PV

implying
i (p) = 6463 (—Q°,) + 646361,
= Qh, 4 T,
Choosing Q" = L', (p) gives
F/(LVA) (p) = 0

as required.
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9 Curvature

9.1 Torsion

The torsion tensor is a () tensor field defined by
T(X,Y)=VyY — Vy X — [X,Y].

It is easy to check multilinearity (i.e. if it is a tensor). To obtain the components
of the torsion tensor, we introduce the commutator coefficients

[ev, ex] = onen:

Then
_
T(el/’ 6)\) - Tu)\eﬂ
- vl/e)\ - v)\ey - [ew 6)\]
_ n 1
- F/\ueu - Fl/)\e/"' — ToACus
SO

T =T% =T — 7
= _QFﬁ/,\} — Yo
completely antisymmetric in lower indices.

Theorem 9.1.1. The torsion on a manifold with a symmetric connection in
a coordinate-induced basis is zero.

Proof. A symmetric connection implies
In a coordinate-induced basis, 74, = 0.2 O

We will usually assume zero torsion.

9.2 The Riemann Curvature Tensor

The Riemann curvature tensor is a (3) tensor field defined by

R(X,Y)Z =VxVyZ - VyVxZ — VixyZ

2This is obvious, since Ou, 0, commute. See also assignment 1 question 9.
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where XY, Z are vector fields. To see that this is a tensor, we must check
multilinearity. Since it is antisymmetric in X, Y, we need only check X, Z.

RIX+W,Y)Z =VxiwVyZ - VyVxiwZ — Vixiwy)Z
= (Vx +Vw)VyZ = Vy(Vx + Vw)Z = Vixyi+ w1 Z
=VxVyZ +VywVyZ - VyVxZ - VyVyZ
~VixvZ = Vwy 2
= R(X,)Y)Z+ RW,Y)Z.

It is trivial to show that R(X,Y)(Z +W) = R(X,Y)Z + R(X,Y)W.

R(fX,Y)Z =V xVyZ —VyVixZ — VixnZ
= fVxVyZ = Vy(fVxZ) = Vixy-v(nxZ
= fVxVvZ = fVyVxZ = Y(f)VxZ — fVxy)Z +Y(f)VxZ
= fR(X? Y)Z>

similarly for R(X,Y)(fZ).

To compute the components of the Riemann curvature tensor, we have

R(e,,ex)e, = R',ne,
=V, Vae, = VaV,e, = Vi, er1€p
= V,,(F;L/\eu) — VA(FgVe#) — V’YS)\eﬂep
= (erﬁ))eu + FgAvl/eu - (V/\Fﬁu)eu =TI, Vae, — VA Viuep
= eV(Fg)\)eu + F’;‘E,‘fy@a - eA(Fgu)eu - Fﬁﬁfixea - %’AF?M%
= eu(FZA)eu + P,Of,\rgu@u - eA(ng)eu - FZ“VFZAGM - VSAFgaeu-

This is true for all e,, implying

Rupl/)\ = eV(F/;)\) + FZ[)\PZU - 6)\<Fﬁu) - Fgurg)\ - ’YS)\F'ZQ,

the components of the Riemann curvature tensor.
In a coordinate induced basis, we have

(61, — al/)? (VZC/M)\ — 0)7
Rupu)\ - Fg)\,y - F,’Zz/,)\ + Fg/\rgu o FZZI/FZ)\?

the components of the Riemann curvature tensor in a coordinate-induced
basis.

This is important in general relativity, as curvature dictates how particles
move.
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Theorem 9.2.1 (The Ricci Identity). Let X* be the components of X with
respect to a coordinate-induced basis. We denote

X" =V, V, XA
The Ricci identity states that, for a symmetric connection,
Xu;l/)\ - X'u;)\u = _RHPV)\XP'

Proof.
VXt =Xt, =XV, + 10 X7,

Xton = VX", + T XP)
= O\ (X", + T XP) +Th (X, +T9X7) — T)\(X¥ 5+ TH,X7)
= XF A+ T X+ T8 XP N+ T X, + T, X7
— )\ X" 5 — T\l X7
= X"\ +Th XP 4+ Th T X7 — T, Th, X*
+ U XA+ T X, — T X" 5,

Xty = X"\ + 10  XP 4+ T8 T XP — rfyrgﬂxp

+ IO XP, +TH X )\ — Ty X" g

Xu?”/\ - XM%/\V = ng,)\Xp - Fg/\,VXp + FZAF?;VXP - ng ?AXP
= —RF N XP. O
In flat space, the covariant derivative becomes the derivative (; =, ), implying

v\ would commute. Hence R = 0 and there is no curvature in flat space.
Recall that for the torsion, T',

v M
FV)\_F/\V

[e,,,eﬂ:o} - =0
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9.3 Geometric Interpretation of the Riemann Tensor

We set up a similar construction to that of §6.3

We parallel transport a vector Z along integral curves of vector fields X
and Y where [X,Y] = 0, i.e. the curve is a closed infinitesimal quadrilateral.

We work in normal coordinates so that I}, (p) = 0.

Along pr we have that VxZ = 0, implying

dz»
- ' zrx* =0,
a2z d ,
1 = hZ X*)
dz?
= (" Z"X*) ,—
( VA )7,0 ds
= —(Th,2"X*) X",

Note that
(T Z"XY), = 1Yj,\,,oZl/X/\ + 0,27 XA+ T, 27 X2,
=TI, 2" X,

Taylor expanding Z! around Z7,

dzw 1 (d2z+
Z;fzz;;+<d8> ds+2<d82> ds® +- -
p p
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o
tdZ

and note tha = 0 in normal coordinates. Further,

dzr d2zn
7 = dt?
=z (Sr) e () oo
1 [d2z¢ )
=4+ 2 ( ds? ) ds
p
dz® d dz»
- — =4 ool dt
* (dt) +<dt ds 8) -
p p
1(dzr\ |,
+5 <dt2>pdt +
1 (d2zn d dz»
= ZF 4= ds® + | ——— | dsdt+---
p+2<d32> S+<dtds> sl
p p
1 v 14
=7l — Q(FfprZ X XP)ds? — (T, ,Z'Y XP),ds dt
1 14
2(F*V‘M,Z YY), dt* +
Parallel transporting Z in the other direction pqu gives
1
Zl =71 — 2(F’If/\pZ”YAYp)pdt2 (T8, 2" X YP),dsdt
]' 14
2(rggpz XAXP),ds® 4o

The difference represents the change in Z around prugp.

AZF = —(T",  Z"),(Y2XP — XY, dsdt + - --

VA, p

= (T, —T0, )XY Zrds dt + - - -
- (RHVpAX)\YpZV)pdS dt+---

(since terms like I'T' vanish in normal coordinates). Therefore

AZ
" AN p7v __ 1:
R, \XYPZ _c};ﬂ)(dsdt)'
dt—0

R(X,Y)Z measures the change in Z after parallel transporting around a
closed quadrilateral spanned by the vector fields X and Y.

9.4 Geodesic Deviation

We let 71,72 be neighbouring integral curves of a vector field X which are
parameterised by t. We let {o,} be curves parameterised by s intersecting v,
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and v, at “time” t. Let Z be the tangent vector to o; such that s = 0 on v,
and s =1 on 7.

Ot4dt

Z is a vector pointing from one integral curve to another. Since the
quadrilateral is closed, we have

(X, Z] =0
and Z is known as a connecting vector to the curves.

Theorem 9.4.1. Assuming the torsion vanishes, let X be tangent to a
congruence of geodesics and let Z be a connecting vector. Then the acceleration
of Z is given by

VxVxZ=R(X,Z)X.

This is the geodesic equation.

Proof. Vanishing torsion gives us

T(X,Z):sz—VZX—[X,Z]:O = VxZ=VzX.
0

Then (as VxX = 0)

VxVxZ =VxVzX
— R(X,Z)X + V,;VxX + Vix X
— R(X, Z)X.
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The relative acceleration between two neighbouring geodesics is proportional
to the curvature.
In component form, we have

D2*Zm

a2 (XVZF, )2 X2

= R, X" X 2P,
This equation gives us information about R*(,y),, since X*X A is symmetric

in (v, \).

9.5 Symmetries of the Riemann Tensor

Recall that in a coordinate-induced basis,

L _ T 7 a PR o Tk
R pvA — Fp)\yy - pr,)\ + FpAFaV Fpl/Fa)\‘
Therefore R,y = —R",5,, or

R pun =0

(assuming 7' = 0, symmetric connection and coordinate-induced basis).
We also have
R'uu)\p + Rupu)\ + Ruz\pl/ = 0.

To see this, we introduce normal coordinates at a point p, where I}, (p) = 0.
Then (at p)

I3 —_TH _T#
R vAp — Fup,)\ Fuk,p’
I — T _T#
R pvA — Fp)\,l/ Fpl/,)\ﬂ
I —_TH _TH
R Apy — F)\V,p F)\p,y'

Adding gives the desired result. This is true in arbitrary coordinates. This
symmetry may be written concisely as

Ry = 0.

We further have

9
Ry = g(R“ (x — B (oayw)-
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To prove this, using normal coordinates the right hand side is

2 /1 1
§ (2 [RMPW\ + RMVpA] - §[Rup>\v + RMApV])

1

- g (FZ)VV o ngy)‘ + Fﬁ/\,p - F/ij,)\ - 1—‘Zl/,/\ + FZ/\,V - FM
1

=5 (30, —300,)

=RV

Additionally, we have the Bianchi identities
RMP[VA;’V] =0,

equivalently
R puniy + R pyuix + R pry = 0.

Adopting normal coordinates, then schematically we have

R=0T — T +IT —IT,
OR = 90T — 0T + 0T - T +T-9T — 9T -T —T - oT
— 00T — 90T,

implying that

Iz —TH _ T
R pYAY T Fp)\,u'y I

pUAY?
© © B T _TH B
R prxy T R pyix T R YNV T Fp)\,l/’y Fpu,M + Fplw)\
I 1% 1%
_me\ + Fm)\v o FP)\:’YV
=0

and is true for all charts.

10 The Metric

10.1 The Metric Tensor

A metric tensor g is a (9) tensor such that

(i) the magnitude of the vector X is |g(X, X)|%,

41

)
Av,p + FAp,V)



(ii) the angle between two vectors X, Y is

N|=

cos™! (]g( (X, Y) ) , g X, X)#0, g(Y,Y)#0

1
X, X)[2 g(Y,Y)]
and if g(X,Y) =0, X,Y are orthogonal,

(iii) the length of a curve whose tangent vector is X between t; and ¢, is

to 1
| lg(x, 0]
1

The metric gives the equivalent of the dot product, which is needed to define

lengths of vectors and angles between them.

In a particular basis {e,}, the metric tensor is written as

g<€,u7 61/) = G9uw = Gup-

The metric is of fundamental importance in general relativity since it gives
the interval between two spacetime points z* and x* + da*, which we call

the line element.

ds® = gudat ® da” = g, dx"dx”.

Example 10.1.1. The line element in Fuclidean space in Cartesian coordi-

nates is

ds? =dz®@dr +dy ® dy + dz ® dz

= dz? + dy? + dz2?

= §;;dz’da’, i,j=1,2,3.

100
= (§4¢)
In polar co

r=rcos¢psinf, y =rsin¢@sind,

the 1-forms dz* transform as

oxt .

dr' = ——da".
=5 gdz

ox ox ox

is the 3-dimensional Euclidean metric in Cartesian coordinates.
ordinates, which are related to Cartesian coordinates by

z =1rcosb,

=sinfcos pdr + rcosf cos ¢ df — rsinfsin ¢ do,
dy = sinf@sin ¢ dr + r cos 0 sin ¢ df + r sin 6 cos ¢ do,

dz = cosfdr — rsin6dé.
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Then

ds? = da? +dy? + d2?
= dr? + r2d#* + r?sin 0 dp?

-/ !
= gyyda’ da’
so the metric in polar coordinates is

1 0 0
girjr = 0 r? 0
0 0 r%sin?6

The number of positive eigenvalues minus the number of negative eigen-
values gives the signature of the metric. This is basis independent.

If the absolute value of the signature is strictly less than the dimension of
the manifold, then the manifold is said to be pseudo-Riemannian. (If they
are equal, it is Euclidean or Riemannian.)

For example, for M* (4-dimensional Minkowski spacetime) in Cartesian
coordinates,

Guv = N = diag(_17 L1, 1)'

The signature is therefore 2 and M* is a pseudo-Riemannian manifold. (In
general relativity, we will be exclusively concerned with pseudo-Riemannian
manifolds.)

10.2 The Inverse Metric

g is a non-degenerate map, since
g X, Y)=0 VY = X=0.

Therefore g has an inverse whose components are g"”, the components of a
(9) tensor satisfying

d"ga=0"  (g-g'=1).

The metric and its inverse define an isomorphism between the tangent space
and dual space,

pM)=TH(M), X' gu X" €Ty (M),
wy, — g"w, € T, (M),
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i.e.

Xy = guX” “lowering the index”,

wh = g""w, “raising the index”.

Metric components are used to raise and lower indices of a vector and covector.
This naturally generalises to tensors, e.g.

14 4
9T 5, =Ty,

10.3 The Lorentzian Signature

A Lorentzian signature is of the type (—,+,+,+) (or (+,+, +, —)) where the
negative eigenvalue is associated with the temporal direction and the positive
eigenvalues are associated with the spatial directions.
We can always choose a basis at a point p such that the metric at p looks
Minkowskian, i.e. g,, = diag(—1,1,1,1) at p. (Gravity doesn’t exist locally.)
We say that a vector at p, X, is

timelike if ¢(X,,X,) <0,
null if g(X,,X,) =0,
spacelike if ¢(X,, X,) > 0.

Similarly, we say that the interval is timelike, null or spacelike depending on
whether it is negative, zero or positive respectively.
(Using (4, —, —, —), all of these are backwards.)

10.4 Metric Connections & Christoffel Symbols

Up until now the connection has been arbitrary (although some results relied
on a symmetric connection), satisfying

Ve, = I e.

v

However, if the manifold is endowed with a metric there is a unique choice
for the connection—the metric or Levi-Civita connection.

Theorem 10.4.1 (The fundamental theorem of Riemannian geometry). If a
manifold possesses a metric g, there exists a unique, torsion-free connection
such that Vg = 0.
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Proof. Assuming Vg = 0, we prove existence and uniqueness by explicitly
constructing the unique connection. Let XY, Z be vector fields. Then ¢(Y, Z)
is a scalar and X (g(Y, Z)) = Vxg(Y, Z)

= g(VXY, Z) + g(Y, VXZ)

Similarly,

Combining these,

S (X, 2) + Y (5(2, X)) ~ Z(g(X,Y)))

= Jo(VxY.2) + 5o(¥.Vx2)
;g(VyZ, X) + ;g(Z, Vy X)
;g(VZX, V) — ;g(X, VY)
= —g(Y,VxZ - VX)+ ;g(X, VyZ —V,Y)
9(Z,VyX) + ;g(VXY, Z)

since ¢ is a bilinear form. Assuming vanishing torsion,

T(X,Y)=VxY —VyX —[X,Y] =0
= VxY —VyX =[X,Y].

Then the expression above equals

S0, X, Z]) + 29X ¥, Z]) + S0(TxY, 2) + 92, VxY = [X,Y)),

giving the Koszul formula

o(VY, 2) = 5 [X(9lY, 2)) + Y (9(2, X)) = Z(s(X,Y))
+9(Z,[X,Y]) = g(Y[X, Z]) — g(X, [V, Z))]

which defines the unique connection (as the metric is non-degenerate).  [J
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To determine the components, we recall that [e,, e,] = 7/1\1,6 » and take
g(vueua 6)\) = g(FZue'ya 6)\) = qug'y)\

= 2 [eulo) + cula) — ex(g)

T glen lews ) = glev. e e2]) — gleye v 2]

1
= 5[ w(90) + €0(90) = ex(G) + VuTr = VirGoo — Vorbue] -

In a coordinate-induced basis the commutator vanishes, so
N 1
Fu,ugw\ = §(gu)\,u + Gury — g;w,/\)~
Multiplying by the inverse metric,

FZug’Mgp)\ = FZu&?

1
= igpk(guk,u + Gury — guu,)\)a

SO
1
r,=1r,, = §9pk(9m,u + 9w — Guv))-

This is the Christoffel symbol. It is sometimes written as

A A
F,U'V =9 p[,u'va].

If Vg = 0, we say that the metric is compatible with the connection.

Example 10.4.1. We will compute the Christoffel symbols for the 3D flat
space metric in Cartesian and polar coordinates. In the Cartesian case,

gij = diag(1,1,1) = Tj =0
since they involve terms like g;. In polar coordinates
gi; = diag(1,7%,r*sin*0), ds® = dz® + dy? + dz*
= dr? + r*d6? + r*sin® 6 d¢”

(see Example 10.1.1). The Christoffel symbols with an upper r are given by

r 1 rr
Iy = 39 (Grij + Giri = Gijur)s

SO
1
Ly = —ig”geg,r =-r, I, =0, 6o =T sin’ @
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and I, = Fi:(b = Fg¢ = 0. For F?j = %gee(ggm + gj0,i — gij,g),

r’Y =o, 1% =0, szb = —sinfcos b,

1

Similarly, the " Z terms are

Iy, =0, Tg=0, T4, =0,

1
Iy, =0, To, = = I, = cot .

10.5 Geodesics Revisited

Now that we have a metric, we have an appropriated notion of the length of
a curve. If X is the tangent vector to a curve, then the components of X are

% and the length of the curve is

dz# d
[asla(X, ) = [ ds /g 24,
Let us choose our parameterisation to be 7, such that

o —1 X # timelike
= guX'X" = 0 X* null
1 X* spacelike

da* dz¥

Inds ds

In this case, 7 is proper time for X* timelike and proper length for X*

spacelike.
— —1 timelike
S = / dr \/W €= { 1 spacelike

We extremise this length via the action principle. For timelike curves, we
want to maximise the proper time.?

S:/mg

L =L(X" X" =1/gu,XnXv

05=0 = d((‘)L)_OL:O
dr

Take € = 1. Then

and

ozt oz

3Timelike curves cannot be minima of proper time, since they are infinitesimally close
to null curves (of zero proper time).
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This will give us the geodesic equation. We can read off the Christoffel symbols
by comparing this to the normal geodesic equation.

We could use some other Lagrangian f(L), where f is a continuous non-
constant function. Then L and f(L) satisfy the same Euler—Lagrange equation.
We will use this to forget about the square root. Instead, take L = g,“,X nxv.
g, depends on X only.

gjﬁ = GuOh XY + g X"0¥
= g X" + g X"
= 29,2 X"
and 5L o
Eroee G X X",
Therefore,

d . L
— (29, X") = Gua X' X" =0,

dr
dgvu . . S
Qd—X + 20, X" — g X"'X" =0,

T
D4 < oo . o
an#X X"+ 29, X" — g X"X" =0,

2gl/)\XV + QVA,;LX#XU + g'u)\yX'qu — g#V7AX“XV = 07

gl/)\XV + 5 (.g/\u,u + o — g,uzz,)\) X'X" =0.

Multiplying by ¢ gives
. 1 L
5£XV —+ 59/\’) (g)\,u,y + gl/)\,,u - guu,A) XHXV = 07
e T, XX =0,

the geodesic equation. Similarly for timelike curves—both definitions are
equivalent provided we parameterise using proper time.

10.6 Affine Parameters

Suppose we change the parameterisation from 7 to (7). Then the geodesic
equation becomes

Pt | detdat) (ds\' o (ds) dat
ds? YA ds ds dr dr2) ds
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as

A2zt d (dx“ ds)

&7 " ar \ds dr
@t (s s do
-~ ds? \dr dr? ds -’
We retrieve our standard form of the geodesic equation iff
ds d?s
E%O, @—O = S(T)—(IT“‘b,

a, b constants, a # 0, so we are free to choose origin and scale. Such parame-
terisations are known as affine parameters. They are related to proper time
or proper length in a linear way.

10.7 Metric Curvature

Assuming M has a metric, we can lower the upper index on the Riemann
tensor. This gives us

R;w/\p = gu’yR,YVAm
the metric curvature tensor. The previously mentioned symmetries still hold,
ie.

A R =0,
B. R, =0, ete.

The curvature tensor satisfies some additional symmetries when the manifold
has a metric:

C. Ruwyrg =0,
D. Ry = Rapuw-

How many independent components does R, have? Symmetries A, C and
D imply that we can treat the curvature tensor like

Rywin,

a symmetric m x m matrix with antisymmetric pairs of indices uv and Ap
treated as individual indices. A symmetric m x m matrix has %m(m +1) inde-
pendent components, but each of these components are n x n antisymmetric
matrices with in(n — 1) components, so

1 1
im(m +1)= g(n4 —2n® 4 3n% — 2n).
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Thinking about symmetry B,

1
Rywre) = 3 (3! Rufwrg] + 3! Ropua) + 3 Rajoun) + 31 Ruppu)

3!

—a (Ru[vkp] + Rofuwn) + Bajp) + R”[’\”“O .

Therefore R, = 0 implies Ry, = 0, so imposing Ry, = 0 is equivalent
to imposing R[5, = 0 once the other symmetries have been imposed.

A totally antisymmetric 4-index tensor has fn(n — 1)(n — 2)(n — 3)
independent components. The total number of independent components is
therefore

;(n4 —2n® 4+ 3n% — 2n) — i'n(n —1)(n—=2)(n—-3) = ;712(712 —1).

Gravity will be described by this curvature tensor.

1D 0 independent components
2D 1 independent component ~ only calculate Rio1o
3D 6 independent components

4D 20 independent components

A manifold M is locally flat if there exists a chart such that a line element
in this chart is

ds* = e (da')? + - - + €, (dz"™)?, e==x1, i=1,...,n.

In this case, R\, = 0. Conversely, if I2,,,», = 0 we can show that there exists
a chart such that ds? is as above and we say the metric is flat.

Flat metric < R\, = 0.

Contracting the first and third indices of the Riemann curvature tensor
defines the Ricci curvature tensor

Ry = R .
Contracting with the metric yields the Ricci curvature scalar
R=¢"R,,.

The Einstein curvature tensor is defined by

1
GMV = R/“, — iguyR.
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(G, = 0 is a differential equation for components of the metric. Solving this
gives vacuum solutions of Einstein’s equations.)
Recall the Bianchi identities, R*,[y,, = 0 or

RMVNW + Ruwk;p + Ruvm;/\ = 0.
Contracting over p and p,
RHMMW + Ruvw\;u + RMVW;A = _Rw\w + Ruvw\;u + RW;A =0,
the “once-contracted Bianchi identities”. Multiplying by ¢**,
VA A
“Ro+ (97 Rn)  + R0 =0,

and by ¢"7,
_(QWR)W + R, + R/\V;A =0,
—(9""R), +2R", =0,

Gy =0,

the twice-contracted Bianchi identities. The Einstein tensor is conserved.
Finally, we introduce the Weyl tensor defined by

Crwnp = Ruwrp — %(QM[ARP}V — GupnRyp) + WQ(nmPLgu[x\gp]w

also called the “conformal tensor”. We can show that the Weyl tensor satisfies
all the same symmetries, for example

Clrp = C[uﬂ] RY2E Crvrp = Copuvs Cu[w\p] =0.
We can further show that all possible contractions with the metric vanish,
gu)\cwj)\p — gij/ﬂ/)\p — gupclw)\p =...=0.

Also, the Weyl tensor is invariant under conformal transformations of the
metric

G — VG-

11 Isometries and Killing Vectors

11.1 Lie Derivatives Revisited
The expression for the Lie derivative of an arbitrary () tensor field is
LyTHm e, = VAgTHrr,
— (&V“l)T*“?"'“nl...w _ (a/\vuz)Tm)\muermyl —
+ (aylvz\)Tqur)\VQmw + (0,,2V’\)T“1“'“T,,1>\.A.Vl 4+
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This involves partial derivatives rather than covariant derivatives and is not
manifestly tensorial. We can in fact replace the partial derivatives with the
covariant derivative (with a symmetric connection) since all connection terms
vanish.

LVTulh..uTyl-..ul = V)\VATMNNTW"'W - (VAVHI)T)\NZMNTW'"W B
+ (vylvk)Tllfl"'HrAVT”Vl + .

Example 11.1.1. We will show that the two representations of a Lie deriva-
tive of a vector field are equivalent.

Ly X! =V X'V — V,\ VXA
= (X* A+ TH X" VA — (VF + T8 V") XA
= XFAVA = VILXA TR X VA =T Ve X
= XF VA= VXA,
which is the manifestly non-tensorial representation of the Lie derivative. (It’s
still a tensor, but just involves partial derivatives.)

The manifestly tensorial definition is often more useful.

11.2 Lie Derivative of the Metric and Isometries

The Lie derivative of the metric tensor is

Ly = V/\(vx\g;w) + (VMVA)QAV + (Vo V") gy
= (V. VMg + (Vo V") g
= Vu(V2n) + Vi (V7 gpn)
— V.V, + YV,
— 2V, V.

We say a diffeomorphism h is a symmetry of some tensor T if the tensor
is invariant after being pulled back under h,

T =T.
Suppose we have a continuous one-parameter family of symmetries h; gener-
ated by a vector field V#. Then invariance under this symmetry implies that
the tensor does not change along integral curves of V# ie. LT = 0.

Symmetric diffeomorphisms of the metric tensor are known as isometries.
Suppose that V# generates a one-parameter family of isometries. Then

Lyvguw =2V,V,y=0 <« V.V, =0. (Killing’s equation)

Solutions V# are known as Killing (co-)vectors.
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12 p-Forms

12.1 Space of p-Forms

A differential p-form is a (g) tensor which is completely antisymmetric. For

example, a 2-form is an antisymmetric (9) tensor satisfying
T(X,Y) = ~T(Y, X)
(for X, Y vector fields) or, in a coordinate-induced basis,
T="1T,dz" ®dz"”
for 1, = =T,,.
Lemma 12.1.1. If 7'(X, X) = 0 VX then 7 is antisymmetric.
Proof. Let X =Y + Z. Then

TY+ZY+2)=TY,Y)+T(Y,2)+T(Z,Y) +T(Z, %)
=T(Y,Z)+T(Z,Y)=0

and hence T is antisymmetric. O]

The converse is obviously true: if 7" is antisymmetric then T'(X, X) = 0 VX.
Repeated indices in a p-form mean certain death.

As an aside, consider the pull-back of a tensor. If T"is a (!) tensor, what
is h*T? For a () tensor,

hn(X) = n(h.(X)).
This has an obvious generalisation to
KT(Xy, ..., X)) =T(hXy, ..., hX,).

Consider the number of linearly independent components. For p = 2 and
dimension n, we have

T="T,¢" ®¢", wv=1...,n.

o _(Tn T\ _ (0 T
" o \Tm T —T12 0

For n = 2,

T,
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So for p = 2,

as antisymmetry implies T7; = Ty = 0. Thus T, ( Ok’g
, n =3, we would have

n = 2, there is one independent component. For p
”(”2 D _ 3 independent components.
In general, the number of linearly independent components of a p-form in

an n-dimensional space is
ny n!
p)  pl(n—p)!

for n > p. For p > n, all components are zero.

We denote the space of all p-forms by A, and the space of all p-form fields
over a manifold M by A,(M).

Note that a O-form is a function and a 1-form a covector field.

12.2 Wedge Products

Given a p-form P and a ¢-form @), we can form a (p + ¢)-form known as the
wedge product P A @ by taking the antisymmetric tensor product.
For example, the wedge product of two 1-forms is

PANQ=PRQ—-Q®P, P,Q e T*(M).
Lemma 12.2.1. The set {e/ Ae? A--- Aetr} form a basis for A,,.

Proof. Clearly, ' Ae* = 0 by antisymmetry. Therefore there are n(n—1)(n—
2)---(n— (p—1)) elements. However, these elements are antisymmetric so
that the number of independent components is

nn—1)-(n—(p-1) _ (z) — dim(A,).

(n—p)!

Therefore {e/ A --- A etr} span A,
For linear independence, we consider

Crnpigepy €T NE2 N Nt (ey, €0y, .. s€0,)
= Cprpig-eopiy (6“1 ® et? R--® etr — o2 ® et R ® eHr
+ all other permutations)(e,,, €y, , ..., €y,)
= Curpopiy (00 Oy -+~ 00 — Op20L - O

+ all other permutations)

= Curvgy — Cuguy--v, + all other permutations
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where (e#,e,) = 0% But ¢, pupp, = Cluipg-p,)s therefore
Crypigepiy €T N €N N (e 0ys s €)= Dl Coiuge, -
If the left hand side is zero, this implies

Crnpigopp = 0.

Therefore {e#* A--- Aetr} are linearly independent and form a basis for
A, O

In a coordinate-induced basis, for example, we would have
{e"" N nNetr} ={dz"™ A Adatr ).

If T € A, we write

1
T= STy, da™ A A da?
p!
where the components 7}, ...,,, = Tj,,...,,) are completely antisymmetric.

As an example, we will derive an explicit component form for the wedge
product of a p-form A and a ¢-form B.

(ANB)yywyy = (ANB)(Ouys-- -, 0,,.,)
= pl!Am...“pdx“l A ANdatr A qllBHpH...upde“P“ A - Adaghrte
(Ovys---50u,.,)
= p!1q!Am...“pBNpH‘..Mqux”l Ao Adate Adzie A A dater
(Ovys---50y,.,)
= pllcﬂAur"upBupHmqu (dz" @ da"? @ - - - @ datrte
—de"? @de" ® - - - @ datrte
+ all other permutations)(d,,,...,0,,,,)
s By O3 Gty = B2 Bl
+ all other permutations)
_(p+9)
W (V1 vp Prp 1 vpyq):
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So, for example, if A and B are 1-forms, then

3!
(AA B);u/ = ﬁA[MBV]
= 2%(AMBV —-A,B,)=A,B,—A,DB,.
Another property of the wedge product is

AAB=(-1"BAA,  AcAh, BeA,

12.3 Exterior Derivative

We may define a map d known as the exterior derivative such that
d: Ap — Ap+1

where the components of d are appropriately normalised antisymmetric partial
derivatives.

<dA>M1---up+1 =(p+ 1)8[M1Au2-~up+1}~

d satisfies the following properties:
(1) d: Ag — Ay (recall df = (%) dz*, §3.3);
(2) d(A+B)=d(A) +d(B) VAe A, Bel

(3) Liebniz rules: d(fA) =df A A+ fAdA,
d(AANB)=dAAB+ (—1)?ANdB;

(4) d2A =0,

A heuristic explanation of (4) is that d? is symmetric, while A is antisymmetric.
As an example, take n = zy dz + y?dy.

dn = d(zy dz) + d(y* dy)
= d(xy) Adz + 2y d*z +d(y?) Ady + 3* d%y
= (ydz +xdy) ANdx 4+ 2ydy A dy
=xdy ANdz
= —xdx A dy,

d’*n =d(zdy) Adr — zdy A d*z
=dor Ady Ade + xd*y Adx
= 0.
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12.4 Closed and Exact Forms

Let A € A,. If dA = 0, we say that A is closed. We say that A is exact if
there exists a B € A,_; such that A = dB.

Lemma 12.4.1 (Poincaré). If A is an exact p-form then A is closed.
Proof. Exact implies A = dB.
dA =d’B =0,
therefore A is closed. O

The converse is not necessarily true, although in topologically trivial space-
times it will be.

12.5 Hodge Duality

We must first introduce the Levi-Civita alternating symbol

+1 if g -+ pp is an even permutation of 1---p
ghrt = ¢ —1 it py -+ - pp is an odd permutation of 1---p
0 if any index is repeated

This does not transform like the components of a tensor, but rather like a
tensor density of weight —1 (see §13.1).

We can construct a well defined tensor by multiplying by an appropriate
scalar density. The Levi-Civita tensor is

ety = [ g

where g = det(g,,). We are assuming the manifold is Lorentzian and has a
metric.

The Hodge star operator is a map from p-forms to (n — p)-forms, defined
by

V1 Up

1
(*A),U«l'”#n—p = ¢ ;L1~~-;Ln,pAl/1~~~1/p-

p!
Note that this is metric dependent. Applying the Hodge star twice returns
plus or minus the original form,

wxA = (—1)5P) 4,

where s is the number of minus signs in the eigenvalues of the metric.
Note that in 3D Euclidean space we have, for A, B 1-forms,

*(AAB), =¢,"*A,B)

which is the conventional cross product.
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Example 12.5.1 (Electromagnetism). Maxwell’s equations in tensor notation
are

0, F" =J", (A)
Ok =0, (B)
where F,, = —F,,. Equation B is most succinctly written as the closure of a
2-form,
dF = 0.

For topologically trivial spaces (such as Minkowski spacetime), closed implies
exact so that there is a 1-form A = A, dz" with

F =dA.

A, are the components of the vector potential.
Gauge invariance is now a consequence of the fact that F' is invariant
under A — A+ dA.

Finally, equation A can be expressed as

d(*F) = *J.

13 Integration on Manifolds

13.1 Tensor Densities

We denote two charts by z* and 2 and we have

ozt X Oxt
p o 9T a9
P“_ﬁxﬂ’ P“_Gx“

which are matrices satisfying P*,P”, = of. We denote the determinant of P
by J = det(P*;) # 0. Recall the transformation law (§3.5)

Th, = P, P",T",.
We say that T, is a (1) tensor density of weight w if it transforms like
Th, = JY P, P, T .

The product of an () tensor density of weight w; and an (7 ) tensor density

of weight w, is an (’?ﬁ) tensor density of weight wy + ws.

Claim 13.1.1. /—g is a scalar density of weight 1.
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Proof.
Gpo = Puﬂpyﬁg/iy? g = det(g,ul/)v

g = det(gps)

= det(P“ﬂP”,;gW)

= det(P";) det(P";) det(g,)
Therefore § is a scalar density of weight 2 and /—§ = J+/—g¢, so /—g is a
scalar density of weight 1. ]

One can derive a covariant derivative of a tensor density, for example
v v v P TP v 1 v

In general, the covariant derivative of a tensor density need not be a tensor
density.

Another important example of a tensor density is the Levi-Civita alter-
nating symbol &,,..,,,. One can show that*

s =g tpm, . Pk &
i =T P py e PPy

and therefore is a tensor of weight —1.

13.2 Volume and Surface Elements

Recall that in Euclidean space, the area enclosed by two vectors at p, X, and
Y, say, is given by

1 2

Consider the wedge product dz! A dz? acting on X, Y.

(4t A de?)(X,, ) = (d' @ da?)(X, ) — (de? ® do') (X, V)
— e (X,) di(Y,) — da?(X,) d' (V)
= X'Y? - X%yl
Hence, in R? da! A d2? is called the area form. We note that we may rewrite

this as

1
dzt Ada? = aém,dx“ A dx”.

4See Carroll’s notes (preposterousuniverse.com/grnotes/grnotes-two.pdf), with the
caveat J — J L.
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Moving now to R3, we recall that the volume V enclosed by vectors
Xp,Y,, Z, is given by
V =(X, xY,) Z, = \X"Y"Z .

Consider now dz! A dz? A d2?(X,, Y, Z,)

= (dz' ® d2? ® d2® — dz' ® d2® ® d2? + d2® ® do' ® d2?

—d? @ dr* @ dz' + d2? @ d2® @ d2' — do? @ do' ® d2?)(X,,Y,, Z,)

=X'YV*Z - X'V Z? + X°Y' 2 - XY Z' + XY 2 - XY 2P

=71 (X*Y? - X3Y?) + 22 XY - XY + Z23(XTY? - XY

=& X"Y 2.
dz! A da? A da? is the volume form in R?. Again, we rewrite this as

dz' Ada® Ada?® = ;éwdx# Adz¥ Ada? = dQs.

This volume element is not chart independent, however, since the wedge
product dz* A dz¥ A dz? transforms like a tensor while €,wx transforms like a
tensor density of weight —1.

For a volume integral / fd€ to make sense and be chart independent, f

must be a scalar density of weight 1.
For a Lorentzian metric, for example, we can consider integrals of the type

[ 1v=ga

where f is a scalar and

1
V—gdQ = \/—g—léﬂl...#ndx“l A ANdatn
n!

is the n-dimensional curved spacetime volume element.
Similarly for surface integrals in R", the surface element is
L A An—
dEN = mgﬂAl"'Anfldx LA Adgtnt
which transforms as a covector density of weight —1. Therefore, for a general
curved space integral of the type / X"d¥, to make sense, X* has to be a

vector density of weight +1.
Again, for a Lorentzian metric, we can consider integrals of the type

/X“«/_—g =,

where X* is a vector and \/—gdX, is the curved space surface element.
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13.3 (Gauss’ Divergence Theorem

In R”, the divergence theorem is
/(V-F)dV:}{(F-n)dS.
v s
The curved space generalisation is
V1" dQ = / v d
/V nX oy X G

for x* a vector density of weight 1.
Then for a Lorentzian metric, we have

/ v, X" dQ = / VgX"ds,
14 ()%

for X* a vector.

What next? You can get Debbie Ip’s general relativity notes from

www.maths.tcd.ie/~ipde/GR_Notes.pdf.
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