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1 Manifolds

1.1 Topological Spaces
Let p ∈ Rn. A neighbourhood of p is any set V ⊂ Rn such that V contains
an open solid sphere of centre p.
Properties:

(i) p ∈ any neighbourhood of p.

(ii) If V is a neighbourhood of p and V ⊂ U , then U is a neighbourhood of
p.

(iii) If U, V are neighbourhoods of p, then U ∩ V is a neighbourhood of p.

(iv) If U is a neighbourhood of p, ∃ a neighbourhood V of p such that V ⊃ U
and V is a neighbourhood of each of its points.

Definition. A topological space is a set of pointsM along with an assignment
to each p ∈ M of collections of subsets called neighbourhoods, satisfying
properties (i)–(iv).

1.2 Charts

M
U

p

Rn

φ(U)

φ(p)

φ

Let M be a topological space, p ∈ M be
some point in this space and U be an open
neighbourhood of p. A chart on U is an in-
jective map

φ : U → φ(U) ⊂ Rn.

The φ(p) ∈ Rn constitutes a local coordinate
system defined in an open neighbourhood U .
We usually write

φ(p) = {xµ(p)}
=
(
x1(p), . . . , xn(p)

)
.

Note that the choice of chart is arbitrary,
implying Einstein’s equivalence principle.
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1.3 Meshing Conditions: Coordinate Transformations
Suppose we have two charts φ1, φ2 on U ⊂M. Since these charts are injective,
they are invertible1, e.g.

φ−1
1 : φ1(U) ⊂ Rn → U.

We may define

φ2 ◦ φ−1
1 : Rn → Rn

: φ1(U)→ φ2(U).

M

U

Rn

φ1(U)

φ−1
1

Rn

φ2(U)

φ2

φ2 ◦ φ−1
1

We require these maps to be smooth (C∞) where they are defined. For p ∈ U ,
the map φ2 ◦ φ−1

1 (p) defines a coordinate transformation from the coordinates

φ1(p) =
(
x1(p), . . . , xn(p)

)
to the coordinates

φ2(p) =
(
X1(p), . . . , Xn(p)

)
.

Example 1.3.1. Let M = R2, let φ1 map p to the Cartesian coordinates
(x, y) and φ2 map to the Cartesian coordinates (X, Y ) obtained from the first
set by a rotation through the constant angle α.

1Injections can be made bijective by replacing codomain with range.
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φ2 ◦ φ−1
1 maps

(x, y) 7→ (X = x cosα + y sinα, Y = −x sinα + y cosα).

We can define a derivative matrix

D(φ2 ◦ φ−1
1 ) =

(
∂X
∂x

∂X
∂y

∂Y
∂x

∂Y
∂y

)
=
(

cosα sinα
− sinα cosα

)
.

The Jacobian J ≡ det(D) = 1. Recall that J 6= 0 implies an invertible
transformation. J non-singular implies φ1, φ2 are C∞-related.

Introduce another chart φ3 which maps p to polar coordinates (r, θ). Then

φ3 ◦ φ−1
1 : (x, y) 7→

(
r =

√
x2 + y2, θ = tan−1( y

x
)
)
,

J = det(D) = 1
r
.

φ1, φ3 are C∞-related except at r = 0. To cover all of R2, we would need at
least two sets of polar coordinates with different origins.

1.4 Definition of a Manifold
Informally, a manifold is a set of pointsM that locally looks like a subset of
Rn. The simplest example of a curved manifold is S2.

A set of C∞-related charts such that every point p ∈M lies in the domain
of at least one chart is a C∞ atlas for M. The union of all such atlases is
known as the C∞ maximal atlas.

We define a C∞ n-dimensional manifold by a setM along with a maximal
atlas.

2 Tangent Vectors and Tangent Spaces
In our familiar treatment of vectors in Rn, they represent “directed magni-
tudes”. This is no longer a useful notion. Rather, to each point p ∈ M we
have a set of all possible vectors at p known as the tangent space Tp(M).

We prefer to describe the geometry ofM from intrinsic properties alone;
we won’t rely on embedding in a higher dimensional space.

2.1 Smooth Functions
LetM be a manifold and f be a real function.

f :M→ R.
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How do we define the “smoothness” of f? Introduce a chart φ and a new
function F such that

F : Rn → R, F = f ◦ φ−1.

M

Rn

R
φ

f

F = f ◦ φ−1

We say that f is smooth iff F is smooth in the usual sense.

Theorem 2.1.1. The smoothness of f is chart independent.

Proof. Let φ1, φ2 be two meshing charts, i ∈ {1, 2}.

Fi = f ◦ φ−1
i ,

F1 = f ◦ φ−1
1

= f ◦ φ−1
2 ◦ φ2 ◦ φ−1

1

= F2 ◦ φ2 ◦ φ−1
1

and φ2 ◦ φ−1
1 is smooth since φ1, φ2 are meshing charts. Hence, the smoothness

properties of F1 are the same as F2.

The definition of smooth functions may be generalised to a function mapping
a manifoldM to another manifold N ,

f :M→N .

Let φ1 be a chart inM (dim(M) = n1) and φ2 be a chart inN (dim(N ) = n2).
Define F = φ2 ◦ f ◦ φ−1

1 . f is smooth iff F is smooth. It is easy to prove that
this is chart independent.

Note that the notation ∂f

∂xµ
really means

∂f

∂xµ
= ∂F

∂xµ
= ∂ φ2 ◦ f ◦ φ−1

1
∂xµ

.
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2.2 Smooth Curves
Let I = (a, b) be an open interval of R. We define a curve onM as a map

γ : R ⊃ I →M.

The curve γ is smooth if its image

φ ◦ γ : I → Rn, φ ◦ γ(s) =
(
x1(γ(s)), . . . , xn(γ(s))

)
is smooth.

2.3 The Tangent Space as a Space of Directional Deriva-
tives

We wish to construct the tangent space at p ∈ M (i.e. Tp(M)) using only
intrinsic properties ofM.

We combine the concept of smooth functions, f , and smooth curves, γ,
and define

F : I → R, s 7→ F(s) = f ◦ γ(s)
≡ f (γ(s)) ,

i.e. F evaluates f along the curve γ.
The rate at which F changes, dF

ds , gives the rate of change of f following
the curve γ.

The tangent vector to the curve γ at p (where without loss of generality
we take s = 0 at p) is the map from the set of real functions to R, defined by

γ̇p : f 7→ γ̇pf ≡ γ̇p(f) =
[

d
dsf ◦ γ

]
s=0

≡
(

dF
ds

)
s=0

.

Claim. Let φ be a chart such that

φ : p 7→ xµ(p).

Then
Ḟ(0) =

[
d
ds (f ◦ γ)

]
s=0

=
n∑
µ=1

(
∂F

∂xµ

)
φ(p)

[
d
dsx

µ (γ(s))
]

where F = f ◦ φ−1.
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Proof.

F(s) = f ◦ γ = f ◦ φ−1 ◦ φ ◦ γ
= F ◦ φ ◦ γ

where the function φ ◦ γ maps s to the coordinates of γ(s). Identify

F(s) = F
(
x1(γ(s)), . . . , xn(γ(s))

)
.

Then

γ̇pf =
[

dF
ds

]
s=0

=
[

dF (x1(γ(s)), . . . , xn(γ(s)))
ds

]
s=0

=
(
∂F

∂x1

)
φ(p)

[
dx1(γ(s))

ds

]
s=0

+ · · ·+
(
∂F

∂xn

)
φ(p)

[
dxn(γ(s))

ds

]
s=0

=
n∑
µ=1

(
∂F

∂xµ

)
φ(p)

[
dxµ(γ(s))

ds

]
s=0
. (Or use Einstein notation.)

Example 2.3.1. LetM = R2. Take y = 2x2 − 3 to be a parabola in R2. We
parametrise this by x = s, y = 2s2 − 3.

φ ◦ γ(s) = (x(s), y(s)) =
(
s, 2s2 − 3

)
,

F(s) = F (s, 2s2 − 3).

dF(s)
ds = ∂F

∂x
· dx

ds + ∂F

∂y
· dy

ds

= ∂F

∂x
· 1 + ∂F

∂y
· 4s

= T · ∇F, T = (1, 4s).

T · ∇F is the rate of change of F in the direction of the vector T .

The map γ̇p : f 7→
[

dF
ds

]
s=0

we called a tangent vector at p. We must further
show that these maps live in a vector space of dimension n = dim(M).

Theorem 2.3.1. The set of tangent vectors at p, Tp(M), form a vector space
(i.e. are closed under addition and scalar multiplication).

Proof. Xp, Yp ∈ Tp(M). We want to show that

Xp + Yp ∈ Tp(M), αXp ∈ Tp(M).
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With Xp, Yp we associate smooth curves γ(s), λ(s) such that γ(0) = λ(0) = p,

Xp = γ̇p, Yp = λ̇p.

Two curves inM may be added by considering their coordinate image in Rn,

{xµ (γ(s))} , {xµ (λ(s))} ,

which gives a new curve

ν̃ : s 7→ {xµ(γ(s)) + xµ(λ(s))− xµ(p)} (ν̃ = φ ◦ ν)

which is a parametric representation in Rn of some curve inM with ν(0) = p.
For any function f , we have

ν̇pf =
(
∂F

∂xµ

)
φ(p)

[
d
dsx

µ(ν(s))
]
s=0

=
(
∂F

∂xµ

)
φ(p)

{[
dxµ(γ(s))

ds

]
s=0

+
[

dxµ(λ(s))
ds

]
s=0

}

= γ̇pf + λ̇pf = Xpf + Ypf.

Since f was arbitrary, we associate ν̇p = Xp + Yp. Therefore the space is
closed under addition. A similar proof holds for αXp (consider the coordinate
image). Therefore, the maps γ̇p form a vector space.

To recap:

γ̇p : f 7→
(

dF
ds

)
s=0

=
(
∂F

∂xµ

)
φ(p)

[
dxµ(γ(s))

ds

]
s=0

and γ̇p is closed under addition and scalar multiplication, i.e. they form a
vector space.

Theorem 2.3.2. dim (Tp(M)) = dim (M).

Proof. We consider a chart φ,

φ : p 7→ xµ(p).

We assume that xµ(p) = 0 for all µ (p gets mapped to the origin of Rn). We
consider curves γν(s) through p such that its coordinate image in Rn is

γ̃ν(s) = (0, . . . , 0,s, 0, . . . , 0).
↑
νth component
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Obviously, there are n such curves. They satisfy

xµ ◦ γν(s) =
{
s µ = ν
0 otherwise .

Therefore, [
dxµ ◦ γν(s)

ds

]
p

= δµν .

Furthermore,

(γ̇ν) ◦ f =
(
∂F

∂xµ

)
φ(p)

[
dxµ ◦ γν(s)

ds

]
s=0

=
(
∂F

∂xµ

)
φ(p)

δµν

=
(
∂F

∂xν

)
φ(p)

,

i.e. (γ̇ν)p maps

f 7→
(
∂F

∂xν

)
φ(p)

.

We will show that {(γ̇ν)p} form a basis for Tp(M) and, since there are n such
vectors, this will prove

n = dim (Tp(M)) = dim (M) .

We need to show that {(γ̇ν)p} span Tp(M) and are linearly independent.
To determine the span, let λ̇p ∈ Tp(M). Then

λ̇p(f) =
(
∂F

∂xµ

)
φ(p)

[
dxµ ◦ λ(s)

ds

]
s=0

= (λ̇µ)p(f)cµ, cµ =
[

dxµ ◦ λ(s)
ds

]
s=0

.

This is true for all f , hence λ̇p = cµ(λ̇µ)p and therefore {(λ̇µ)p} span Tp(M)
(i.e. any element of Tp(M) can be written as a linear combination of {(λ̇µ)p}).

For linear independence,

aµ(γ̇µ)p = 0.
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Consider the function xν :M→ Rn.

aµ(γ̇µ)pxν = 0,

aµ
(
∂

∂xµ

)
p

xν = 0,

aµδνµ = 0,
aν = 0

and therefore {(γ̇µ)p} are linearly independent.
Hence, {(γ̇µ)p} form a basis for Tp(M), so

dim(Tp(M)) = dim(M) = n.

We usually write

(γ̇µ)p =
(
∂

∂xµ

)
p

= (∂µ)p .

This is known as a coordinate basis for the tangent space Tp(M). It corre-
sponds to setting up the basis vectors so that they point along the coordinate
axes.

Note that a change of coordinates induces a change of basis.

2.4 Transformation Rule for Vector Components
We have shown that every element of the tangent space is naturally decom-
posed into a coordinate basis, i.e. if

V ∈ Tp(M), V = V µ

(
∂

∂xµ

)
p

, V µ =
[

dxµ(s)
ds

]
s=0

where V µ are the components of the vector in the coordinate basis.
Introduce a change of coordinates

xµ
′ = xµ

′(xµ)

(new coordinates as a function of old ones).

V = V µ

(
∂

∂xµ

)
p

= V µ′
(

∂

∂xµ′

)
p

= V µ′
(
∂xµ

∂xµ′
∂

∂xµ

)
p

.

Comparing, we see that

V µ = V µ′ ∂x
µ

∂xµ′
⇒ V µ′ = ∂xµ

′

∂xµ
V µ.
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This is the vector coordinate transformation rule in a coordinate basis.
Note that vectors, tensors, etc. are invariant under a change of coordinates

or a change of basis, but their components are not.
We are not limited to a coordinate basis for Tp(M). Any linearly indepen-

dent set {eµ} that spans the vector space is an appropriate basis.

V = V µeµ

where V µ are the components with respect to the basis {eµ}. This basis is
related to any other basis {eµ′} by a non-singular set of transformations.

eµ′ = Λµ
µ′eµ.

Since Λµ
µ′ is non-singular, it is invertible and satisfies

Λµ
µ′Λµ′

ν = δµν (Λ−1Λ = 1).

We then have
V = V µeµ = V µ′eµ′ = V µ′Λµ

µ′eµ,

giving the vector component transformation law in an arbitrary basis

V µ′ = Λµ′
µV

µ.

For the coordinate basis, Λµ′
µ = ∂xµ

′

∂xµ
.

Note that if Λµ′
ν are further constrained to satisfy

Λαβ = Λµ′
αΛν′

βηµ′ν′

where η = diag(−1, 1, 1, 1), then Λ represents the Lorentz transformations of
special relativity.

3 Covectors and Tensors

3.1 Co-Tangent Space
All vector spaces have a corresponding dual space of equal dimension, com-
prising the set of linear maps from the vector space to the real line.

The dual space of Tp (M) we denote by T ∗p (M), the co-tangent space
consisting of maps

η : Tp (M)→ R.

Elements of T ∗p (M) are known as covectors or 1-forms.
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The action of a linear map η on Xp ∈ Tp (M) is

η(Xp) = 〈η,Xp〉.

For a tangent space Tp (M) with basis {eµ}, there is a corresponding dual
basis of T ∗p (M) satisfying

ωµ(eν) = 〈ωµ, eν〉 = δµν .

3.2 The Gradient/Differential
Perhaps the most important example of a covector is the gradient or differential
of a function f . Let p ∈ M and f : M → R be a smooth function. For
Xp ∈ Tp (M), we define df to be

df : Tp (M)→ R, df(Xp) = Xp(f).

3.3 Coordinate Induced Dual Basis
For a particular chart, we may associate with the coordinate xµ the covector
dxµ defined by

dxµ(Xp) = Xp(xµ).

Claim. The set {dxµ} form a basis for T ∗p (M) dual to the coordinate basis{(
∂
∂xµ

)}
of Tp (M).

Proof.
1. Duality.

〈dxµ, ∂ν〉 =
(
∂

∂xν

)
p

xµ = δµν .

2. {dxµ} form a basis for T ∗p (M).

η = ηµdxµ = 0.

0 = η

( ∂

∂xν

)
p


= ηµdxµ

( ∂

∂xν

)
p


= ηµδ

µ
ν = ην

which implies that {dxµ} are linearly independent.
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3. Take ω ∈ T ∗p (M) and set

η = ω − 〈ω, (∂µ)p〉 dx
µ.

Then

ην = 〈η, (∂ν)p〉
= 〈ω, (∂ν)p〉 − 〈〈ω, (∂µ)p〉 dx

µ, (∂ν)p〉
= 〈ω, (∂ν)p〉 − 〈ω, (∂µ)p〉 δ

µ
ν = 0

and
η = 0 ⇒ ω = 〈ω, (∂µ)p〉 dx

µ.

Therefore {dxµ} spans T ∗p (M).

{dxµ} forms a basis of T ∗p (M) dual to
{(

∂
∂xµ

)
p

}
.

Since
ω = 〈ω, (∂µ)p〉 dx

µ,

we notice that

df = 〈df, (∂µ)p〉 dx
µ

=
(
∂

∂xµ

)
p

f dxµ

=
(
∂F

∂xµ

)
φ(p)

dxµ. (�)

The components of the gradient in the basis {dxµ} are partial derivatives of
the function.

3.4 Transformation Rule for Covector Components
As before, a coordinate transformation induces a change in coordinate basis
of T ∗p (M). We introduce

xµ
′ = xµ

′(xµ).
From (�),

dxµ′ =
(
∂xµ

′

∂xµ

)
φ(p)

dxµ.
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For η ∈ T ∗p (M),

η = ηµdxµ = ηµ′dxµ
′ = ηµ′

(
∂xµ

′

∂xµ

)
dxµ.

ηµ = ηµ′

(
∂xµ

′

∂xµ

)
, ηµ′ =

(
∂xµ

∂xµ′

)
ηµ.

This is the covector transformation rule in a coordinate-induced basis.
As before, we are not restricted to a coordinate basis. In general,

ηµ′ = Λµ
µ′ηµ, Λµ

µ′Λµ′
ν = δµν ,

the transformation rule in an arbitrary basis.

3.5 Transformation Rule for Tensor Components
We can generalise vectors and covectors to define the notion of a tensor, which
is a multilinear map

S : Tp (M)× · · · × Tp (M)︸ ︷︷ ︸
s

×T ∗p (M)× · · · × T ∗p (M)︸ ︷︷ ︸
r

→ R.

This is known as a tensor of rank (or type) ( rs ) at p.
We define the tensor product operation. If T1 is an ( r1

s1 ) tensor and T2 is
an ( r2

s2 ) tensor then the tensor product is defined by

T1 ⊗ T2(x1, . . . , xs1+s2 , η1, . . . , ηr1+r2) = T1(x1, . . . , xs1 , η1, . . . ηr1)
· T2(xs1+1, . . . , xs1+s2 , ηr1+1, . . . , ηr1+r2).

An appropriate coordinate basis for an arbitrary ( rs ) tensor is

{dxν1 ⊗ · · · ⊗ dxνs ⊗ ∂µ1 ⊗ · · · ⊗ ∂µr} .

In this basis, an arbitrary tensor

T = T µ1···µr
ν1···νsdxν1 ⊗ · · · ⊗ dxνs ⊗ ∂µ1 ⊗ · · · ⊗ ∂µr .

It is now easy to see that under a coordinate transformation, the components
change according to

T µ
′
1···µ

′
r
ν′1···ν′s = ∂xµ

′
1

∂xµ1
· · · ∂x

µ′r

∂xµr
∂xν1

∂xν
′
1
· · · ∂x

νs

∂xν′s
· T µ1···µr

ν1···νs .

This is the tensor component transformation rule in a coordinate basis.
Note that
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• a ( 1
0 ) tensor is a vector,

• a ( 0
1 ) tensor is a covector (1-form),

• we can’t add tensors of different types (ranks).

For example, the Kronecker delta δµν transforms like the components of a ( 1
1 )

tensor.
δµν = ∂xµ

∂xν
= ∂xµ

∂xµ′
∂xν

′

∂xν
∂xµ

′

∂xν′
= ∂xµ

∂xµ′
∂xν

′

∂xν
δµ
′

ν′ .

From an ( rs ) tensor, we can obtain an
(
r−1
s−1

)
tensor by contraction. This

corresponds to multiplication by a Kronecker delta. E.g.

T µαβγ
contraction−−−−−−→ T µαµγ = δβµT

µ
αβγ.

We introduce the Bach bracket notation:
(ab) represents symmetrisation of indices,
[ab] represents antisymmetrisation of indices.

If S is a ( 1
2 ) tensor, then

Sµ(νλ) = 1
2! (Sµνλ + Sµλν) ,

Sµ[νλ] = 1
2! (Sµνλ − Sµλν) .

In general, we have

T(µ1···µr) = 1
r! (sum over all permutations of indices),

T[µ1···µr] = 1
r! (sum over all permutations with the sign of the permutation).

For example,

T[αβγ] = 1
6 (Tαβγ − Tαγβ + Tγαβ − Tγβα + Tβγα − Tβαγ) .

4 Tensor Fields and the Commutator

4.1 The Tangent Bundle and Vector Fields
The union of all tangent vector spaces for each point of the manifold defines
the tangent bundle, T (M).

T (M) =
⋃
p∈M

Tp (M) .

16



Then a vector field onM is a map that specifies one vector at each point of
the manifold.

X :M→ T (M), p 7→ Xp ∈ Tp (M) .
In a coordinate chart {xµ}, we take Xp to be

Xp = Xµ
p

(
∂

∂xµ

)
p

, Xµ
p = Xp(xµ).

A similar definition holds for covectors and tensors.
If X is a vector field and f is some function, we define the map X(f)

which is a function such that

X(f) :M→ R, p 7→ Xµ
p

(
∂F

∂xµ

)
φ(p)

.

This is a linear map,

X(af + bg) = aX(f) + bX(g), a, b ∈ R, f, g :M→ R,

and satisfies the Leibniz rule,

X(f · g) = X(f) · g + f ·X(g).

4.2 Commutator
Let X, Y be vector fields and f an arbitrary function. We can consider the
composition

X (Y (f)) = Xµ ∂

∂xµ

(
Y ν ∂F

∂xν

)

= Xµ∂Y
ν

∂xµ
∂F

∂xν
+XµY ν ∂2F

∂xµ∂xν
.

The Lie bracket is defined as

[X, Y ] f = X(Y (f))− Y (X(f)).

Claim. The Lie bracket is a vector field.

Proof. We just need to check that it satisfies linearity and the Liebniz rule.

1. [X, Y ] (af + bg) = a [X, Y ] (f) + b [X, Y ] (g).
This is trivial.
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2. [X, Y ] (f · g) = g[X, Y ](f) + f [X, Y ](g)
= X(Y (f · g))− Y (X(f · g))
= X(Y (f) · g + f · Y (g))− Y (X(f) · g + f ·X(g))
= X(Y (f)) · g + Y (f) ·X(g) +X(f) · Y (g)

+ f ·X(Y (g))− Y (X(f)) · g −X(f) · Y (g)
− Y (f) ·X(g)− f · Y (X(g))

= g[X, Y ](f) + f [X, Y ](g).

Since it is a vector field, it has the following representation (in a coordinate
basis):

[X, Y ] = [X, Y ]µ ∂

∂xµ
.

This implies that

[X, Y ](f) = [X, Y ]µ ∂F
∂xµ

(A)

= X(Y (f))− Y (X(f))

= Xµ∂Y
ν

∂xµ
∂F

∂xν
+XµY ν ∂2F

∂xµ∂xν

− Y µ∂X
ν

∂xµ
∂F

∂xν
− Y µXν ∂2F

∂xµ∂xν

=
(
Xµ∂Y

ν

∂xµ
− Y µ∂X

ν

∂xµ

)
∂F

∂xν

=
(
Xν ∂Y

µ

∂xν
− Y ν ∂X

µ

∂xν

)
∂F

∂xµ
. (B)

Comparing (A) with (B), we see that

[X, Y ]µ = Xν ∂Y
µ

∂xν
− Y ν ∂X

µ

∂xν
.

These are the components of the commutator in a coordinate-induced basis.
The commutator satisfies the following properties:

1. [X,X] = 0,

2. [X, Y ] = −[Y,X],

3. [X, Y + Z] = [X, Y ] + [X,Z],

4. [X, fY ] = f [X, Y ] +X(f)Y, f :M→ R,

5.
[
X, [Y, Z]

]
+
[
Y, [Z,X]

]
+
[
Z, [X, Y ]

]
= 0, the Jacobi identity.
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5 Maps Between Manifolds
We now consider maps between two manifoldsM and N or, in most cases,
betweenM and itself.

We say a map h : M → N is smooth if, for every smooth function
f : N → R, the function f ◦ h :M→ R is also smooth.

M h //

f◦h !!

N
f
��
R

Assuming h is smooth, then it maps a smooth curve γ inM to a smooth
curve h ◦ γ in N .

Let Xp be a tangent vector to γ at p. Then there exists a map

h∗ : Tp (M)→ Th(p)(N )

known as the push-forward to h ◦ γ and it maps the tangent vector at p in
M to the tangent vector at h(p) in N .

One can show that h∗ is a linear map such that for every smooth function
f : N → R,

(h∗Xp)(f) = Xp(f ◦ h).
Analogously, there is a map between covectors that goes in the opposite
direction,

h∗ : T ∗h(p)(N )→ T ∗p (M) ,
known as the pull-back. This maps the tangent covectors at h(p) in N to the
tangent covectors at p inM.

If η ∈ T ∗h(p)(N ) and Xp is any vector in Tp (M), then h∗η ∈ T ∗p (M) is
defined by

h∗η(Xp) = η(h∗Xp).
The pull-back of the covector acting on a vector is the same as the covector
acting on the push-forward of the vector. (Again, h∗η is a linear map since
the right hand side is linear in Xp.)

Example 5.1. Let M = R3 with coordinates (x, y, z) and N = R2 with
coordinates (x, y). Let h be the map h(x, y, z) = (x, y). Then for any f : N →
R,

f ◦ h(x, y, z) = f(h(x, y, z))
= f(x, y).
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Suppose Xp has coordinates (X, Y, Z). Then

Xp(g) = X
∂g

∂x
+ Y

∂g

∂y
+ Z

∂g

∂z
, g :M→ R

and

(h∗Xp)(g) = Xp(g ◦ h) = Xp(g(x, y)) = X
∂g

∂x
+ Y

∂g

∂y
,

i.e. h∗Xp has components (X, Y ). If η ∈ T ∗h(p)(N ) such that

η = λ dx+ µ dy,

then

h∗η(Xp) = η(h∗Xp) = η(X∂x + Y ∂y)
= 〈λ dx+ µ dy,X∂x + Y ∂y〉
= λX + µY

= (λ dx+ µ dy + 0 dz)Xp,

i.e. components of h∗η are (λ, µ, 0).

The definition of h∗ as a map from tangent vectors in N to tangent vectors
inM naturally extends to functions. If f : N → R, then h∗f is defined by

h∗f :M→ R, f 7→ f ◦ h.

Claim. h∗ commutes with the gradient, i.e.

h∗(df) = d(h∗f).

Proof. Let df ∈ T ∗h(p)(N ) and take Xp ∈ Tp (M).

(h∗df)(Xp) = df(h∗Xp)
= (h∗Xp)f
= Xp(f ◦ h)
= Xp(h∗f)
= d(h∗f)(Xp)

and therefore
h∗df = d(h∗f).
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6 Lie Derivatives and the Commutator
Revisited

6.1 Integral Curves
Let X be a vector field onM. An integral curve of X inM is a curve γ such
that at each point p of γ, the tangent vector is Xp.

γ(s) is an integral curve iff

γ̇p(s) = Xp=γ(s).

To see existence and uniqueness of such curves (at least locally), we
consider a chart {xµ} and a test function f . Then

γ̇p(f) = Xp(f) ⇔
(

d
ds(f ◦ γ)

)
p

= Xµ
p

(
∂F

∂xµ

)
φ(p)

⇔
(
∂F

∂xµ

)
φ(p)

dxµ (γ(s))
ds = Xµ

p

(
∂F

∂xµ

)
φ(p)

.

Since this is true for arbitrary f ,

dxµ(γ(s))
ds = Xµ

p

(
x1(γ(s)), . . . , xn(γ(s))

)
. (C)

We also have a set of initial conditions

xµ(γ(s = 0)) = xµ(p).

Note that there exists a chart {xµ} in a neighbourhood of p such that
X = ∂

∂x1 = (1, 0, . . . , 0) corresponding to integral curves of varying x1 and
constant x2, . . . , xn.

6.2 Congruence of Curves
If equation C is globally valid (holds for all s) for an integral curve, we say
the curve is complete.

The set of complete curves is a congruence (one at each spacetime point).
Given a congruence, we may define a 1-parameter family of transformations

hs :M→M

such that hs(p) is a point on the integral curve through p a parameter
“distance” s from p. Then

hs(ht(p)) = hs+t(p) = ht(hs(p)).
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Clearly we have an identity map h0 such that h0(p) = p and we have an
inverse map h−1

s = h−s. Together these properties show that the maps hs
form an Abelian group of transformationsM→M.

6.3 The Commutator Revisited: A Geometric
Interpretation

We let X, Y be vector fields onM with groups hs, kt respectively. Starting
from a point p, we move a distance ds along the integral curve of X to a
point r = hds(p) followed by moving a distance dt along the integral curve
of Y to reach some point v = kdt(r). Starting again from p, we now move a
distance dt along the integral curve of Y to the point q = kdt(p) followed by
a distance ds along the integral curve of X to the point u = hds(q).

p

q

r

u v

ds

dt

dt

ds

X
Y

Y

X

What can we say about the difference xµ(v)− xµ(u)? We choose a chart
such that {xµ(p)} = 0. Using a Taylor expansion,

xµ(q) = xµ(p) +
(

dxµ
dt

)
p

dt+ 1
2

(
d2xµ

dt2

)
p

dt2 + · · · .

But xµ(p) = 0. Let Y µ
p =

(
dxµ
dt

)
p
, so

(
d2xµ

dt2

)
p

=
(

dY µ

dt

)
p

=
(
∂Y µ

∂xν
dxν
dt

)
p

=
(
∂Y µ

∂xν
Y ν

)
p

= (Y µ
,νY

ν)p
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where ∂νY µ = Y µ
,ν . This gives

xµ(q) = Y µ
p dt+ 1

2(Y µ
,νY

ν)pdt2 + · · · .

Furthermore, we have

xµ(u) = xµ(q) +
(

dxµ
ds

)
q

ds+ 1
2

(
d2xµ

ds2

)
q

ds2 + · · ·

= xµ(q) +Xµ
q ds+ 1

2(Xµ
,νX

ν)qds2 + · · ·

=
[
Y µ
p dt+ 1

2(Y µ
,νY

ν)pdt2 + · · ·
]

+
Xµ

p +
(

dXµ

dt

)
p

dt+ · · ·
 ds+ 1

2(Xµ
,νX

ν)pds2 + · · · .

Noticing that
(

dXµ

dt

)
p

=
(
∂Xµ

∂xν
dxν
dt

)
p

= (Xµ
,νY

ν)p,

xµ(u) = Y µ
p dt+Xµ

p ds+1
2(Y µ

,νY
ν)pdt2+(Xµ

,νY
ν)pds dt+1

2(Xµ
,νX

ν)pds2+· · · .

Similarly, by interchanging X ↔ Y, s↔ t, we have

xµ(v) = Xµ
p ds+Y µ

p dt+1
2(Xµ

,νX
ν)pds2+(Y µ

,νX
ν)pds dt+1

2(Y µ
,νY

ν)pdt2+· · · .

Subtracting, we get

xµ(v)− xµ(u) = (Y µ
,νX

ν −Xµ
,νY

ν)p ds dt+ · · ·
= [X, Y ]µp ds dt+ · · · .

The commutator [X, Y ] measures the discrepancy between the points u and
v obtained by following the integral curves of the vector fields X and Y in
different orders, starting from p and moving infinitesimal distances along the
curves. Now [X, Y ] = 0 implies u = v.

We say a basis {eµ} is coordinate-induced if [eµ, eν ]p = 0 for all µ, ν. For
the coordinate-induced basis {∂µ},

[∂µ, ∂ν ]p f = ∂2f

∂xµ∂xν
− ∂2f

∂xν∂xµ
= 0.
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6.4 Lie Derivatives
Claim 6.4.1. Suppose X is a smooth vector field and Xp 6= 0. Then there is
a coordinate chart {yµ} defined in a neighbourhood U of p such that X = ∂

∂y1

in U , i.e. X = (1, 0, . . . , 0).
Proof. (For n = 4.) By continuity, there exists a neighbourhood U of p such
that X 6= 0 in U . Choose a 3-surface Σ in U nowhere tangent to X and
arbitrary coordinates (y2, y3, y4) on Σ. There exists at each point of Σ a
unique integral curve with parameter t through each point, where t = 0 at
that point. Define y1 =

∫
dt along such curves and define y2, y3, y4 on these

curves to be constant. Then {yµ} is the required chart.

6.5 Lie Derivatives of a Function
The Lie derivative of a function with respect to a vector field X at p is

(LXf)p = lim
dt→0

[
f(hdt(p))− f(p)

dt

]
.

To rewrite this in a more useful form, we introduce the chart of claim 6.4.1,
{yµ}, such that the vector field X = (1, 0, . . . , 0). hdt(p) = (y1 +dt, y2, . . . , yn)
in coordinates {yµ} (only moving in y1). Then the right hand side of our
definition evaluates to(

∂F

∂y1

)
φ(p)

= Xpf, (LXf)p = Xpf.

This is the rate of change of f along the integral curve X.
If two scalars are equal in one chart, they are equal in all charts.

6.6 Lie Derivatives of a Vector Field
We wish to compute (LXY )p for X, Y vector fields. It is tempting to define

lim
dt→0

[
Y µ(hdt(p))− Y µ(p)

dt

]
,

but this is not well-defined since vectors at different points live in different
tangent spaces.

We use the push-forward (hdt)∗ which maps a point p ∈ M on γ to a
point hdt(p) ∈ M on γ. Therefore if Yp is a vector field at p, we can define
(hdt)∗Yhdt(p) which is also a vector at p. We define

(LXY )p = lim
dt→0

[
Yp − (hdt)∗Yhdt(p)

dt

]
. (1)
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In the adapted chart {yµ}, only y1 changes along the integral curves of X, so(
(hdt)∗Yhdt(p)

)µ
= Y µ(y1(p)− dt, y2(p), . . . , yn(p)).

Then the right hand side of (1) is simply

∂Y µ

∂y1 = Y µ
,νX

ν

since Xν = (1, 0, . . . , 0) in this chart.
But Y µ

,νX
ν is not a vector field. Note that Xµ

,νY
ν = 0 in this chart, so

(LXY )µp = Y µ
,νX

ν −Xµ
,νY

ν

= [X, Y ]µp

which is a vector field at p.
If two tensors have equal components in one chart, they are equal in all

charts.
(LXY )p = [X, Y ]p.

This is the rate of change of Y along integral curves of X.

6.7 Lie Derivatives of Covectors and Tensors
For η a covector and X, Y vector fields, we use the fact that η(Y ) is a function
and the Liebniz rule to calculate the Lie derivative of a covector.

LX(η(Y )) = (LXη)(Y ) + η(LX(Y )),

so

(LXη)(Y ) = LX(η(Y ))− η(LX(Y ))
= X(η(Y ))− η[X, Y ]
= Xµ∂µ(ηνY ν)− ην(Y ν

,µX
µ −Xν

,µY
µ).

Recall that

η(Y ) = 〈η, Y 〉
= 〈ην dxν , Y µ∂µ〉
= ηνY

µ〈dxν , ∂µ〉
= ηνY

µδνµ

= ηνY
ν .
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Back to our Lie derivative

(LXη)(Y ) = Xµην,µY
ν +XµηνY

ν
,µ − ηνY ν

,µX
µ + ηνX

ν
,µY

µ

= Xµηµ,νY
ν + ηνX

ν
,µY

µ

so (µ↔ ν)
(LXη)µY µ = (Xνηµ,ν + ηνX

ν
,µ)Y µ

which is true for all Y . Therefore

(LXη)µ = Xνηµ,ν + ηνX
ν
,µ.

Example 6.7.1. We will compute the derivative of a ( 1
1 ) tensor. We must

use the fact that T (η, Y ) is a scalar for covector fields η and vector fields Y .
The Leibniz rule implies

LX(T (η, Y )) = (LXT )(η, Y ) + T (LXη, Y ) + T (η,LXY ),
(LXT )(η, Y ) = LX(T (η, Y ))− T (LXη, Y )− T (η,LXY )

= X(T (η, Y ))− T (LXη, Y )− T (η,LXY )
= Xµ∂µ(T λνηλY ν)− T µν(ηµ,λXλ + ηλX

λ
,µ)Y ν

− T µνηµ(Y ν
,λX

λ −Xν
,λY

λ).

Recall that

T (η, Y ) = T µν∂µ ⊗ dxν(ηλdxλ, Y γ∂γ)
= T µνηλY

γ∂µ ⊗ dxν(dxλ, ∂γ)
= T µνηλY

γδλµδ
ν
γ

= T λνηλY
ν .

Returning to our Lie derivative,

(LXT )(η, Y ) = Xµ(T λν,µηλY ν + T λνηλ,µY
ν + T λνηλY

ν
,µ)

− T µν(ηµ,λXλ + ηλX
λ
,µ)Y ν − T µνηµ(Y ν

,λX
λ −Xν

,λY
λ)

= T λν,µX
µηλY

ν + T µνX
ν
,ληµY

λ − T µνXλ
,µηλY

ν .

This can be written as

(LXT )µνηµY
ν = T µν,λX

ληµY
ν + T µλX

λ
,νηµY

ν − T λνXµ
,ληµY

ν .

This is true for all η, Y , so

(LXT )µν = T µν,λX
λ + T µλX

λ
,ν − T λνXµ

,λ.
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Claim. LX and d commute, i.e.

LXdf = d(LXf).

Proof.
LX(df(Y )) = (LXdf)(Y ) + df(LXY ),

therefore

(LXdf)(Y ) = LX(df(Y ))− df(LX)Y
= X(df(Y ))− (LXY )(f)
= X(df(Y ))− [X, Y ](f)
= X(Y (f))−X(Y (f)) + Y (X(f))
= Y (X(f))
= Y (LX(f))
= d(LXf)(Y ) ∀Y.

Since Y is arbitrary,
LXdf = d(LXf).

7 Linear Connections and Covariant
Differentiation

We require some concept of differentiation on a manifold that is chart indepen-
dent (covariant) and we would like a derivative operator whose components
transform like a tensor.

Notice, for example, that the partial derivative of a vector field does not
transform like a tensor.

∂V µ

∂xν
= V µ

,ν = ∂xν
′

∂xν
∂

∂xν′

{
∂xµ

∂xµ′
V µ′

}

= ∂xν
′

∂xν
∂xµ

∂xµ′
V µ′

,ν′ +
∂xν

′

∂xν
∂2xµ

∂xν′∂xµ′
V µ′ .

These are not the components of a ( 1
1 ) tensor.

In order to properly define a derivative operator on a manifold, one needs
to be able to compare vectors (or tensors) at different points. The machinery
that allows us to do this is the “linear connection”.
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7.1 Linear Connections
We define a linear connection ∇ to be a map which sends every pair of smooth
vector fields X, Y to a smooth vector field,

∇ : X, Y 7→ ∇XY,

satisfying

∇X(Y + Z) = ∇X(Y ) +∇X(Z),
∇fX+Y (Z) = f∇X(Z) +∇Y (Z).

It also satisfies
∇X(f) = X(f)

and the Liebniz rule

∇X(fY ) = f∇X(Y ) +X(f)Y.

∇XY is the covariant derivative of Y with respect to X.
It is important to note that ∇ is not a tensor since the Liebniz rule implies

it is not linear in Y . However, considered as a map from X 7→ ∇XY , i.e.

∇Y : X 7→ ∇XY

which is a linear map Tp (M)→ Tp (M) which takes a vector and outputs a
vector, ∇Y is a ( 1

1 ) tensor known as the covariant derivative of Y .

7.2 Covariant Derivative of a Vector Field
In an arbitrary basis {eµ}, ∇eµ is a map taking eµ to some vector field.

∇eµeν ≡ ∇µeν .

Since this is a vector field for each eµ, we may write ∇µeν as a linear combi-
nation of basis vectors

∇µeν = Γλνµeλ
where Γλνµ are known as the connection coefficients and are not the components
of a tensor.
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Since X = Xµeµ, Y = Y µeµ, we have

∇XY = (∇XY )µeµ ≡ (Y µ
;νX

ν)eµ
= ∇X(Y µeµ)
= (∇XY

µ)eµ + Y µ∇Xeµ

= X(Y µ)eµ + Y µ∇Xνeνeµ

= XνeνY
µeµ + Y µXν∇νeµ

= eνY
µXνeµ + Y µXνΓλµνeλ

= eνY
µXνeµ + Y λXνΓµλνeµ.

Therefore
(Y µ

;νX
ν)eµ = eν(Y µ)Xνeµ +XνY λΓµλνeµ.

This is true for all eµ and X, so

Y µ
;ν = eν(Y µ) + Y λΓµλν

= Y µ
,ν + Y λΓµλν

in a coordinate-induced basis.
To see how the Γλµνs transform under a coordinate transformation, we will

look at
∇eµ′

eν′ = Γλ′ν′µ′eλ′ = Γλ′ν′µ′Λα
λ′eα.

We also have

∇eµ′
eν′ = ∇Λαµ′eα(Λβ

ν′eβ)
= Λα

µ′∇α(Λβ
ν′)eβ + Λα

µ′Λβ
ν′∇αeβ

= Λα
µ′eα(Λβ

ν′)eβ + Λα
µ′Λβ

ν′Γλβαeλ.
= Λβ

µ′eβ(Λα
ν′)eα + Λλ

µ′Λβ
ν′Γαβλeα.

Together, this gives us

Γλ′ν′µ′Λα
λ′eα = Λβ

µ′
eβ(Λα

ν′)eα + Λλ
µ′Λβ

ν′Γαβλeα.

This is true for all eα and implies

Γλ′ν′µ′Λα
λ′ = Λβ

µ′
eβ(Λα

ν′) + Λλ
µ′Λβ

ν′Γαβλ.

Then
Γλ′ν′µ′Λα

λ′Λγ′
α = Λγ′

αΛβ
µ′
eβ(Λα

ν′) + Λγ′
αΛλ

µ′Λβ
ν′Γαβλ
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and since Λα
λ′Λγ′

α = δγ
′

λ′ , we conclude that

Γγ
′

ν′µ′ = Λγ′
αΛβ

µ′
eβ(Λα

ν′) + Λγ′
αΛλ

µ′Λβ
ν′Γαβλ.

The presence of the first term on the right hand side shows that Γλµν does not
transform like a tensor. In a coordinate basis, we have

Γγ
′

ν′µ′ = ∂xγ
′

∂xα
∂xβ

∂xµ′
∂

∂xβ

(
∂xα

∂xν′

)
+ ∂xγ

′

∂xα
∂xλ

∂xµ′
∂xβ

∂xν′
Γαβλ.

One can show that Y µ
;ν transforms like a ( 1

1 ) tensor.
Y µ

;ν = Y µ
,ν︸ ︷︷ ︸

not a tensor

+ ΓµλνY λ︸ ︷︷ ︸
not a tensor︸ ︷︷ ︸

a tensor

.

Lemma 7.2.1. Let ∇, ∇̃ be two connections onM. Then their difference
D(X, Y ) = ∇XY − ∇̃XY

is always a tensor.
Proof. We must show that the map D is multilinear. We have already seen
that ∇ is linear in X, so we must show linearity in Y .

D(X, fY ) = ∇X(fY )− ∇̃X(fY )
= f∇X(Y ) +X(f)Y − f∇̃X(Y )−X(f)Y
= f(∇XY − ∇̃XY )
= fD(X, Y ).

It is trivial to show that D(X, Y + Z) = D(X, Y ) +D(X,Z). Therefore D is
a tensor.

7.3 Covariant Derivative of Covectors and Tensors
We will use the fact that η(Y ) = ηνY

ν is a scalar.
∇µ(ηνY ν) = (∇µην)Y ν + ην∇µY

ν ,

so
(∇µην)Y ν = ∇µ(ηνY ν)− ην∇µY

ν

= ∂µ(ηνY ν)− ην(Y ν
,µ + ΓνλµY λ)

= ην,µY
ν + ηνY

ν
,µ − ηνY ν

,µ − ηνΓνλµY λ

= ην,µY
ν − ηνΓνλµY λ

= (ην,µ − ηλΓλνµ)Y ν .
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This is true for all Y ν , so

∇µην = ην,µ − ηλΓλνµ.

These are the components of the covariant derivative of a covector. Note the
negative sign; this was positive for vectors.

Example 7.3.1. We will compute the covariant derivative of a ( 1
1 ) tensor,

using the fact that T µνηµY ν is a scalar.

∇λ(T µνηµY ν) = (∇λT
µ
ν)ηµY ν + T µν(∇ληµ)Y ν + T µνηµ(∇λY

ν),

so

(∇λT
µ
ν)ηµY ν = ∇λ(T µνηµY ν)− T µν(∇ληµ)Y ν − T µνην(∇λY

ν)
= ∂λ(T µνηµY ν)− T µν(ηµ,λ − ηγΓγµλ)Y ν − T µνηµ(Y ν

,λ + ΓνγλY γ)
= T µν,ληµY

ν + T µνηµ,λY
ν + T µνηµY

ν
,λ

− T µνηµ,λY ν + T µνηγΓγµλY ν − T µνηµY ν
,λ − T µνηµΓνγλY γ

= T µν,ληµY
ν + T µνηγΓγµλT ν − T µνηµΓνγλY γ

= T µν,ληµY
ν + T γνηµΓµγλY ν − T µνηµΓγνλY ν

= (T µν,λ + T γνΓµγλ − T µνΓ
γ
νλ)ηµY ν .

This is true for all ηµ, Y ν , so

∇λT
µ
ν ≡ T µν;λ = T µν,λ + T γνΓµγλ − T µγΓ

γ
νλ.

These are the components of a ( 1
1 ) tensor.

In general, we have

∇λT
µ1µ2···

ν1ν2··· = T µ1µ2···
ν1ν2··· ,λ + Γµ1

αλT
αµ2···

ν1ν2··· + Γµ2
αλT

µ1α···
ν1ν2··· + · · ·

− Γαν1λT
µ1µ2···

αν2··· − Γαν2λT
µ1µ2···

ν1α··· − · · · .

8 Geodesics and Parallel Transport

8.1 Parallel Transport Along a Curve
We need a curved space generalisation of moving a vector along a path while
keeping the vector constant. In curved space, the result of parallel transporting
a vector (or tensor) from one point to another depends on the path taken.
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We say that a tensor T is parallel transported with respect to X a vector
if

∇XT = 0.
Let γ(τ) be some curve and φ ◦ γ = {xµ(τ)} be the image of γ in Rn.

Then T is parallel transported along the curve γ if ∇XT = 0 holds, with X
being the tangent vector to the curve, i.e.

X =
(

dxµ(τ)
dτ

)(
∂

∂xµ

)
.

Then ∇XT = 0 becomes

dxµ
dτ ∇µT ≡

DT

dτ = 0.

In particular, for a vector field V , this gives

dV µ

dτ + Γµβα
dxα
dτ V

β = 0,
(

dxν
dτ

∂V µ

∂xν
= dV µ

dτ

)

the parallel transport equation for a vector field.

8.2 The Geodesic Equation
A geodesic in flat space is a straight line, i.e. the shortest distance between
two points. Equivalently, geodesics are paths that parallel transport their own
tangent vector.

In curved space, we have not yet introduced the metric and therefore have
no well-defined notion of distance. We must use the second definition of a
geodesic.

The tangent vector to a path xµ(τ) is simply dxµ
dτ . These components must

satisfy the parallel transport equation, so

d2xµ

dτ 2 + Γµβα
dxα
dτ

dxβ
dτ = 0.

This is the geodesic equation. Note that we also have initial conditions
xµ(0) = p, ẋµ(0) = Xµ

p , so that locally there is a unique solution. This is not
true globally.
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8.3 Normal Coordinates
Given a point p ∈M and a chart {xµ}, we may find a new chart {x̂µ} such
that Γ̂µ(νλ)(p) = 0, i.e. the geodesics at p satisfy ¨̂xµ = 0 so that they are locally
linear functions of τ . These coordinates are connected by a unique geodesic,
which defines the normal neighbourhood of p.

To construct normal coordinates, we take xµ(p) = 0µ and set

x̂µ = xµ + 1
2Q

µ
νλx

νxλ

where Qµ
νλ = Qµ

(νλ) are constants. Let

|x|2 = |x1|2 + |x2|2 + · · ·+ |xn|2

and we note that x̂µ = xµ +O(|x|2). Thus

xµ = x̂µ − 1
2Q

µ
νλx

νxλ,

which may be solved iteratively to obtain

xµ = x̂µ − 1
2Q

µ
νλx̂

ν x̂λ +O(|x|2).

Therefore,

∂x̂µ

∂xγ
= δµγ +Qµ

γλx
λ + · · · ,

∂xµ

∂x̂γ
= δµγ −Qµ

γλx̂
λ + · · · .

Recall that Γ̂µνλ is related to Γµνλ by

Γ̂µνλ = ∂x̂µ

∂xα
∂xβ

∂x̂λ
∂2xα

∂xβ∂x̂ν
+ ∂X̂µ

∂xα
∂xγ

∂x̂λ
∂xβ

∂x̂ν
Γαβγ,

implying

Γ̂µνλ(p) = δµαδ
β
λ(−Qα

βν) + δµαδ
γ
λδ

β
νΓαβγ

∣∣∣
p

= −Qµ
λν + Γµνλ|p .

Choosing Qµ
νλ = Γµ(νλ)(p) gives

Γ̂µ(νλ)(p) = 0

as required.
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9 Curvature

9.1 Torsion
The torsion tensor is a ( 1

2 ) tensor field defined by

T (X, Y ) = ∇XY −∇YX − [X, Y ].

It is easy to check multilinearity (i.e. if it is a tensor). To obtain the components
of the torsion tensor, we introduce the commutator coefficients

[eν , eλ] = γµνλeµ.

Then

T (eν , eλ) = T µνλeµ

= ∇νeλ −∇λeν − [eν , eλ]
= Γµλνeµ − Γµνλeµ − γ

µ
νλeµ,

so

T µνλ = Γµλν − Γµνλ − γ
µ
νλ

= −2Γµ[νλ] − γ
µ
νλ,

completely antisymmetric in lower indices.

Theorem 9.1.1. The torsion on a manifold with a symmetric connection in
a coordinate-induced basis is zero.

Proof. A symmetric connection implies

Γµνλ = Γµλν , Γµ[νλ] = 0.

In a coordinate-induced basis, γµνλ = 0.2

We will usually assume zero torsion.

9.2 The Riemann Curvature Tensor
The Riemann curvature tensor is a ( 1

3 ) tensor field defined by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

2This is obvious, since ∂µ, ∂ν commute. See also assignment 1 question 9.
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where X, Y, Z are vector fields. To see that this is a tensor, we must check
multilinearity. Since it is antisymmetric in X, Y , we need only check X,Z.

R(X +W,Y )Z = ∇X+W∇YZ −∇Y∇X+WZ −∇[X+W,Y ]Z

= (∇X +∇W )∇YZ −∇Y (∇X +∇W )Z −∇[X,Y ]+[W,Y ]Z

= ∇X∇YZ +∇W∇YZ −∇Y∇XZ −∇Y∇WZ

−∇[X,Y ]Z −∇[W,Y ]Z

= R(X, Y )Z +R(W,Y )Z.

It is trivial to show that R(X, Y )(Z +W ) = R(X, Y )Z +R(X, Y )W .

R(fX, Y )Z = ∇fX∇YZ −∇Y∇fXZ −∇[fX,Y ]Z

= f∇X∇YZ −∇Y (f∇XZ)−∇f [X,Y ]−Y (f)XZ

= f∇X∇YZ − f∇Y∇XZ − Y (f)∇XZ − f∇[X,Y ]Z + Y (f)∇XZ

= fR(X, Y )Z,

similarly for R(X, Y )(fZ).
To compute the components of the Riemann curvature tensor, we have

R(eν , eλ)eρ = Rµ
ρνλeµ

= ∇ν∇λeρ −∇λ∇νeρ −∇[eν ,eλ]eρ

= ∇ν(Γµρλeµ)−∇λ(Γµρνeµ)−∇γµ
νλ
eµeρ

= (∇νΓµρλ)eµ + Γµρλ∇νeµ − (∇λΓµρν)eµ − Γµρν∇λeµ − γµνλ∇µeρ

= eν(Γµρλ)eµ + ΓµρλΓαµνeα − eλ(Γµρν)eµ − ΓµρνΓαµλeα − γ
µ
νλΓαρµeα

= eν(Γµρλ)eµ + ΓαρλΓµανeµ − eλ(Γµρν)eµ − ΓαρνΓ
µ
αλeµ − γανλΓµραeµ.

This is true for all eµ, implying

Rµ
ρνλ = eν(Γµρλ) + ΓαρλΓµαν − eλ(Γµρν)− ΓαρνΓ

µ
αλ − γανλΓµρα,

the components of the Riemann curvature tensor.
In a coordinate induced basis, we have

(eν → ∂ν), (γανλ → 0),
Rµ

ρνλ = Γµρλ,ν − Γµρν,λ + ΓαρλΓµαν − ΓαρνΓ
µ
αλ,

the components of the Riemann curvature tensor in a coordinate-induced
basis.

This is important in general relativity, as curvature dictates how particles
move.
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Theorem 9.2.1 (The Ricci Identity). Let Xµ be the components of X with
respect to a coordinate-induced basis. We denote

Xµ
;νλ = ∇λ∇νX

µ.

The Ricci identity states that, for a symmetric connection,

Xµ
;νλ −Xµ

;λν = −Rµ
ρνλX

ρ.

Proof.
∇νX

µ = Xµ
;ν = Xµ

,ν + ΓµρνXρ,

Xµ
;νλ = ∇λ(Xµ

,ν + ΓµρνXρ)
= ∂λ(Xµ

,ν + ΓµρνXρ) + Γµαλ(Xα
,ν + ΓαρνXρ)− Γβνλ(Xµ

,β + ΓµρβXρ)
= Xµ

,νλ + Γµρν,λXρ + ΓµρνXρ
,λ + ΓµαλXα

,ν + ΓµαλΓαρνXρ

− ΓβνλXµ
,β − ΓβνλΓ

µ
ρβX

ρ

= Xµ
,νλ + Γµρν,λXρ + ΓµαλΓαρνXρ − ΓβνλΓ

µ
ρβX

ρ

+ ΓµρνXρ
,λ + ΓµαλXα

,ν − ΓβνλXµ
,β,

Xµ
;λν = Xµ

,λν + Γµρλ,νXρ + ΓµανΓαρλXρ − ΓβλνΓ
µ
ρβX

ρ

+ ΓµρλXρ
,ν + ΓµανXα

,λ − ΓβλνXµ
,β,

Xµ
;νλ −Xµ

;λν = Γµρν,λXρ − Γµρλ,νXρ + ΓµαλΓαρνXρ − ΓµανΓαρλXρ

= −Rµ
ρνλX

ρ.

In flat space, the covariant derivative becomes the derivative ( ; = , ), implying
νλ would commute. Hence R = 0 and there is no curvature in flat space.

Recall that for the torsion, T ,

Γµνλ = Γµλν
[eν , eλ] = 0

}
⇒ T = 0.
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9.3 Geometric Interpretation of the Riemann Tensor
We set up a similar construction to that of §6.3

p

r

q

u

ds

dt

ds

dt

XY

We parallel transport a vector Z along integral curves of vector fields X
and Y where [X, Y ] = 0, i.e. the curve is a closed infinitesimal quadrilateral.

We work in normal coordinates so that Γµνλ(p) = 0.
Along pr we have that ∇XZ = 0, implying

dZµ

ds + ΓµνλZνXλ = 0,

d2Zµ

ds2 = − d
ds(ΓµνλZνXλ)

= −(ΓµνλZνXλ),ρ
dxρ
ds

= −(ΓµνλZνXλ),ρXρ.

Note that

(ΓµνλZνXλ),ρ = Γµνλ,ρZνXλ + ΓµνλZν
,ρX

λ + ΓµνλZνXλ
,ρ

= Γµνλ,ρZνXλ.

Taylor expanding Zµ
r around Zµ

p ,

Zµ
r = Zµ

p +
(

dZµ

ds

)
p

ds+ 1
2

(
d2Zµ

ds2

)
p

ds2 + · · ·
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and note that dZµ
ds = 0 in normal coordinates. Further,

Zµ
u = Zµ

r +
(

dZµ

dt

)
r

dt+ 1
2

(
d2Zµ

dt2

)
r

dt2 + · · ·

= Zµ
p + 1

2

(
d2Zµ

ds2

)
p

ds2

+
(dZµ

dt

)
p

+
(

d
dt

dZµ

ds ds
)
p

+ · · ·
 dt

+ 1
2

(
dZµ

dt2

)
p

dt2 + · · ·

= Zµ
p + 1

2

(
d2Zµ

ds2

)
p

ds2 +
(

d
dt

dZµ

ds

)
p

ds dt+ · · ·

= Zµ
p −

1
2(Γµνλ,ρZνXλXρ)ds2 − (Γµνλ,ρZνY λXρ)pds dt

− 1
2(Γµνλ,ρZνY λY ρ)pdt2 + · · · .

Parallel transporting Z in the other direction pqu gives

Zµ
u = Zµ

p −
1
2(Γµνλ,ρZνY λY ρ)pdt2 − (Γµνλ,ρZνXλY ρ)pdsdt

− 1
2(Γµνλ,ρZνXλXρ)pds2 + · · · .

The difference represents the change in Z around pruqp.

∆Zµ = −(Γµνλ,ρZν)p(Y λXρ −XλY ρ)pds dt+ · · ·
= (Γµνλ,ρ − Γµνρ,λ)pXλ

p Y
ρ
p Z

ν
pds dt+ · · ·

= (Rµ
νρλX

λY ρZν)pds dt+ · · ·

(since terms like ΓΓ vanish in normal coordinates). Therefore

Rµ
νρλX

λY ρZν = lim
ds→0
dt→0

(
∆Z
ds dt

)
.

R(X, Y )Z measures the change in Z after parallel transporting around a
closed quadrilateral spanned by the vector fields X and Y .

9.4 Geodesic Deviation
We let γ1, γ2 be neighbouring integral curves of a vector field X which are
parameterised by t. We let {σt} be curves parameterised by s intersecting γ1
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and γ2 at “time” t. Let Z be the tangent vector to σt such that s = 0 on γ1
and s = 1 on γ2.

σt

σt+dt

γ1 γ2

Z

X

s = 0

s = 0

s = 1

s = 1

Z is a vector pointing from one integral curve to another. Since the
quadrilateral is closed, we have

[X,Z] = 0

and Z is known as a connecting vector to the curves.

Theorem 9.4.1. Assuming the torsion vanishes, let X be tangent to a
congruence of geodesics and let Z be a connecting vector. Then the acceleration
of Z is given by

∇X∇XZ = R(X,Z)X.
This is the geodesic equation.

Proof. Vanishing torsion gives us

T (X,Z) = ∇XZ −∇ZX − [X,Z]︸ ︷︷ ︸
0

= 0 ⇒ ∇XZ = ∇ZX.

Then (as ∇XX = 0)

∇X∇XZ = ∇X∇ZX

= R(X,Z)X +∇Z∇XX +∇[X,Z]X

= R(X,Z)X.
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The relative acceleration between two neighbouring geodesics is proportional
to the curvature.

In component form, we have

D2Zµ

dt2 = (XνZµ
;ν);λX

λ

= Rµ
νλρX

νXλZρ.

This equation gives us information about Rµ
(νλ)ρ, since XνXλ is symmetric

in (ν, λ).

9.5 Symmetries of the Riemann Tensor
Recall that in a coordinate-induced basis,

Rµ
ρνλ = Γµρλ,ν − Γµρν,λ + ΓαρλΓµαν − ΓαρνΓ

µ
αλ.

Therefore Rµ
ρνλ = −Rµ

ρλν , or

Rµ
ρ(νλ) = 0

(assuming T = 0, symmetric connection and coordinate-induced basis).
We also have

Rµ
νλρ +Rµ

ρνλ +Rµ
λρν = 0.

To see this, we introduce normal coordinates at a point p, where Γµνλ(p) = 0.
Then (at p)

Rµ
νλρ = Γµνρ,λ − Γµνλ,ρ,

Rµ
ρνλ = Γµρλ,ν − Γµρν,λ,

Rµ
λρν = Γµλν,ρ − Γµλρ,ν .

Adding gives the desired result. This is true in arbitrary coordinates. This
symmetry may be written concisely as

Rµ
[ρνλ] = 0.

We further have

Rµ
ρνλ = 2

3(Rµ
(ρν)λ −Rµ

(ρλ)ν).

40



To prove this, using normal coordinates the right hand side is

2
3

(1
2 [Rµ

ρνλ +Rµ
νρλ]−

1
2[Rµ

ρλν +Rµ
λρν ]

)
= 1

3
(
Γµρλ,ν − Γµρν,λ + Γµνλ,ρ − Γµνρ,λ − Γµρν,λ + Γµρλ,ν − Γµλν,ρ + Γµλρ,ν

)
= 1

3
(
3Γµρλ,ν − 3Γµρν,λ

)
= Rµ

ρνλ.

Additionally, we have the Bianchi identities

Rµ
ρ[νλ;γ] = 0,

equivalently
Rµ

ρνλ;γ +Rµ
ργν;λ +Rµ

ρλγ;ν = 0.
Adopting normal coordinates, then schematically we have

R = ∂Γ− ∂Γ + ΓΓ− ΓΓ,
∂R = ∂∂Γ− ∂∂Γ + ∂Γ · Γ + Γ · ∂Γ− ∂Γ · Γ− Γ · ∂Γ

= ∂∂Γ− ∂∂Γ,

implying that

Rµ
ρνλ;γ = Γµρλ,νγ − Γµρν,λγ,

Rµ
ρνλ;γ +Rµ

ργν;λ +Rµ
ργλ;ν = Γµρλ,νγ − Γµρν,λγ + Γµρν,γλ

−Γµργ,νλ + Γµργ,λν − Γµρλ,γν
= 0

and is true for all charts.

10 The Metric

10.1 The Metric Tensor
A metric tensor g is a ( 0

2 ) tensor such that

(i) the magnitude of the vector X is |g(X,X)|
1
2 ,
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(ii) the angle between two vectors X, Y is

cos−1

 g(X, Y )
|g(X,X)|

1
2 |g(Y, Y )|

1
2

 , g(X,X) 6= 0, g(Y, Y ) 6= 0

and if g(X, Y ) = 0, X, Y are orthogonal,

(iii) the length of a curve whose tangent vector is X between t1 and t2 is∫ t2

t1
|g(X,X)|

1
2 dt.

The metric gives the equivalent of the dot product, which is needed to define
lengths of vectors and angles between them.

In a particular basis {eµ}, the metric tensor is written as

g(eµ, eν) = gµν = gνµ.

The metric is of fundamental importance in general relativity since it gives
the interval between two spacetime points xµ and xµ + dxµ, which we call
the line element.

ds2 = gµνdxµ ⊗ dxν = gµνdxµdxν .

Example 10.1.1. The line element in Euclidean space in Cartesian coordi-
nates is

ds2 = dx⊗ dx+ dy ⊗ dy + dz ⊗ dz
= dx2 + dy2 + dz2

= δijdxidxj, i, j = 1, 2, 3.

δij =
( 1 0 0

0 1 0
0 0 1

)
is the 3-dimensional Euclidean metric in Cartesian coordinates.

In polar coordinates, which are related to Cartesian coordinates by

x = r cosφ sin θ, y = r sinφ sin θ, z = r cos θ,

the 1-forms dxµ transform as

dxi = ∂xi

∂xi′
dxi′ .

dx = ∂x

∂r
dr + ∂x

∂θ
dθ + ∂x

∂φ
dφ

= sin θ cosφ dr + r cos θ cosφ dθ − r sin θ sinφ dφ,
dy = sin θ sinφ dr + r cos θ sinφ dθ + r sin θ cosφ dφ,
dz = cos θ dr − r sin θ dθ.
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Then

ds2 = dx2 + dy2 + dz2

= dr2 + r2dθ2 + r2 sin2 θ dφ2

= gi′j′dxi
′dxj′ ,

so the metric in polar coordinates is

gi′j′ =

1 0 0
0 r2 0
0 0 r2 sin2 θ

 .
The number of positive eigenvalues minus the number of negative eigen-

values gives the signature of the metric. This is basis independent.
If the absolute value of the signature is strictly less than the dimension of

the manifold, then the manifold is said to be pseudo-Riemannian. (If they
are equal, it is Euclidean or Riemannian.)

For example, for M4 (4-dimensional Minkowski spacetime) in Cartesian
coordinates,

gµν = ηµν = diag(−1, 1, 1, 1).
The signature is therefore 2 and M4 is a pseudo-Riemannian manifold. (In
general relativity, we will be exclusively concerned with pseudo-Riemannian
manifolds.)

10.2 The Inverse Metric
g is a non-degenerate map, since

g(X, Y ) = 0 ∀Y ⇒ X = 0.

Therefore g has an inverse whose components are gµν , the components of a
( 0

2 ) tensor satisfying

gµνgνλ = δµλ (g · g−1 = 1).

The metric and its inverse define an isomorphism between the tangent space
and dual space,

Tp (M) ∼= T ∗p (M) , Xµ 7→ gµνX
ν ∈ T ∗p (M) ,

wµ 7→ gµνwν ∈ Tp (M) ,
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i.e.

Xµ = gµνX
ν “lowering the index”,

wµ = gµνwν “raising the index”.

Metric components are used to raise and lower indices of a vector and covector.
This naturally generalises to tensors, e.g.

gνγT µγλρ = T µνλρ.

10.3 The Lorentzian Signature
A Lorentzian signature is of the type (−,+,+,+) (or (+,+,+,−)) where the
negative eigenvalue is associated with the temporal direction and the positive
eigenvalues are associated with the spatial directions.

We can always choose a basis at a point p such that the metric at p looks
Minkowskian, i.e. gµν = diag(−1, 1, 1, 1) at p. (Gravity doesn’t exist locally.)

We say that a vector at p, Xp, is

timelike if g(Xp, Xp) < 0,
null if g(Xp, Xp) = 0,
spacelike if g(Xp, Xp) > 0.

Similarly, we say that the interval is timelike, null or spacelike depending on
whether it is negative, zero or positive respectively.

(Using (+,−,−,−), all of these are backwards.)

10.4 Metric Connections & Christoffel Symbols
Up until now the connection has been arbitrary (although some results relied
on a symmetric connection), satisfying

∇µeν = Γλνµeλ.

However, if the manifold is endowed with a metric there is a unique choice
for the connection—the metric or Levi–Civita connection.

Theorem 10.4.1 (The fundamental theorem of Riemannian geometry). If a
manifold possesses a metric g, there exists a unique, torsion-free connection
such that ∇g = 0.
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Proof. Assuming ∇g = 0, we prove existence and uniqueness by explicitly
constructing the unique connection. Let X, Y, Z be vector fields. Then g(Y, Z)
is a scalar and X(g(Y, Z)) = ∇Xg(Y, Z)

= (∇Xg)(Y, Z) + g(∇XY, Z) + g(Y,∇XZ)
= g(∇XY, Z) + g(Y,∇XZ).

Similarly,

Y (g(Z,X)) = g(∇YZ,X) + g(Z,∇YX),
Z(g(X, Y )) = g(∇ZX, Y ) + g(X,∇ZY ).

Combining these,

1
2
(
X(g(Y, Z)) + Y (g(Z,X))− Z(g(X, Y ))

)
= 1

2g(∇XY, Z) + 1
2g(Y,∇XZ)

+ 1
2g(∇YZ,X) + 1

2g(Z,∇YX)

− 1
2g(∇ZX, Y )− 1

2g(X,∇ZY )

= 1
2g(Y,∇XZ −∇ZX) + 1

2g(X,∇YZ −∇ZY )

+ 1
2g(Z,∇YX) + 1

2g(∇XY, Z)

since g is a bilinear form. Assuming vanishing torsion,

T (X, Y ) = ∇XY −∇YX − [X, Y ] = 0
⇒ ∇XY −∇YX = [X, Y ].

Then the expression above equals

1
2g(Y, [X,Z]) + 1

2g(X, [Y, Z]) + 1
2g(∇XY, Z) + 1

2g(Z,∇XY − [X, Y ]),

giving the Koszul formula

g(∇XY, Z) = 1
2
[
X(g(Y, Z)) + Y (g(Z,X))− Z(g(X, Y ))

+ g(Z, [X, Y ])− g(Y [X,Z])− g(X, [Y, Z])
]

which defines the unique connection (as the metric is non-degenerate).
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To determine the components, we recall that [eµ, eν ] = γλµνeλ and take

g(∇µeν , eλ) = g(Γγνµeγ, eλ) = Γγνµgγλ

= 1
2
[
eµ(gνλ) + eν(gµλ)− eλ(gµν)

+ g(eλ, [eµ, eν ])− g(eν , [eµ, eλ])− g(eµ, [eν , eλ])
]

= 1
2
[
eµ(gνλ) + eν(gµλ)− eλ(gµν) + γρµνgλρ − γ

ρ
µλgνρ − γ

ρ
νλgµρ

]
.

In a coordinate-induced basis the commutator vanishes, so

Γγνµgγλ = 1
2(gνλ,µ + gµλ,ν − gµν,λ).

Multiplying by the inverse metric,

Γγνµgγλgρλ = Γγνµδργ

= 1
2g

ρλ(gνλ,µ + gµλ,ν − gµν,λ),

so
Γρµν = Γρνµ = 1

2g
ρλ(gνλ,µ + gµλ,ν − gµν,λ).

This is the Christoffel symbol. It is sometimes written as

Γλµν = gλρ[µν,ρ].

If ∇g = 0, we say that the metric is compatible with the connection.

Example 10.4.1. We will compute the Christoffel symbols for the 3D flat
space metric in Cartesian and polar coordinates. In the Cartesian case,

gij = diag(1, 1, 1) ⇒ Γijk = 0

since they involve terms like gij,k. In polar coordinates

gij = diag(1, r2, r2 sin2 θ), ds2 = dx2 + dy2 + dz2

= dr2 + r2dθ2 + r2 sin2 θ dφ2

(see Example 10.1.1). The Christoffel symbols with an upper r are given by

Γrij = 1
2g

rr(gri,j + gjr,i − gij,r),

so
Γrθθ = −1

2g
rrgθθ,r = −r, Γrrr = 0, Γrφφ = −r sin2 θ
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and Γrrθ = Γrrφ = Γrθφ = 0. For Γθij = 1
2g

θθ(gθi,j + gjθ,i − gij,θ),

Γθrr = 0, Γθθθ = 0, Γθφφ = − sin θ cos θ,

Γθrθ = 1
r
, Γθrφ = 0, Γθθφ = 0.

Similarly, the Γφij terms are

Γφrr = 0, Γφθθ = 0, Γφφφ = 0,

Γφrθ = 0, Γφrφ = 1
r
, Γφθφ = cot θ.

10.5 Geodesics Revisited
Now that we have a metric, we have an appropriated notion of the length of
a curve. If X is the tangent vector to a curve, then the components of X are
dxµ
ds and the length of the curve is∫

ds
√
|g(X,X)| =

∫
ds
√∣∣∣gµν dxµ

ds
dxν
ds

∣∣∣.
Let us choose our parameterisation to be τ , such that

gµν
dxµ
ds

dxν
ds = gµνẊ

µẊν =


−1 Ẋµ timelike

0 Ẋµ null
1 Ẋµ spacelike

.

In this case, τ is proper time for Ẋµ timelike and proper length for Ẋµ

spacelike.

S =
∫

dτ
√
εgµνẊµẊν , ε =

{
−1 timelike

1 spacelike .

We extremise this length via the action principle. For timelike curves, we
want to maximise the proper time.3

S =
∫

dτ L.

Take ε = 1. Then
L = L(Xµ, Ẋµ) =

√
gµνẊµẊν

and
δS = 0 ⇒ d

dτ

(
∂L

∂ẋµ

)
− ∂L

∂xµ
= 0.

3Timelike curves cannot be minima of proper time, since they are infinitesimally close
to null curves (of zero proper time).
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This will give us the geodesic equation. We can read off the Christoffel symbols
by comparing this to the normal geodesic equation.

We could use some other Lagrangian f(L), where f is a continuous non-
constant function. Then L and f(L) satisfy the same Euler–Lagrange equation.
We will use this to forget about the square root. Instead, take L = gµνẊ

µẊν .
gµν depends on X only.

∂L

∂ẋλ
= gµνδ

µ
λẊ

ν + gµνẊ
µδνλ

= gλνẊ
ν + gµλẊ

µ

= 2gνλẊν

and
∂L

∂xλ
= gµν,λẊ

µẊν .

Therefore,

d
dτ (2gνλẊν)− gµν,λẊµẊν = 0,

2dgνµ
dτ Ẋν + 2gνλẌν − gµν,λẊµẊν = 0,

2∂gνλ
∂xµ

ẊµẊν + 2gνλẌν − gµν,λẊµẊν = 0,

2gνλẌν + gνλ,µẊ
µẊν + gµλ,νẊ

µẊν − gµν,λẊµẊν = 0,

gνλẌ
ν + 1

2 (gλµ,ν + gνλ,µ − gµν,λ) ẊµẊν = 0.

Multiplying by gλρ gives

δρνẌ
ν + 1

2g
λρ (gλµ,ν + gνλ,µ − gµν,λ) ẊµẊν = 0,

Ẍρ + ΓρµνẊµẊν = 0,

the geodesic equation. Similarly for timelike curves—both definitions are
equivalent provided we parameterise using proper time.

10.6 Affine Parameters
Suppose we change the parameterisation from τ to s(τ). Then the geodesic
equation becomes(

d2xµ

ds2 + Γµνλ
dxµ
ds

dxν
ds

)(
ds
dτ

)2

+
(

d2s

dτ 2

)
dxµ
ds = 0,
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as
d2xµ

dτ 2 = d
dτ

(
dxµ
ds

ds
dτ

)

= d2xµ

ds2

(
ds
dτ

)2

+ d2s

dτ 2
dxµ
ds .

We retrieve our standard form of the geodesic equation iff
ds
dτ 6= 0, d2s

dτ 2 = 0 ⇒ s(τ) = aτ + b,

a, b constants, a 6= 0, so we are free to choose origin and scale. Such parame-
terisations are known as affine parameters. They are related to proper time
or proper length in a linear way.

10.7 Metric Curvature
AssumingM has a metric, we can lower the upper index on the Riemann
tensor. This gives us

Rµνλρ = gµγR
γ
νλρ,

the metric curvature tensor. The previously mentioned symmetries still hold,
i.e.
A. Rµν(λρ) = 0,

B. Rµ[νλρ] = 0, etc.
The curvature tensor satisfies some additional symmetries when the manifold
has a metric:
C. R(µν)λρ = 0,

D. Rµνλρ = Rλρµν .
How many independent components does Rµνλρ have? Symmetries A, C and
D imply that we can treat the curvature tensor like

R[µν][λρ],

a symmetric m×m matrix with antisymmetric pairs of indices µν and λρ
treated as individual indices. A symmetric m×m matrix has 1

2m(m+ 1) inde-
pendent components, but each of these components are n× n antisymmetric
matrices with 1

2n(n− 1) components, so
1
2m(m+ 1) = 1

8(n4 − 2n3 + 3n2 − 2n).
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Thinking about symmetry B,

R[µνλρ] = 1
4!
(
3!Rµ[νλρ] + 3!Rρ[µνλ] + 3!Rλ[ρµν] + 3!Rν[λρµ]

)
= 3!

4!
(
Rµ[νλρ] +Rρ[µνλ] +Rλ[ρµν] +Rν[λρµ]

)
.

Therefore Rµ[νλρ] = 0 implies R[µνλρ] = 0, so imposing R[µνλρ] = 0 is equivalent
to imposing Rµ[νλρ] = 0 once the other symmetries have been imposed.

A totally antisymmetric 4-index tensor has 1
4!n(n − 1)(n − 2)(n − 3)

independent components. The total number of independent components is
therefore

1
8(n4 − 2n3 + 3n2 − 2n)− 1

4!n(n− 1)(n− 2)(n− 3) = 1
2n

2(n2 − 1).

Gravity will be described by this curvature tensor.

1D 0 independent components
2D 1 independent component ~ only calculate R1212
3D 6 independent components
4D 20 independent components

A manifoldM is locally flat if there exists a chart such that a line element
in this chart is

ds2 = ε1(dx1)2 + · · ·+ εn(dxn)2, εi = ±1, i = 1, . . . , n.

In this case, Rµνλρ = 0. Conversely, if Rµνλρ = 0 we can show that there exists
a chart such that ds2 is as above and we say the metric is flat.

Flat metric ⇔ Rµνλρ = 0.

Contracting the first and third indices of the Riemann curvature tensor
defines the Ricci curvature tensor

Rµν = Rγ
µγν .

Contracting with the metric yields the Ricci curvature scalar

R = gµνRµν .

The Einstein curvature tensor is defined by

Gµν = Rµν −
1
2gµνR.
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(Gµν = 0 is a differential equation for components of the metric. Solving this
gives vacuum solutions of Einstein’s equations.)

Recall the Bianchi identities, Rµ
ν[λρ;γ] = 0 or

Rµ
νλρ;γ +Rµ

νγλ;ρ +Rµ
νργ;λ = 0.

Contracting over µ and ρ,

Rµ
νλµ;γ +Rµ

νγλ;µ +Rµ
νµγ;λ = −Rνλ;γ +Rµ

νγλ;µ +Rνγ;λ = 0,

the “once-contracted Bianchi identities”. Multiplying by gνλ,

−R;γ +
(
gνλRµ

νγλ

)
;µ

+Rλ
γ;λ = 0,

and by gνγ,

−(gνγR);γ +Rµν
;µ +Rλν

;λ = 0,
−(gνγR);γ + 2Rνγ

;γ = 0,
Gνγ

;γ = 0,

the twice-contracted Bianchi identities. The Einstein tensor is conserved.
Finally, we introduce the Weyl tensor defined by

Cµνλρ = Rµνλρ − 2
n−2(gµ[λRρ]ν − gν[λRρ]µ) + 2

(n−1)(n−2)Rgµ[λgρ]ν ,

also called the “conformal tensor”. We can show that the Weyl tensor satisfies
all the same symmetries, for example

Cµνλρ = C[µν][λρ], Cµνλρ = Cλρµν , Cµ[νλρ] = 0.

We can further show that all possible contractions with the metric vanish,

gµλCµνλρ = gµνCµνλρ = gµρCµνλρ = · · · = 0.

Also, the Weyl tensor is invariant under conformal transformations of the
metric

gµν → Ω2gµν .

11 Isometries and Killing Vectors

11.1 Lie Derivatives Revisited
The expression for the Lie derivative of an arbitrary ( rl ) tensor field is

LV T µ1···µr
ν1···νl = V λ∂λT

µ1···µr
ν1···νl

− (∂λV µ1)T λµ2···µr
ν1···νl − (∂λV µ2)T µ1λ···µr

ν1···νl − · · ·
+ (∂ν1V

λ)T µ1···µr
λν2···νl + (∂ν2V

λ)T µ1···µr
ν1λ···νl + · · · .
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This involves partial derivatives rather than covariant derivatives and is not
manifestly tensorial. We can in fact replace the partial derivatives with the
covariant derivative (with a symmetric connection) since all connection terms
vanish.

LV T µ1···µr
ν1···νl = V λ∇λT

µ1···µr
ν1···νl − (∇λV

µ1)T λµ2···µr
ν1···νl − · · ·

+ (∇ν1V
λ)T µ1···µr

λν2···νl + · · · .
Example 11.1.1. We will show that the two representations of a Lie deriva-
tive of a vector field are equivalent.

LVXµ = ∇λX
µV λ −∇λV

µXλ

= (Xµ
,λ + ΓµνλXν)V λ − (V µ

,λ + ΓµνλV ν)Xλ

= Xµ
,λV

λ − V µ
,λX

λ + ΓµνλXνV λ − ΓµνλV νXλ

= Xµ
,λV

λ − V µ
,λX

λ,

which is the manifestly non-tensorial representation of the Lie derivative. (It’s
still a tensor, but just involves partial derivatives.)
The manifestly tensorial definition is often more useful.

11.2 Lie Derivative of the Metric and Isometries
The Lie derivative of the metric tensor is

LV gµν = V λ(∇λgµν) + (∇µV
λ)gλν + (∇νV

ν)gµλ
= (∇µV

λ)gλν + (∇νV
ν)gµλ

= ∇µ(V λgλν) +∇ν(V νgµλ)
= ∇µVν +∇νVµ

= 2∇(µVν).

We say a diffeomorphism h is a symmetry of some tensor T if the tensor
is invariant after being pulled back under h,

h∗T = T.

Suppose we have a continuous one-parameter family of symmetries ht gener-
ated by a vector field V µ. Then invariance under this symmetry implies that
the tensor does not change along integral curves of V µ, i.e. LV T = 0.

Symmetric diffeomorphisms of the metric tensor are known as isometries.
Suppose that V µ generates a one-parameter family of isometries. Then

LV gµν = 2∇(µVν) = 0 ⇔ ∇(µVν) = 0. (Killing’s equation)
Solutions V µ are known as Killing (co-)vectors.
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12 p-Forms

12.1 Space of p-Forms
A differential p-form is a

(
0
p

)
tensor which is completely antisymmetric. For

example, a 2-form is an antisymmetric ( 0
2 ) tensor satisfying

T (X, Y ) = −T (Y,X)

(for X, Y vector fields) or, in a coordinate-induced basis,

T = Tµνdxµ ⊗ dxν

for Tµν = −Tνµ.

Lemma 12.1.1. If T (X,X) = 0 ∀X then T is antisymmetric.

Proof. Let X = Y + Z. Then

T (Y + Z, Y + Z) = T (Y, Y ) + T (Y, Z) + T (Z, Y ) + T (Z,Z)
= T (Y, Z) + T (Z, Y ) = 0

and hence T is antisymmetric.

The converse is obviously true: if T is antisymmetric then T (X,X) = 0 ∀X.
Repeated indices in a p-form mean certain death.

As an aside, consider the pull-back of a tensor. If T is a ( 0
r ) tensor, what

is h∗T? For a ( 0
1 ) tensor,

h∗η(X) = η(h∗(X)).

This has an obvious generalisation to

h∗T (X1, . . . , Xr) = T (h∗X1, . . . , h∗Xr).

Consider the number of linearly independent components. For p = 2 and
dimension n, we have

T = Tµνe
µ ⊗ eν , µ, ν = 1, . . . , n.

For n = 2,

Tµν = −Tνµ =
(
T11 T12
T21 T22

)
=
(

0 T12
−T12 0

)
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as antisymmetry implies T11 = T22 = 0. Thus Tµν =
(

0 k
−k 0

)
. So for p = 2,

n = 2, there is one independent component. For p = 2, n = 3, we would have
n(n−1)

2 = 3 independent components.
In general, the number of linearly independent components of a p-form in

an n-dimensional space is (
n
p

)
= n!
p!(n− p)!

for n ≥ p. For p > n, all components are zero.
We denote the space of all p-forms by Λp and the space of all p-form fields

over a manifoldM by Λp(M).
Note that a 0-form is a function and a 1-form a covector field.

12.2 Wedge Products
Given a p-form P and a q-form Q, we can form a (p+ q)-form known as the
wedge product P ∧Q by taking the antisymmetric tensor product.

For example, the wedge product of two 1-forms is

P ∧Q = P ⊗Q−Q⊗ P, P,Q ∈ T ∗(M).

Lemma 12.2.1. The set {eµ1 ∧ eµ2 ∧ · · · ∧ eµp} form a basis for Λp.

Proof. Clearly, eµ∧eµ = 0 by antisymmetry. Therefore there are n(n−1)(n−
2) · · · (n− (p− 1)) elements. However, these elements are antisymmetric so
that the number of independent components is

n(n− 1) · · · (n− (p− 1))
(n− p)! =

(
n
p

)
= dim(Λp).

Therefore {eµ1 ∧ · · · ∧ eµp} span Λp.
For linear independence, we consider

cµ1µ2···µpe
µ1 ∧ eµ2 ∧ · · · ∧ eµp(eν1 , eν2 , . . . , eνp)

= cµ1µ2···µp(eµ1 ⊗ eµ2 ⊗ · · · ⊗ eµp − eµ2 ⊗ eµ1 ⊗ · · · ⊗ eµp

+ all other permutations)(eν1 , eν2 , . . . , eνp)
= cµ1µ2···µp(δµ1

ν1 δ
µ2
ν2 · · · δ

µp
νp − δ

µ2
ν1 δ

µ1
ν2 · · · δ

µp
νp

+ all other permutations)
= cν1ν2···νp − cν2ν1···νp + all other permutations
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where 〈eµ, eν〉 = δµν . But cµ1µ2···µp = c[µ1µ2···µp], therefore

cµ1µ2···µpe
µ1 ∧ eµ2 ∧ · · · ∧ eµp(eν1 , eν2 , . . . , eνp) = p! cν1ν2···νp .

If the left hand side is zero, this implies

cµ1µ2···µp = 0.

Therefore {eµ1 ∧ · · · ∧ eµp} are linearly independent and form a basis for
Λp.

In a coordinate-induced basis, for example, we would have

{eµ1 ∧ · · · ∧ eµp} = {dxµ1 ∧ · · · ∧ dxµp} .

If T ∈ Λp, we write

T = 1
p!Tµ1···µpdxµ1 ∧ · · · ∧ dxµp

where the components Tµ1···µp = T[µ1···µp] are completely antisymmetric.
As an example, we will derive an explicit component form for the wedge

product of a p-form A and a q-form B.

(A ∧B)ν1···νp+q = (A ∧B)(∂ν1 , . . . , ∂νp+q)

= 1
p!Aµ1···µpdxµ1 ∧ · · · ∧ dxµp ∧ 1

q!Bµp+1···µp+qdxµp+1 ∧ · · · ∧ dxµp+q

(∂ν1 , . . . , ∂νp+q)

= 1
p!q!Aµ1···µpBµp+1···µp+qdx

µ1 ∧ · · · ∧ dxµp ∧ dxµp+1 ∧ · · · ∧ dxµp+q

(∂ν1 , . . . , ∂νp+q)

= 1
p!q!Aµ1···µpBµp+1···µp+q(dxµ1 ⊗ dxµ2 ⊗ · · · ⊗ dxµp+q

− dxµ2 ⊗ dxµ1 ⊗ · · · ⊗ dxµp+q

+ all other permutations)(∂ν1 , . . . , ∂νp+q)

= 1
p!q!Aµ1···µpBµp+1···µp+q(δµ1

ν1 δ
µ2
ν2 · · · δ

µp+q
νp+q − δ

µ2
ν1 δ

µ1
ν2 · · · δ

µp+1
νp+q

+ all other permutations)

= (p+ q)!
p!q! A[ν1···νpBνp+1···νp+q ].
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So, for example, if A and B are 1-forms, then

(A ∧B)µν = 3!
1!1!A[µBν]

= 21
2(AµBν − AνBµ) = AµBν − AνBµ.

Another property of the wedge product is

A ∧B = (−1)pqB ∧ A, A ∈ Λp, B ∈ Λq.

12.3 Exterior Derivative
We may define a map d known as the exterior derivative such that

d : Λp → Λp+1

where the components of d are appropriately normalised antisymmetric partial
derivatives.

(dA)µ1···µp+1 = (p+ 1)∂[µ1Aµ2···µp+1].

d satisfies the following properties:

(1) d : Λ0 → Λ1 (recall df =
(
∂F
∂xµ

)
dxµ, §3.3);

(2) d(A+B) = d(A) + d(B) ∀A ∈ Λp, B ∈ Λq;

(3) Liebniz rules: d(fA) = df ∧ A+ f ∧ dA,
d(A ∧B) = dA ∧B + (−1)pA ∧ dB;

(4) d2A = 0.

A heuristic explanation of (4) is that d2 is symmetric, while A is antisymmetric.
As an example, take η = xy dx+ y2dy.

dη = d(xy dx) + d(y2 dy)
= d(xy) ∧ dx+ xy d2x+ d(y2) ∧ dy + y2 d2y

= (y dx+ x dy) ∧ dx+ 2y dy ∧ dy
= x dy ∧ dx
= −x dx ∧ dy,

d2η = d(x dy) ∧ dx− x dy ∧ d2x

= dx ∧ dy ∧ dx+ x d2y ∧ dx
= 0.
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12.4 Closed and Exact Forms
Let A ∈ Λp. If dA = 0, we say that A is closed. We say that A is exact if
there exists a B ∈ Λp−1 such that A = dB.
Lemma 12.4.1 (Poincaré). If A is an exact p-form then A is closed.
Proof. Exact implies A = dB.

dA = d2B = 0,

therefore A is closed.

The converse is not necessarily true, although in topologically trivial space-
times it will be.

12.5 Hodge Duality
We must first introduce the Levi–Civita alternating symbol

ε̃µ1···µp =


+1 if µ1 · · ·µp is an even permutation of 1 · · · p
−1 if µ1 · · ·µp is an odd permutation of 1 · · · p

0 if any index is repeated
.

This does not transform like the components of a tensor, but rather like a
tensor density of weight −1 (see §13.1).

We can construct a well defined tensor by multiplying by an appropriate
scalar density. The Levi–Civita tensor is

εµ1···µp =
√
−gε̃µ1···µp ,

where g = det(gµν). We are assuming the manifold is Lorentzian and has a
metric.

The Hodge star operator is a map from p-forms to (n− p)-forms, defined
by

(?A)µ1···µn−p = 1
p!ε

ν1···νp
µ1···µn−pAν1···νp .

Note that this is metric dependent. Applying the Hodge star twice returns
plus or minus the original form,

? ?A = (−1)s+p(n−p)A,

where s is the number of minus signs in the eigenvalues of the metric.
Note that in 3D Euclidean space we have, for A, B 1-forms,

?(A ∧B)µ = εµ
νλAνBλ

which is the conventional cross product.
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Example 12.5.1 (Electromagnetism). Maxwell’s equations in tensor notation
are

∂µF
µν = Jν , (A)

∂ [µFνλ] = 0, (B)

where Fµν = −Fνµ. Equation B is most succinctly written as the closure of a
2-form,

dF = 0.
For topologically trivial spaces (such as Minkowski spacetime), closed implies
exact so that there is a 1-form A = Aµdxµ with

F = dA.

Aµ are the components of the vector potential.
Gauge invariance is now a consequence of the fact that F is invariant

under A→ A+ dλ.
Finally, equation A can be expressed as

d(?F ) = ?J.

13 Integration on Manifolds

13.1 Tensor Densities
We denote two charts by xµ and xµ̂ and we have

P µ
µ̂ = ∂xµ

∂xµ̂
, P µ̂

µ = ∂xµ̂

∂xµ

which are matrices satisfying P µ
ν̂P

ν̂
ρ = δµρ . We denote the determinant of P

by J = det(P µ
µ̂) 6= 0. Recall the transformation law (§3.5)

T µ̂ν̂ = P µ̂
µP

ν
ν̂T

µ
ν .

We say that Tµν is a ( 1
1 ) tensor density of weight w if it transforms like

Tµ̂ν̂ = J wP µ̂
µP

ν
ν̂T

µ
ν .

The product of an (mk ) tensor density of weight w1 and an ( nl ) tensor density
of weight w2 is an

(
n+m
k+l

)
tensor density of weight w1 + w2.

Claim 13.1.1.
√
−g is a scalar density of weight 1.
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Proof.
gµ̂ν̂ = P µ

µ̂P
ν
ν̂gµν , g = det(gµν),

ĝ = det(gµ̂ν̂)
= det(P µ

µ̂P
ν
ν̂gµν)

= det(P µ
µ̂) det(P ν

ν̂) det(gµν)
= J 2g.

Therefore ĝ is a scalar density of weight 2 and
√
−ĝ = J√−g, so √−g is a

scalar density of weight 1.

One can derive a covariant derivative of a tensor density, for example

∇µT
ν
λ = Tνλ,µ + ΓνρµT

ρ
λ − ΓρλµTνρ − wΓρρµTνλ.

In general, the covariant derivative of a tensor density need not be a tensor
density.

Another important example of a tensor density is the Levi–Civita alter-
nating symbol ε̃µ1···µn . One can show that4

ε̃µ̂1···µ̂n = J −1P µ1
µ̂1 · · ·P µn

µ̂n ε̃µ1···µn

and therefore is a tensor of weight −1.

13.2 Volume and Surface Elements
Recall that in Euclidean space, the area enclosed by two vectors at p, Xp and
Yp say, is given by

det
(
X1 X2

Y 1 Y 2

)
= X1Y 2 − Y 1X2.

Consider the wedge product dx1 ∧ dx2 acting on Xp, Yp.

(dx1 ∧ dx2)(Xp, Yp) = (dx1 ⊗ dx2)(Xp, Yp)− (dx2 ⊗ dx1)(Xp, Yp)
= dx1(Xp) dx2(Yp)− dx2(Xp) dx1(Yp)
= X1Y 2 −X2Y 1.

Hence, in R2 dx1 ∧ dx2 is called the area form. We note that we may rewrite
this as

dx1 ∧ dx2 = 1
2! ε̃µνdx

µ ∧ dxν .

4See Carroll’s notes (preposterousuniverse.com/grnotes/grnotes-two.pdf), with the
caveat J → J−1.
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Moving now to R3, we recall that the volume V enclosed by vectors
Xp, Yp, Zp is given by

V = (Xp × Yp) · Zp = ε̃µνλX
µY νZλ.

Consider now dx1 ∧ dx2 ∧ dx3(Xp, Yp, Zp)

= (dx1 ⊗ dx2 ⊗ dx3 − dx1 ⊗ dx3 ⊗ dx2 + dx3 ⊗ dx1 ⊗ dx2

− dx3 ⊗ dx2 ⊗ dx1 + dx2 ⊗ dx3 ⊗ dx1 − dx2 ⊗ dx1 ⊗ dx3)(Xp, Yp, Zp)
= X1Y 2Z3 −X1Y 3Z2 +X3Y 1Z2 −X3Y 2Z1 +X2Y 3Z1 −X2Y 1Z3

= Z1(X2Y 3 −X3Y 2) + Z2(X3Y 1 −X1Y 3) + Z3(X1Y 2 −X2Y 1)
= ε̃µνλX

µY νZλ.

dx1 ∧ dx2 ∧ dx3 is the volume form in R3. Again, we rewrite this as

dx1 ∧ dx2 ∧ dx3 = 1
3! ε̃µνλdx

µ ∧ dxν ∧ dxλ = dΩ3.

This volume element is not chart independent, however, since the wedge
product dxµ ∧ dxν ∧ dxλ transforms like a tensor while ε̃µνλ transforms like a
tensor density of weight −1.

For a volume integral
∫
f dΩ to make sense and be chart independent, f

must be a scalar density of weight 1.
For a Lorentzian metric, for example, we can consider integrals of the type∫

f
√
−g dΩ

where f is a scalar and
√
−g dΩ =

√
−g 1

n! ε̃µ1···µndxµ1 ∧ · · · ∧ dxµn

is the n-dimensional curved spacetime volume element.
Similarly for surface integrals in Rr, the surface element is

dΣµ = 1
(n− 1)! ε̃µλ1···λn−1dxλ1 ∧ · · · ∧ dxλn−1

which transforms as a covector density of weight −1. Therefore, for a general
curved space integral of the type

∫
Xµ dΣµ to make sense, Xµ has to be a

vector density of weight +1.
Again, for a Lorentzian metric, we can consider integrals of the type∫

Xµ√−g dΣµ

where Xµ is a vector and √−g dΣµ is the curved space surface element.
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13.3 Gauss’ Divergence Theorem
In Rn, the divergence theorem is∫

V
(∇ · F ) dV =

∮
S
(F · n) dS.

The curved space generalisation is∫
V
∇µχ̃

µ dΩ =
∫
∂V
χ̃µ dΣµ

for χ̃µ a vector density of weight 1.
Then for a Lorentzian metric, we have∫

V
∇µX

µ dΩ =
∫
∂V

√
−gXµ dΣµ

for Xµ a vector.

What next? You can get Debbie Ip’s general relativity notes from

www.maths.tcd.ie/~ipde/GR_Notes.pdf.
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