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Abstract

The aim of this paper is to present some of the main ideas, problems and results relevant to
complex dynamics, most of which have been developed over the last 150 years or so. The first
task is to define the Fatou and Julia sets which form the foundation of the paper, and develop
both local and global theory of dynamical systems interspersed with any polynomial examples
which I deem particularly insightful. Of particular interest will be the application of said theory
to understanding the classic Newton-Raphson method.

We’ll analyse the structure of the Julia and Fatou sets and demonstrate some of the most
important theorems and mathematicians connected with the topic. Although this paper is but
a brief excursion into the field of complex dynamics, it should provide a firm basis for the study
of the numerous more complicated and interesting aspects which have developed from the the-
ory, including a few unsolved conjectures in mathematics. I sincerely hope that any reader
extracts as much enjoyment from this paper as I did writing it.
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Chapter 1

Preface

1.1 Introduction

Most of our attention will be focused on holomorphic maps f : Ĉ→ Ĉ where Ĉ is the Riemann

sphere. This is a representation of the extended complex numbers C∪{∞}, which is the complex

plane together with a single point at ∞.

The standard complex plane is mapped bijectively to the sphere by stereographic projection.

Consider the unit sphere S2 in R3 and think of C as the subset plane in R2. We join each point

z ∈ C to the point (0, 0, 1) on the top of the sphere by a straight line and define the stereo-

graphic projection of z to be the point on the sphere other than (0, 0, 1) which is intersected by

this line. The extra point at∞ in the extended plane is considered to be projected to the point

(0, 0, 1) on the sphere.

In Ĉ we interpret 1
0 = ∞ and 1

∞ = 0 which allows us to divide by zero and infinity, but

quotients and products involving both 0 and ∞ are left undefined.

Definition 1.1.1 (Rational Functions). Rational functions are functions of the form

R(z) =
p(z)

q(z)

where q(z) is not identically 0 and where the polynomials p(z) and q(z) have no common zeroes.

The degree of a rational function is defined as

deg(R) = max{deg(p), deg(q)}

It follows mainly from the compactness of Ĉ that the holomorphic maps f : Ĉ → Ĉ are

either rational functions, or equal to ∞.
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1.2. CHORDAL DISTANCE CHAPTER 1. PREFACE1.2 Chordal Distance

Definition 1.2.1 (Chordal Distance). In order to extend the Euclidean metric from C to Ĉ,

we define the chordal distance (straight line distance between the stereographic projections of

points on to the Riemann sphere) as follows:

σ(z1, z2) =
2|z1 − z2|√

(1 + |z1|2)(1 + |z2|2)
z1, z2 ∈ C

σ(z,∞) =
2√

1 + |z|2
z ∈ C

σ is also called the chordal metric (or spherical metric) on Ĉ.

Note also that σ(0,∞) = 2 makes sense when we think of Ĉ as the unit sphere S2 since

the maximum distance between any two points on S2 is equal to twice the radius. It is also

important to see that with this new metric on Ĉ it is possible for a point to be within ε of

infinity, a concept which isn’t in any way innate in standard complex analysis. Most of our

analysis will be conducted with respect to this metric on Ĉ unless otherwise stated.

Notation

We denote iterates of a function f at a point z ∈ Ĉ in thusly:

f0(z) = z

f1(z) = f(z)

f2(z) = f(f(z)) = (f ◦ f)(z)

and so on. We’ll assume at most junctures of this text that n is an integer and n > 0 unless

otherwise stated.

Example 1.2.2 (An Example in R). Take the real-valued polynomial,

f(x) = 4x(1− x)

with x ∈ R. By completing the square, this can be written as follows:

f(x) = 4x(1− x)

= 4x− 4x2

= −4(x2 − x)

= −4(x2 − x+ 1
4 −

1
4)

= −4
[(
x− 1

2

)2 − 1
4

]
= 1− 4

(
x− 1

2

)2
So f(x) is positive in [0, 1] and negative elsewhere. If x ∈ [0, 1] initially then the iterates

f(x), f2(x), . . . , fn(x)
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1.2. CHORDAL DISTANCE CHAPTER 1. PREFACE

stay in [0, 1].

The process of iterating this function is called cob webbing. Start with a point x ∈ [0, 1]

and find f(x). To iterate this new point we bring the point f(x) across to meet the line

y = x and then down to intersect the x-axis (effectively just using f(x) to iterate again). Then

the process can be repeated. The resulting picture resembles that of a cob web, hence the name.

By inspection, we can see that the web seems to circulate around the point of f(x) where

x = 3
4 . We’ll see later that the point x = 3

4 is actually a fixed point for f . These points are

a vital key to understanding dynamical systems. This example is at very best a trivial one, so

we’ll move on to the complex plane (or more specifically the Riemann sphere), where we shall

stay for the remainder of the paper.
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Chapter 2

Fixed Points

2.1 Fatou and Julia Sets

Definition 2.1.1 (Equicontinuous). Let G ⊆ Ĉ be open. A family F of holomorphic functions

f : G→ Ĉ is equicontinuous at z0 if given ε > 0 there exists δ > 0 such that.

σ(z, z0) < δ ⇒ σ(f(z), f(z0)) < ε

for all f ∈ F . F is equicontinuous on G if it is equicontinuous at each z0 ∈ G.

The family of functions F that we will be focusing on will always be the set of iterates

F = {Rn | n = 1, 2, . . . }

of a rational function R. Equicontinuity is similar to the definition of continuity of a function

except for the critical difference that it now holds for all iterates of the function rather than

usually holding for just n = 1. So any points which start off initially very close will stay very

close no matter how often we apply R to those points. The main question to address is given

a rational function, for which points does this hold and for which does it not. We characterise

these two possibilities with the following two sets.

Definition 2.1.2 (Fatou and Julia Sets). The Fatou set of a rational function R is the largest

open set F (R) ⊆ Ĉ on which the family of iterates Rn is equicontinuous for all n > 0. The

Julia set is the complement of the Fatou Set, denoted J(R).

The Fatou set is the calm or stable set of the function. Points that are initially close to a

point in the Fatou set, will stay close. However, in the Julia set, a small change in the initial

point z0 results in a large change to the iterates of z0 (also known as sensitive dependence on

initial conditions [11, p 4]). Thus the behaviour of the Julia set is chaotic, while the Fatou set

is stable.
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2.2. FIXED POINTS CHAPTER 2. FIXED POINTS

2.2 Fixed Points

Definition 2.2.1 (Fixed Points). A point z0 is called a fixed point of p(z) if p(z0) = z0. For a

polynomial of degree d ≥ 2, p(z) − z = 0 also has degree d and therefore has d solutions (not

necessarily distinct) thus has at most d+ 1 fixed points (including ∞).

Example 2.2.2. p(z) = z2 + z−4. The degree of p is 2, therefore it has at most 3 fixed points.

One of these is ∞ because p(∞) =∞. (In fact, we’ll prove later that ∞ is always a fixed point

for this type of polynomial.) So, there are at most 2 finite fixed points. To compute them let,

p(z) = z ⇔ z2 + z − 4 = z

⇔ z2 = 4

⇔ z = ±2

Therefore the three fixed points for are −2, 2,∞.

Example 2.2.3. p(z) = (z − 3)5 + z Here deg p = 5 so it has at most 6 fixed points, counting

multiplicities. In fact it only has two. To see this note that p(z) − z = (z − 3)5 so p has one

finite fixed point z = 3 with multiplicity 5 and the usual fixed point at ∞.

Definition 2.2.4 (Forward Orbit). The forward orbit O+(z0) (or simply orbit) of a point z0

under a rational mapping R(z) is given by the sequence z0, z1, z2, . . . where zn = R(zn−1) =

Rn(z0) for n = 1, 2, . . .

Later we’ll study quadratics of the form p(z) = z2 + c. This map has at most three fixed

points, namely, ∞ and

z =
0±
√
−4c

2
= ±i

√
c

What happens to points near these fixed points under iteration? The answer depends on the

multiplier p′(z0). Given a fixed point z0 of p, the linear approximation formula says,

p(z) ≈ p(z0) + p′(z0)(z − z0)
= z0 + p′(z0)(z − z0)

for z ∼= z0. Say p′(z0) = 1
2 . Then p(z) ≈ 1

2(z + z0), i.e. the distance |z − z0| between z and is

roughly halved at every iteration. So z gets closer and closer to z0. If p′(z0) = 2 instead say,

then p(z) ∼= 2(z+ z0) which means z gets further away from z0 by a factor of roughly 2 at every

iteration of p. This observation motivates the following formal classification of fixed points.

Definition 2.2.5 (Classification of Fixed Points). A fixed point z0 ∈ C of p is called:

1. attracting if 0 < |p′(z0)| < 1

2. superattracting if p′(z0) = 0

3. repelling if |p′(z0)| > 1
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4. neutral if |p′(z0)| = 1

We’ll deal with the case where z0 = ∞ later on. To illustrate this better, say p(z) is a

polynomial with a fixed point z0. Then for z in a neighbourhood of z0, we have from the linear

approximation formula that,

|p(z)− z0| = |p(z)− p(z0)|
≈ |p(z0) + p′(z0)(z − z0)− p(z0)|
= |p′(z0)(z − z0)|
= |p′(z0)| · |z − z0|

• So if z0 is attracting then |p′(z0)| < 1 which implies that |p(z)− p(z0)| < |z − z0|. Points

in a neighbourhood of z0 get closer and closer at each iteration of p.

• If z0 is repelling then |p′(z0)| > 1 which implies |p(z) − p(z0)| > |z − z0|. The iterates of

points in a neighbourhood of z0 get further and further away from z0.

• In the neutral case, |p(z) − p(z0)| = |z − z0| meaning the iterates stay about the same

distance away from z0 as they were originally and the long term behaviour of such points

is less clear.

In fact for an holomorphic function f with an attracting fixed point z0 such that |f ′(z0)| < k < 1,

we have for z in a neighbourhood of z0 with |z − z0| < δ,

|f(z)− f(z0)|
|z − z0|

≤ k

⇒ |f(z)− z0| ≤ k|z − z0| < kδ < δ because |k| < 1

⇒ |fn(z)− z0| ≤ kn|z − z0| < knδ < δ

Then fn(z)→ z0 as n→∞. For an attracting (or superattracting) fixed point, by above, there

exists an open neighbourhood U of z0 in which fn(z)→ z0 as n→∞ for all z ∈ U . The set of

all points whose orbits converge to z0 is called the basin of attraction for z0.

2.3 Möbius Transformation

Definition 2.3.1 (Möbius Transformation). A Möbius transformation is a rational map of the

form,

φ(z) =
az + b

cz + d

where ad − bc 6= 0. In addition, on the Riemann sphere we have φ(∞) = a
c and φ

(
−d
b

)
= ∞

once c 6= 0. When c = 0, neither a nor d can be zero, so φ(z) is a polynomial and φ(∞) =∞.

Möbius transformations are rational functions of degree 1, and are bijective holomorphic

functions on the Riemann sphere under these additional rules. Any Möbius transformation of

6



2.3. MÖBIUS TRANSFORMATION CHAPTER 2. FIXED POINTS

the form given above is associated with an 2× 2 invertible matrix of the form,[
a b

c d

]

where invertibility is guaranteed because,

ad− bc 6= 0 ⇒ det

[
a b

c d

]
6= 0

Assume φ(z) is a Möbius map with c 6= 0 (i.e. not simply a polynomial) which has a fixed

point z then,

z =
az + b

cz + d
⇒ cz2 + dz = az + b

⇒ cz2 + (d− a)z − b = 0

⇒ z =
(a− d)±

√
a2 + d2 − 2ad+ 4bc

2c

⇒ z =
(a− d)±

√
a2 + d2 + 2ad− 4ad+ 4bc

2c

⇒ z =
(a− d)±

√
a2 + d2 + 2ad− (ad− bc)

2c

⇒ z =
(a− d)±

√
(a+ d)2 − (ad− bc)

2c

So φ(z) has at most 2 fixed points, possibly only one repeated fixed point. If we think of the

Möbius transformations as matrices,

φ =

[
a b

c d

]
we can assume that det(φ) = 1. This is because changing the variables of the Möbius transfor-

mation by a constant λ 6= 0 thusly,

az + b

cz + d
=

(λa)z + (λb)

(λc)z + (λd)

changes the determinant by a factor of λ2 because,

det

[
λa λb

λc λd

]
= λ2 det

[
a b

c d

]

7



2.3. MÖBIUS TRANSFORMATION CHAPTER 2. FIXED POINTS

So we can normalise and assume that

det

[
a b

c d

]
= ad− bc = 1

without changing the Möbius transformation. Consider the eigenvalues of the matrix φ. These

are given by,

det

[
λ− a −b
−c λ− d

]
= 0 ⇒ (λ− a)(λ− d)− bc = 0

⇒ λ2 − (a+ d)λ+ ad− bc = 0

⇒ λ2 − (a+ d)λ+ 1 = 0

⇒ λ =
(a+ d)±

√
(a+ d)2 − 4

2c

2.3.1 Parabolic Case

Say these two eigenvalues are equal. This happens iff (a+ d)2 = 4, which is known as parabolic

Möbius transformation. The matrix φ is called parabolic if tr2(φ) = 4. A repeated eigenvalue

means that the matrix is conjugate to one of the form,

S−1φS =

[
λ 1

0 λ

]

where λ is the single repeated eigenvalue of φ. We have assumed that det(φ) = 1 so det(S−1φS) =

1 also. Now,

det(S−1φS) = λ2 = 1 ⇒ λ2 = 1

⇒ S−1φS =

[
1 1

0 1

]
or S−1φS =

[
−1 1

0 −1

]

These correspond to the maps (S−1φS)(z) = z + 1 and (S−1φS)(z) = z − 1 respectively which

are both translations whose only fixed point is ∞.

2.3.2 Non-Parabolic Case

There are two distinct eigenvalues iff (a + d)2 6= 4 (i.e. if the Möbius transformation is non-

parabolic). Then the matrix is diagonalisable to a matrix,

S−1φS =

[
λ1 0

0 λ2

]

8
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where λ1 and λ2 are the eigenvalues of φ. Assuming that det(φ) = 1 as before, we get:

det(S−1φS) = λ1λ2 = 1 ⇒ λ1 =
1

λ2

⇒ S−1φS =

[
λ1 0

0 1
λ1

]

Write λ = λ1 for simplicity, then φ is conjugate to a translation/dilation map (S−1φS)(z) = λ2z.

This comes from a Möbius map where a = λ, b = 0, c = 0 and d = 1
λ .

2.4 Fixed Points of Möbius Transformations

In the following we’ll refer to the concept of conjugacy of two dynamical systems which will

be formalised later. For now it is sufficient to be familiar with conjugacy of matrices for the

purpose of understanding the discussion. This is adapted from [3, p 4, 5]. The cases for fixed

points of a Möbius transformation (now called R for lazy typist reasons) are detailed as follows.

If the matrix for the transformation is parabolic then it is conjugate to a translation which

we know has only one fixed point at infinity. This gives rise to the first two cases.

2.4.1 A single fixed point at ∞

In this case c = 0,

⇒ R(z) = z + α for some α 6= 0

⇒ Rn(z) = z + nα Translation

⇒ Rn(z)→∞ as n→∞ for all z

2.4.2 A single fixed point in C

Say ζ ∈ C is a unique fixed point for R(z). Let

g(z) =
1

z − ζ

which is a Möbius map taking ζ to ∞. Define S(z) = (gRg−1)(z). Since the composition of

Möbius transformations is Möbius, we know that S is a Möbius transformation. In terms of

matrices, S and R are conjugate with this choice of S. Note that,

(gRg−1)(∞) = gR(ζ)

= g(ζ)

=∞

9
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since ζ is a fixed point of R. So S fixes z iff z =∞ and is thus a translation map. So from part

1, Sn(z)→∞ as n→∞ for all z. Now,

Sn(z) = [(gRg−1)(gRg−1) · · · (gRg−1)](z)
= (gRng−1)(z)

Replace z with g(z) and take g−1 of both sides to see that,

g−1Sn(g(z)) = Rn(z)

where Sn(g(z))→∞ as n→∞ for any z. This implies that,

Rn(z)→ g−1(∞) = ζ

as n → ∞ for any z. Thus all points converge to the fixed point ζ under iteration of R. Here

we have shown that the Möbius transformation in case 2 is conjugate to one of the form given

in case 1. The combination of these two cases means that if R has a unique fixed point then

every point in Ĉ converges to that point under R.

If the matrix for the transformation is non-parabolic then it is conjugate to a translation/dilation

map which we know fixes only the points at 0 and infinity. This gives rise to the next (and last)

two cases.

2.4.3 Two distinct fixed points at 0 and ∞

In this case, R(z) = kz with k 6= 0 which implies Rn(z) = knz. There are three possibilities for

k.

1. |k| < 1 which implies that Rn(z)→ 0 as n→∞

2. |k| = 1 which implies that |Rn(z)| = |z| as n→∞

3. |k| > 1 which implies that Rn(z)→∞ as n→∞

2.4.4 Two distinct fixed points in C

Say R has fixed points ζ1, ζ2 ∈ C, where ζ1 6= ζ2. Construct a Möbius transformation g such

that ζ1 7→ 0 and ζ2 7→ ∞. The function

g(z) =
z − ζ1
z − ζ2

10
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will suffice. As before, let S = gRg−1. This fixes the points 0 and ∞ by the following:

(gRg−1)(0) = gR[g−1(0)]

= gR(ζ1)

= g(ζ1)

= 0

because ζ1 is a fixed point of R and

(gRg−1)(∞) = gR[g−1(∞)]

= gR(ζ2)

= g(ζ2)

=∞

because ζ2 is a fixed point of R. Sn is thus conjugate to the mapping described in 3. Applying

the previous conclusions, we see that Rn(z) = g−1Sng(z) has three cases based on the behaviour

of Sn

1. Sn(g(z))→ 0 implies that Rn(z)→ ζ1

2. Sn(g(z))→∞ implies that Rn(z)→ ζ2

3. |Sn(g(z))| → |g(z)| implies that |Rn(z)| → |z|

where case 3 is so because g maps circles to circles as does g−1. So the iterates either converge

to one of the fixed points, or move around a circle. It is important to note that not all of the

fixed points of a Möbius transformation are attracting. Consider the Möbius map φ(z) = az+ b

where a, b 6= 0. For a fixed point of this map we solve,

z = az + b ⇒ z =
b

1− a

So if a = 1 the only fixed point is ∞, but otherwise the fixed point is in C. Also φ′(z) = a,

which implies that z is an attracting fixed point when |a| < 1 but repelling otherwise. It is

important to note that all points can eventually converge to one of the fixed points even if they

are initially repelled away.
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Chapter 3

Basic Iteration

3.1 Polynomials of Higher Degrees

Definition 3.1.1 (Fixed point at∞). From now on, we will assume both the polynomials p(z)

and rational functions R(z) that we deal with are of degree at least 2. For p(z), the fixed point

at ∞ is called:

1. attracting if 0 < |f ′(0)| < 1,

2. superattracting if f ′(0) = 0,

where

f(z) =
1

p
(
1
z

)
This definition allows us to prove a claim made earlier.

Theorem 3.1.2. ∞ is a superattracting fixed point for any p(z) with degree n ≥ 2.

Proof. Say p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0 where an 6= 0 and n ≥ 2. Let

f(z) =
1

p
(
1
z

)
Then,

f(z) =
1

an
zn

+
an−1
zn−1

+ · · ·+ a1
z

+ a0

=
zn

an + an−1z + · · ·+ a1zn−1 + a0zn

Now,

f(0) =
0n

an
= 0 ⇔ 1

p(∞)
= 0 ⇔ p(∞) =∞

To show it is superattracting, differentiate f ′(z) by using the quotient rule with u = zn and

12



3.1. POLYNOMIALS OF HIGHER DEGREES CHAPTER 3. BASIC ITERATION

v = an + an−1z + · · ·+ a1z
n−1 + a0z

n to get:

f ′(z) =
nzn−1(an + an−1z + · · ·+ a1z

n−1 + a0z
n)− zn(an−1 + 2an−2z · · ·+ na0z

n−1)

(an + an−1z + · · ·+ a1zn−1 + a0zn)2

whence

f ′(0) = 0

Definition 3.1.3 (Periodicity). A point z0 is called a periodic point of p(z) (with period n) if

pn(z0) = z0 for some integer n ≥ 1. Note that if n = 1 then z0 is a fixed point and thus trivally

periodic.

Definition 3.1.4 (Pre-Periodicity). A point is called a pre-periodic point of p(z) if pn+j(z0) =

pj(z0) for some integer j > 0. In other words, if some iterate pj(z0) of z0 under p(z) is periodic.

Theorem 3.1.5. Attracting fixed points are in the Fatou set, as are their basins of attraction.

Proof. To see this first we’ll show that attracting fixed points are in the Fatou set. Suppose

first that z0 is an attracting fixed point. Then for z nearby z0, with |z − z0| < δ, we have the

following:

p(z) = p(z0) + p′(z0)(z − z0) = z0 + p′(z0)(z − z0)

Then,

|p(z)− p(z0)| = |p(z)− z0|
≈ |z0 + p′(z0)(z − z0)− z0|
= |p′(z0)(z − z0)|
= |p′(z0)| · |z − z0|
< 1 · δ

So the set of iterates are equicontinuous at z0 since |z0 − z| < δ implies that |p(z)− p(z0)| < δ.

Now since pn(z) → z0 as n → ∞ for any z in the basin of attraction of z0, there exists N ∈ N
such that for n > N , |pn(z)− z0| < δ and thus the above argument holds for z.

Example 3.1.6. Let p(z) = z2. Then the orbit of any z under p is given by the following:

z 7→ p(z) = z2 7→ p2(z) = z4 7→ p3(z) = z8 7→ · · ·

and so on. The three points 0, 1 and ∞ are fixed points of this map since p(0) = 0, p(1) = 1

and p(∞) = ∞. We’ve proved already that ∞ is always a superattracting fixed point of any

polynomial map of degree at least 2. The fixed point at 0 is also superattracting because,

p′(z) = 2z 7→ p′(0) = 0

However, the fixed point at 1 is repelling because,

p′(1) = 2 > 1

13
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For |z0| < 1, pn(z0) → 0 as n → ∞. Thus |z0| < 1 is the basin of attraction for the attracting

fixed point at 0 and so belongs to the Fatou set. For |z0| > 1, pn(z0) → ∞ as n → ∞. So

|z0| > 1 is the basin of attraction for the fixed point at ∞, and also belongs to the Fatou set.

Therefore the unit circle

∆ = {z : |z| = 1}

is the Julia set of p(z) = z2. To see this choose r such that |r| < 1 and consider the point

z ∈ ∆. We’ll show that even if z and rz are close initially, their iterates exhibit very different

behaviour. Assume the opposite, i.e. that z is in the Fatou set (we already know that rz is).

Then,

σ(z, rz) < δ ⇔ σ(pn(z), pn(rz)) < ε

Choose ε = 1
3σ(0,∞) = 2

3 . Now we can deal with Euclidean norm because we’re working only

on, or inside ∆. So for w ∈ D we have

σ(0, w) =
2|w|√

1 + |w|2
≤ 2|w|

and σ increases as the Euclidean distance does. So then we have:

|z − rz| < δ ⇒ |pn(z)− pn(rz)| < 2

3

Also pn(rz)→ 0 as n→∞ because |rz| < 1. So given any η > 0, there exists N such that for

n > N ,

|pn(rz)| < η

Set η = 1
3 . Then,

|pn(z)− pn(rz)| ≥ ||pn(z)| − |pn(rz)|| reverse triangle inequality

> |1− η| since |pn(z)| < η and z ∈ ∆

=

∣∣∣∣1− 1

3

∣∣∣∣
=

2

3

which is a contradiction, meaning p is not equicontinuous at z. Therefore z isn’t in the Fatou

set, so it must be in the Julia set of p. ∆ is both said to be invariant under p: every point on

∆ is mapped to another point on ∆ by p. But what happens to the long term iterates of points

on ∆? Let z = eiθ be a point on ∆. Then,

p(z) = e2iθ

p2(z) = e4iθ

p3(z) = e8iθ

...

pn(z) = e2
niθ

14
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The squaring function p doubles the angle of these points at every iteration. Assume n > 0, i.e.

there is at least one iteration of the function. We’ll ignore the fixed points 0 and ∞ which are

trivially periodic but aren’t on ∆. Then for:

n = 1 p(z) = z2 Periodic Points if z2 = z ⇔ z = 1

n = 2 p(z) = z4 Periodic Points if z4 = z ⇔ z3 = 1

⇔ z = 1, e
2π
3
i, e

4π
3
i

n = 3 p(z) = z8 Periodic Points if z8 = z ⇔ z7 = 1

⇔ z = 1, e
2π
7
i, e

4π
7
i, . . . , e

12π
7
i

So for the nth iterate pn(z) = z2
n
, a point is periodic if

z2
n

= z ⇔ z2
n−1 = 1

= z = exp

(
2j

2n − 1
πi

)
where j = 0, 1, 2, . . . , 2n − 2. So z = eiθ is periodic if θ is of the form,

θ =
2j

2n − 1
π

Which is equivalent to saying that θ =
p

q
π where p is even and q is odd.

3.2 Conjugacy

For quadratic maps, we may restrict our attention to polynomials of the form z2+c. This is due

to the fact that any quadratic map is (dynamically) equivalent to one of the form p(z) = z2 + c

for c ∈ C. In some sense the dynamics of an arbitrary quadratic look the same as those

for some p(z) = z2 + c. We’ll justify this restriction later. First we’ll give the definition

of conjugacy followed by a discussion of one of the most interesting applications of complex

dynamics; approximating the roots of a cubic function (otherwise known as Newton’s method).

Definition 3.2.1 (Conjugacy). Two maps f : Ĉ → Ĉ and g : Ĉ → Ĉ are called conjugate if

there exists a homeomorphism (continuous bijection which has a continuous inverse) h : Ĉ→ Ĉ
such that h ◦ f = g ◦ h. In other words, the following diagram commutes:

Ĉ f //

h
��

Ĉ

h
��

Ĉ g
// Ĉ

15
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It follows that h ◦ fn = gn ◦h where n ∈ N (even for inverse iterates). To see this, note that

f = h−1 ◦ g ◦ h
⇒ fn = (h−1 ◦ g ◦ h)n = h−1 ◦ g ◦ h ◦ h−1︸ ︷︷ ︸

= id

◦g ◦ h ◦ h−1︸ ︷︷ ︸
= id

◦ · · · = h−1 ◦ gn ◦ h

So, h maps the orbits of f to those of g, and h−1 maps orbits of g to those of f (as well as

all their iterates) thus inducing a 1-1 correspondence between the orbits. Furthermore, fixed

points are mapped to fixed points and their corresponding multipliers are equal.

The maps f and g can be considered the same maps viewed in different coordinate systems. A

change of variables transforms one map into the other. Now we can prove a claim from earlier.

Theorem 3.2.2. Let f(z) = az2 + bz + c be a quadratic where a, b, c ∈ C with a 6= 0. Then f

is conjugate to some p(z) = z2 + k where k ∈ C. [11, p 8]

Proof. Need a function h such that h ◦ f = p ◦ h. Let h be the affine conjugacy h(z) = az+ b
2 .

Firstly,

(h ◦ f)(z) = h(az2 + bz + c) = a2z2 + abz + ac+
b

2

Also,

(p ◦ h)(z) = p

(
az +

b

2

)
=

(
az +

b

2

)2

+ k = a2z2 +
b2

4
+ abz + k

These two are equal when k = ac+ b
2 −

b2

4 . Therefore f is conjugate to p for this choice of k.

Example 3.2.3. Perhaps the most important aspect of these maps is what happens to the

critical point 0. This is the only critical point of any p(z) = z2 + c since

p′(z) = 0 ⇒ 2z = 0 ⇒ z = 0

In the previous two examples, O+(0) stayed bounded for all n. We’ll show later that if O+(0)

escapes to ∞ then J is a Cantor set. If not then J is connected [11, p 13]. This naturally leads

to the definition of Benôıt Mandelbrot’s eponymous set.

Definition 3.2.4 (Mandelbrot set). Given p(z) = z2 + c, the Mandelbrot set M is defined as

the set

M = {c ∈ C : pn(0) <∞}

for all n > 0. It is the set of values of c for which the orbit O+(0) of the critical point 0, stays

bounded. Equivalently, it is the set of c for which J(p) is connected.

So for c ∈ M, the iterates of 0 remain bounded and therefore J(p) is connected. For

c /∈ M, J(p) is a Cantor set. As we’ve seen, 0 is an element of the Mandelbrot set since the

corresponding polynomial, p(z) = z2 has connected Julia set (A forthcoming example will show

16
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that −2 ∈M also). However, 1 /∈M. If we look at p(z) = z2 + 1 at 0 then we see that:

p(z) = z2 + 1 p(0) = 1

p2(z) = (z2 + 1)2 + 1 = z4 + 2z2 + 2 p2(0) = 2

p3(z) = (z4 + 2z2 + 2)3 + 1 = z8 + 4z6 + 8z4 + 8z2 + 5 p3(0) = 5

So O+(0) is a monotonic increasing sequence for this choice of c meaning that pn(0) doesn’t

remain bounded. As one would expect there are also elements of C \ R which are in M. We’ll

state without proof, for the purpose of trivial examples, that i ∈M. This can be easily verified

using the above example as a template.

As a more general rule, if we note that the Mandelbrot set is contained in the closed disk

of radius 2 around the origin, we can state that c ∈ M if |pn(0)| < 2 for all n ∈ N. From this,

we deduce that Julia sets J(p) for large values of c (by this we mean |c| > 2) are always com-

plicated Cantor sets. I hasten to point out that there are points c with |c| ≤ 2 which also give

cantor sets (c = 1 for instance, as we’ve just seen 1 /∈M), but every point in {c ∈ C : |c| > 2}
has this property.

Example 3.2.5. This example can be found (albeit in less detail) in [2, p 29]. Take p(z) = z2−2

which has fixed points at 2, −1 and ∞. First note that if z ∈ [−2, 2] then 0 ≤ z2 ≤ 4, and

hence −2 ≤ z2 − 2 ≤ 2. So points on the line segment [−2, 2] are mapped into [−2, 2] by p and

thus is invariant under p.

Consider the conformal map h(ζ) = ζ +
1

ζ
of {ζ ∈ C : |ζ| > 1} onto C \ [−2, 2]. We’ll

show that this map is surjective. Firstly if z = eiθ,

h(z) = eiθ +
1

eiθ

= eiθ + e−iθ

= cos θ + i sin θ + cos θ − i sin θ

= 2 cos θ

which is always between −2 and 2 and so is contained in the line segment [−2, 2]. Now h(z) :

Ĉ→ Ĉ and solving h(z) = w means solving:

z +
1

z
= w ⇔ z2 + 1 = wz ⇔ z2 − wz + 1 = 0

where the rightmost equation has two solutions. If z is one solution then 1/z is the other

because h(z) = h(1z ). So if one solution of h(z) = w is inside the unit circle ∆, then the other

is outside because,

|z| < 1 ⇔ 1

|z|
> 1

If |z| 6= 1 (z not on ∆) then h(z) = w /∈ [−2, 2]. Hence, there exists a solution with |z| > 1.

17
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Therefore h : {z ∈ C : |z| > 1} → [−2, 2] surjectively. We’ll now show that f(ζ) = ζ2 is

conjugate to p(z) under the mapping h, i.e. that the following diagram commutes:

{z ∈ C : |z| > 1} f //

h
��

{z ∈ C : |z| > 1}

h
��

C \ [−2, 2] p
// C \ [−2, 2]

Check that p ◦ h = h ◦ f :

(p ◦ h)(ζ) = p

(
ζ +

1

ζ

)
=

(
ζ +

1

ζ

)2

− 2

= ζ2 +
1

ζ2
+ 2− 2

= h(ζ2)

= (h ◦ f)(ζ)

So the dynamics of p(z) on C \ [−2, 2] are the same as those of f(ζ) = ζ2 on {ζ ∈ C : |ζ| > 1}.
This is the same as the squaring function example earlier, and thus all points in the domain

{ζ ∈ C : |ζ| > 1} tend to infinity under iteration of f . Therefore all points in C \ [−2, 2]

tend to infinity under iteration of p making this the basin of attraction for ∞. Consequently,

for any point in [−2, 2], its orbit stays in [−2, 2] which means the Julia set for p(z) = z2 − 2 is

J(p) = [−2, 2].

To reinforce this claim, note that the orbit of points very near [−2, 2] can tend to infinity

while the orbits of points inside [−2, 2] stay bounded thus exhibiting the chaotic (and non-

equicontinuous) behaviour expected of the Julia set. It is worth noting for later on, that

although this example is also of the form p(z) = z2 + c, the Fatou set only has one component

in this case, whereas for p(z) = z2 it had two. This observation will be formalised in a theorem

later on.

Definition 3.2.6 (Misiurewicz Point). Given a polynomial of the form p(z) = z2 + c, any value

of c for which O+(0) is pre-periodic (but not periodic) is called a Misiurewicz point.

In the above example where c = −2 the critical orbit is given by 0 7→ −2 7→ 2 7→ 2 7→ so 0 is

pre-periodic and thus c = −2 is a Misiurewicz point. This is more of a supplementary definition

as we won’t encounter it again in this paper. Misiurewicz points are important in the study

of the Mandelbrot set, particularly for the study of external rays developed by Douady and

Hubbard. For more on this, see [11, p 15]. They are also credited with showing connectivity

of the Mandelbrot set which was conjectured but never proven by Mandelbrot himself. Local

connectivity of the Mandelbrot set is an open conjecture in Mathematics to this day.
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Chapter 4

Local Conjugations at Fixed Points

This chapter is based on [2, p 31-33]. While we have explicitly calculated h in the example in

the previous chapter, there are some cases in which the conjugation function h might not exist.

We’ll simplify imminent analysis by using the following notation: denote by λ, the value of the

first derivative of the function f at a fixed point z0, so λ = f ′(z0). This is called the multiplier

of f at z0.

4.1 Koening’s Theorem

Theorem 4.1.1 (Koenigs). Let z0 be an attracting fixed point of a rational function f which is

not superattracting, i.e. 0 < |λ| < 1. Then there exists conformal ϕ(z) mapping a neighbourhood

of z0 onto a neighbourhood of 0 such that ϕ conjugates f(z) to a linear function g(z) = λz.

Furthermore, this conjugate function ϕ is unique up to multiplication by a non-zero scalar.

Proof. We already have f(z0) = z0 and we can furthermore assume that z0 = 0 by changing

coordinates and translating. The rational function f(z) = p(z)
q(z) is holomorphic away from its

poles, i.e. where q(z) = 0. Because f(0) = 0 6= ∞, f does not have a pole there. So there

exists some ball of radius r > 0 around zero inside which, q has no zeroes and therefore f has

no poles. So f is holomorphic inside the ball with radius r = min{ζ : q(ζ) = 0}. Now because

f is holomorphic in the disc of radius r, there exists a power series expansion for f about 0 in

that disc:

f(z) = f(0) + f ′(0)z +
f ′′(0)

2
z2 + · · ·

= λz + a2z
2 + a3z

3 + · · ·

for |z| < r where r > 0. So,

(f ◦ f)(z) = λf(z) + a2(f(z))2 + a3(f(z))3 + · · ·
= λ2z + λa2z

2 + λa3z
3 + · · ·

+a2(λ
2z2 + 2λa2z

3 + · · · )
+a3(λ

3z3 + · · · )
+ · · ·
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Now define ϕn(z) =
fn(z)

λn
. The sequence proceeds as follows

ϕ1(z) =
f(z)

λ
ϕ2(z) =

f2(z)

λ2
· · · ϕn(z) =

fn(z)

λn

The idea is that if ϕn(z)→ ϕ as n→∞ then,

(ϕn ◦ f)(z)→ ϕ(f(z)) and λϕn+1(z)→ λϕ(z) so ϕ(f(z)) = λϕ(z)

Indeed we have,

(ϕn ◦ f)(z) = ϕn(f(z)) =
fn(f(z))

λn
=
fn+1(z)

λn
= λϕn+1(z)

So if ϕn → ϕ, then ϕ ◦ f = λϕ and f(z) is conjugate to λz. To see this convergence note that

for |z| < r ,

f(z)− λz = a2z
2 + a3z

3 + · · ·
= z2(a2 + a3z + a4z

2 + · · · )
= z2g(z)

where g(z) is analytic for |z|. Since g is continuous at 0, there exists δ > 0 such that,

|z| < δ ⇒ |g(z)− g(0)| < 1

⇒ |g(z)| < 1 + |g(0)|
⇒ |g(z)| < 1 + |a2| = C

because g(0) = a2. Now, for |z| < r,

|f(z)− λz| = |z|2|g(z)| < C|z|2

By making δ smaller we can ensure Cδ < 1−|λ|, so |λ|+Cδ < 1 and also that ρ =
(|λ|+ Cδ)2

|λ|
<

1. For |z| < δ

|f(z)| ≤ |f(z)− λz|+ |λz|
≤ C|z|2 + |λ| · |z|
= |z|(|λ|+ C|z|)
< δ(|λ|+ C|z|)

where k = (|λ|+ C|z|) < 1. From this we can see that,

|f(z)| < kδ < δ

for |z| < δ. Therefore f(z) is in the domain of f . Also, f(f(z)) is defined and |f(f(z))| <
k|f(z)| < k2δ < δ. By induction,

|fn(z)| < kn|z| < δ

20



4.1. KOENING’S THEOREMCHAPTER 4. LOCAL CONJUGATIONS AT FIXED POINTS

Now,

ϕn+1(z)− ϕn(z) =
fn+1(z)

λn+1
− fn(z)

λn
=
fn+1(z)− λfn(z)

λn+1

Now use |f(z)− λz| ≤ C|z|2 and replace z with fn(z) to get,

|ϕn+1(z)− ϕn(z)| ≤ f(fn(z))− λfn(z)

|λ|n+1

≤ C|fn(z)2|
|λ|n+1

≤ C(kn|z|)2

|λ|n+1

=
k2nC|z|2

|λ|n+1

=

(
k2

|λ|

)n
C

|λ|
|z|2

= ρn
C

|λ|
|z|2

<
ρnC

|λ|
δ2

Hence,
∞∑
n=1

|ϕn+1(z)− ϕn(z)| ≤
∞∑
n=1

ρnC

|λ|
δ2 <∞

since ρ < 1. Thus

∞∑
n=1

ϕn+1(z) − ϕn(z) converges uniformly on {z ∈ C : |z| < δ} by the

Weierstrass M-test. Now,

∞∑
n=1

ϕn+1(z)− ϕn(z) = lim
n→∞

N∑
n=1

ϕn+1(z)− ϕn(z)

= lim
N→∞

[(ϕ2(z)− ϕ1(z)) + (ϕ3(z)− ϕ2(z)) + · · ·+ (ϕN+1(z)− ϕn(z))]

which is a telescoping sum and therefore,

∞∑
n=1

ϕn+1(z)− ϕn(z) = lim
N→∞

(ϕN+1(z)− ϕ1(z))

and so

lim
N→∞

ϕN (z) = ϕ(z)
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To show uniqueness, assume ϕ and ψ are two conjugations satisfying,

(ϕ ◦ f ◦ ϕ−1)(w) = λw and (ψ ◦ f ◦ ψ−1)(z) = λz

We can say straight away from the left hand side that f(w) = ϕ−1(λϕ(w)). From the right

hand side we get f(ψ−1(z)) = ψ−1(λz). Now let w = ψ−1(z), ψ(w) = z to get,

f(w) = ψ−1(λψ(w))

Comparing with the above we deduce that,

ϕ−1(λϕ(w)) = f(w) = ψ−1(λψ(w))

⇒ ϕ−1(λϕ(w)) = ψ−1(λψ(w))

⇒ ϕ−1[λ(ϕ ◦ ψ−1)(z)] = ψ−1(z)

⇒ λ(ϕ ◦ ψ−1)(z) = (ϕ ◦ ψ−1)(λz)
⇒ λα(z) = α(λz)

where α = ϕ ◦ ψ−1 We know that α is of the form α(z) = 0 + α1z + α2z
2 + α3z

3 + · · · , so

λα(z) = λα1z + λα2z
2 + λα3z

3 + · · ·
α(λz) = λα1z + λ2α2z

2 + λ3α3z
3 + · · ·

These are equal if for all n ≥ 1

αnλ
n = λαn ⇔ (λn − λ)αn

⇔ (λn − λ) = 0 or αn = 0

But λn 6= λ for n ≥ 2 since 0 < λ < 1 (specifically λ is not 0 or 1). So αn = 0 for n ≥ 2. This

gives

α1z = α(z) = (ϕ ◦ ψ−1)(z) = ϕ(ψ−1(z))

Let ψ−1(z) = w to get,

ϕ(z) = α1ψ(z)

This completes the proof.

Example 4.1.2. Let a1 = 0 and a2, . . . , ad ∈ ∆. Suppose f(z) is a finite Blaschke product, i.e.

f(z) = eiθ0z

d∏
j=2

z − aj
1− ajz

where each |aj | < 1. For |a| < 1, φ(z) =
z − a
1− az

is a Möbius transformation which maps the
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unit circle to itself and maps ∆→ ∆. Therefore, for |z| < 1

|f(z)| = |z|
d∏
j=2

∣∣∣∣ z − aj1− ajz

∣∣∣∣ < 1

So, f : ∆→ ∆, f is analytic, and f(0) = 0. By the Schwarz lemma, |f ′(0)| ≤ 1 and if |f ′(0)| = 1,

then f(z) = λz where |λ| < 1. The latter case only occurs when the product is empty. So, if

d ≥ 2, we have |f ′(0)| < 1, so 0 is an attracting fixed point of f .

Corollary 4.1.3. If z0 is a repelling fixed point of f then (as with attracting points) there exists

conformal φ(z) mapping a neighbourhood of z0 onto a neighbourhood of 0 such that φ conjugates

f(z) to a linear function g(z) = λz.

Proof. We know that

f(z) = f(z0) + f ′(z0)(z − z0) = z0 + λ(z − z0)

from the linear approximation formula. Its inverse is given by,

f−1(z) = z0 +
(z − z0)

λ

because,

(f ◦ f−1)(z) = f(f−1(z))

= z0 + λ

(
z0 +

(z − z0
λ

− z0
)

= z0 + z − z0
= z

Because z0 is a repelling fixed point for f , i.e. |λ| > 1, it is therefore an attracting fixed point

for f−1. It is certainly a fixed point because,

f−1(z0) = z0 +
z0 − z0
λ

= z0

To prove it is attracting, note that,

(f−1(z))′ =
1

λ
⇒ (f−1)′(z0) =

1

λ
< 1

since |λ| > 1. We can thus apply Koenig’s theorem to this map to say f−1 is conjugate to 1
λφ.

From this we get the following:

(φ ◦ f−1)(z) =
1

λ
φ(z)

⇒ φ(z) =
1

λ
(φ ◦ f)(z)

⇒ λφ(z) = (φ ◦ f)(z)

which means that f is conjugate to λz.
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Now we have shown the existence of a nice conjugation for attracting and repelling fixed

points. By this we mean that in a neighbourhood of the fixed point (be it repelling or attracting)

the function f looks like a linear function, the behaviour of which, is easier to analyse.

Example 4.1.4. Any p(z) = zm where m ≥ 2 has a repelling fixed point at z = 1 because

p′(z) = mzm−1, and |p′(1)| = m ≥ 2. Then the conjugation function h(z) = log z conjugates

zm to mz because,

(h ◦ f)(z) = h(zm) = log zm = m log z = mh(z)

Its was shown in the early 1900s by Boettcher that a conjugation exists also for superattracting

fixed points. Specifically a polynomial of degree d ≥ 2 which has a superattracting fixed point

is conjugate to zd in a neighbourhood of that point. Even more specifically, since ∞ is a

superattracting fixed point of any such p(z), it is therefore conjugate to zd near ∞. The proof

of this theorem is quite similar to the proof of Koenig’s theorem and is available here [2, p 33].
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Chapter 5

Newton Raphson Method

5.1 Introduction

Newton’s approach to finding the roots of a polynomial can also be considered as a problem in

dynamics. The iterates of the successively more accurate approximations were given by Newton

as:

xn+1 = xn −
f(xn)

f ′(xn)

where f is a polynomial. Finding the roots of f is the same a iterating a new function N(z)

(defined below), and computing its orbits.

N(z) = z − f(z)

f ′(z)

Note N is a rational function whenever f is a polynomial. By inspection, we can see that the

zeroes of f correspond to fixed points of N . If z0 is a zero of f then f(z0) = 0 so N(z0) = z0

and z0 is a fixed point. Conversely, if N(z0) = z0 then
f(z0)

f ′(z0)
= 0 which implies f(z0) = 0 and

z is a zero of f .

5.2 Quadratic polynomials

The simplest case to analyse is the case where f(z) is a quadratic. When f(z) has one repeated

root, N(z) converges to that root regardless of how close the initial approximation is. However,

when f(z) has two distinct roots, convergence is not automatic.

Theorem 5.2.1. If f(z) is a quadratic polynomial with one repeated root a, then N(z) converges

to a for all initial points z ∈ C.

Proof. Let p(z) = (z − a)2, then p′(z) = 2(z − a) which means,

N(z) = z − (z − a)2

2(z − a)

=
z + a

2
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If we now iterate N(z) we get the sequence,

N(z) =
z

2
+
a

2

N2(z) = N(N(z)) =
z

4
+

3a

4

N3(z) = N(N(N(z))) =
z

8
+

7a

8

The general formula for this sequence is thus given by,

Nn(z) =
z

2n
+

2n − 1

2n
a

As n→∞ the first term goes to 0 while
2n − 1

2n
→ 1 which means that Nn(z)→ a for all z ∈ C.

Theorem 5.2.2. If f(z) is a quadratic polynomial with distinct roots then f(z) is conjugate to

the polynomial p(z) = z2. [5, p 144]

Proof. Say f has roots a and b, then compose N with the Möbius transformation

h(z) =
z − b
z − a

Here h(∞) = 1, h(b) = 0 and h(a) = ∞. Then h ◦N ◦ h−1 is a rational map of degree 2 that

has fixed points at 1, 0 and ∞, with the latter two being superattracting. It is therefore the

map p(z) = z2. So h ◦N ◦ h−1(z) = p(z) and N is conjugate to p.

Under this conjugation, a → ∞ and b → 0. It also takes the perpendicular bisector of

the line from a to b, to the unit circle. By comparing with the z2 example, we can state that

the basin of attraction of a is the half-plane on its side of the bisector. Similarly the basin of

attraction for b is the half-plane on its side of the bisector.

Table 5.1: Conjugacy of Newton’s method for quadratics. [5, p 144]

It is also evident that if our initial approximation to the root isn’t in either of these half planes it

must be on the bisector, which isn’t in either basin of attraction and will therefore not converge

to either of the roots. Newton’s method will fail if the initial approximation is on this line, i.e.

if the approximation is equidistant from a and b.

Example 5.2.3. Take f(z) = (z − 1)(z − 3) = z2 − 4z + 3 which has roots at the points 1 and
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3. Then f ′(z) = 2z − 4, and

N(z) = z −
(
z2 − 4z + 4

2z − 4

)
=
z2 − 3

2z − 4

where N(1) = 1 and N(3) = 3. If we start at the point 0 say which is in the half-plane containing

the root at 1 (and also inside the unit disk under the conjugation discussed before), the iterates

of N should get closer and closer to 1. Evidently,

N(0) =
−3

−4
=

3

4

N2(0) = N(N(0)) = N
(
3
4

)
=

(34)2 − 3

2(34)− 4
=

39

40

N3(0) = N(N2(0)) = N
(
39
40

)
=

(3940)2 − 3

2(3940)− 4
=

3279

3280

which does indeed approach 1 as n → ∞. The perpendicular bisector of the line between the

two roots is the line {z ∈ C : <(z) = 2} whose points are all equidistant from 1 and 3. If we

start with an initial approximation on this line, then N(z) should fail to converge to a root of

f . Take z = 2. Then,

N(2) =
4− 3

4− 4
=∞

and the iterates don’t converge to either root as expected.

5.3 Cubic Equation

Analysing Newton’s method quickly becomes far more complicated as the degree of the poly-

nomial in question gets larger. We’ll motivate the study of the case where p is a cubic equation

by the following example.

Example 5.3.1. We’ll first take an example of a cubic polynomial which has 3 simple roots

(roots of multiplicity 1). Let

p(z) = (z − 1)(z − 2)(z − 3) = z3 − 6z2 + 11z − 6

which has three roots at the points 1, 2 and 3. Then,

p′(z) = 3z2 − 12z + 11
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which means the function N(z) is as follows:

N(z) = z − p(z)

p′(z)

= z − z3 − 6z2 + 11z − 6

3z2 − 12z + 11

=
2z3 − 6z2 + 6

3z2 − 12z + 11

The claim is that this function has superattracting fixed points at 1, 2 and 3. We’ll check they

are fixed points.

N(1) =
2− 6 + 6

3− 12 + 11
= 1

N(2) =
16− 24 + 6

12− 24 + 11
=
−2

−1
= 2

N(3) =
54− 54 + 6

27− 36 + 11
=

6

2
= 3

With a relatively small amount of work (but a lengthy amount of calculus) one can compute

N ′(z) at these points and see that they are indeed superattracting. Rather than waste time

with this calculation, we’ll prove the following theorem for this purpose.

Theorem 5.3.2. Any simple zero of p is a superattracting fixed point of N .

Proof. We’ve seen that the zeroes of p are fixed points of N . To show they are superattracting,

we compute as follows:

N ′(z) =

(
z − p(z)

p′(z)

)′

= 1−
(
p′(z)p′(z)− p(z)p′′(z)

p′(z)2

)

=
p′(z)2 − p′(z)2 + p(z)p′′(z)

p′(z)2

=
p(z)p′′(z)

p′(z)2

Which is itself equal to 0 at the simple zeroes of p. (i.e. when p(z) = 0 and p′(z) 6= 0).

Theorem 5.3.3. Any zero of p is an attracting fixed point of N . [3, p 23]

Proof. Assume that p(z) = (z − ζ)mg(z) where m ≥ 1, g(ζ) 6= 0, and ζ is a root of p with
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multiplicity m. We’ll calculate N ′(z) at the point ζ.

p′(z) = m(z − ζ)m−1g(z) + (z − ζ)mg′(z)

p′′(z) = m(m− 1)(z − ζ)m−2g(z) + 2m(z − ζ)m−1g′(z) + (z − ζ)mg′′(z)

p(z)p′′(z) = m(m− 1)(z − ζ)2m−2g(z)2 + (z − ζ)2mg(z)g′′(z) + 2m(z − ζ)2m−1g′(z)g(z)

p′(z)2 = m2(z − ζ)2m−2g(z)2 + (z − ζ)2mg′(z) + 2m(z − ζ)2m−1g(z)g′(z)

So,

N ′(z) =
m(m− 1)(z − ζ)2m−2g(z)2 + (z − ζ)2mg(z)g′′(z) + 2m(z − ζ)2m−1g′(z)g(z)

m2(z − ζ)2m−2g(z)2 + (z − ζ)2mg′(z) + 2m(z − ζ)2m−1g(z)g′(z)

⇒ N ′(ζ) =
m(m− 1)

m2
=
m− 1

m

Hence, 0 ≤ N ′(ζ) < 1 for all m ≥ 1. Thus, ζ is an attracting fixed point of p.

The case m = 1 (i.e. when ζ is a simple zero) in the above proof means N ′(ζ) = 0 and thus

ζ is superattracting which agrees with the previous theorem.

What we’ve seen here is the following: In Newton’s method, if the initial approximation to

a root is chosen within the basin of attraction then we have shown that the method will con-

verge to the attracting fixed point of N(z), which is the root. However, if the initial point is

outside of any basin of attraction then Newton’s method will fail to converge.

As a final example take the cubic equation f(z) = z3 − 1. This has three roots namely, 1,
1±
√
3 i

2 . However, unlike the quadratic case, the basins of attraction for these points are some-

what complicated. The Julia set here is no longer a simple curve.

Table 5.2: Julia set for f(z) = z3 − 1 . [5, p 140]

The white line in the above diagram is the Julia set for N . As we can see, if we start at 0,

we won’t converge to any of the roots (i.e. the fixed points). Indeed,

p(z) = z3 − 1 p′(z) = 3z2

⇒ N(z) =
3z2 + 1

3z3

⇒ N(0) =∞

This brings to an end our discussion of Newton’s method. Viewing the method as a dynamical

29



5.3. CUBIC EQUATION CHAPTER 5. NEWTON RAPHSON METHOD

system is a very sleek way of describing why it might not work for certain choices of the initial

approximation to the root. In particular, the simplicity of the quadratic case when we conjugate

to p(z) = z2 I found somewhat surprising.
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Chapter 6

Structure of the Julia Set

6.1 Invariance

Definition 6.1.1 (Invariance). If f is map from a set X to itself, a subset U is called:

• forward invariant if f(U) = U

• backward invariant if f−1(U) = U

• (completely) invariant if it is both forward and backward invariant.

If f is surjective, then backwards and complete invariance are synonymous. Suppose f is

surjective. Then

f(f−1(U)) = U

If f is also backward invariant, then f−1(U) = U , which implies

f(U) = U

Therefore, f is completely invariant. [4, Ch 8]

Theorem 6.1.2. The Fatou set F (R) of a rational map R is completely invariant, as is its

complement the Julia set.

Proof. We will show that F (R) is invariant first. This implies that its complement J(R) is

also invariant. Since R is surjective we need only show backwards invariance. We’ll show that,

R−1(F (R)) = F (R) by showing that both sets are included in each other and therefore equal.

Take z0 ∈ R−1(F (R)). Now let w0 = R(z0), which is in F (R). Therefore, given ε > 0, there

exists δ > 0 such that,

σ(w,w0) < δ ⇒ σ(Rn(w), Rn(w0)) < ε
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by equicontinuity of F (R). Also, there exists η > 0 such that,

σ(z, z0) < η ⇒ σ(R(z), R(z0)) < δ

⇒ σ(R(z), w0) < δ

⇒ σ(Rn+1(z), Rn(w0)) < ε

⇒ σ(Rn+1(z), Rn+1(z0)) < ε

for n = 1, 2, . . . . So {Rn+1 : n ≥ 1} is equicontinuous at z0. Thus, {Rn : n ≥ 1}
is equicontinuous at z0 because R is continuous at z0 by above. Hence, {Rn : n ≥ 1} is

equicontinuous on R−1(F (R)), which gives that

R−1(F (R)) ⊆ F (R)

To prove the reverse inclusion, let w0 ∈ R(F (R)). Then there exists z0 ∈ F such that w0 =

R(z0). Because z0 ∈ F (R), given ε > 0, there exists δ > 0 such that,

σ(z, z0) < δ ⇒ σ(Rn+1(z), Rn+1(z0)) < ε

The set U = {z ∈ Ĉ : σ(z, z0) < δ} is an open neighbourhood of z0, so R(U) is an open

neighbourhood of R(z0) = w0 by the Open Mapping Theorem. If w ∈ R(U), then w = R(z) for

some z ∈ U , so,

σ(Rn(w), Rn(w0)) = σ(Rn+1(z), Rn+1(z0)) < ε

which implies w ∈ F (R) and therefore F (R) ⊆ R−1(F (R)). Thus, F (R) = R−1(F (R)) and

F (R) is backwards invariant, and hence completely invariant.

6.2 The Exceptional Set

This section is based on [4, Ch 8].

Definition 6.2.1 (Grand Orbit). The grand orbit [z] of a point z is given by:

[z] = {w ∈ Ĉ : O+(z) ∩O+(w) 6= ∅}

Given a point z ∈ Ĉ, this is the set of other points whose orbits eventually coincide with

the orbit of z. In particular all the inverse iterates of z

O−(z) = {ζ ∈ Ĉ : z ∈ O+(ζ)}

are in [z] since their forward orbits will eventually coincide with that of z by definition.

Definition 6.2.2 (Exceptional Point). If [z] is finite then, z is called an exceptional point. The

set of such points is called the exceptional set and is denoted E(R).

If [z] is finite then O−(z) ⊆ [z] must be finite since it is the subset of a finite set. We’ll
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see shortly that the connection between [z] and O−(z) is important for what we want to show.

We’ll focus mainly on the case where R is a polynomial for our discussion of the Julia set. The

reason for this will become clear. We’ll prove several details of the exceptional set in quick

succession now and use them throughout the rest of the section.

Proposition 6.2.3. For a polynomial p, if p−1(E(p)) ⊆ E(p) and p(E(p)) ⊆ E(p), then E(p)

is completely invariant.

Proof. To see this, note that since polynomials are surjective maps from Ĉ to Ĉ, for some

w ∈ Ĉ we have
z ∈ E(p) ⊆ Ĉ ⇒ z = p(w)

⇒ w ∈ p−1(E(p)) ⊆ E(p)

⇒ z ∈ p(E(p))

So E(p) ⊆ p(E(p)) and p(E(p)) ⊆ E(p) gives p(E(p)) = E(p). It follows that E(p) ⊆ p−1(E(p))

and since p−1(E(p)) ⊆ E(p), we get p−1(E(p)) = E(p) and E(p) is invariant.

Proposition 6.2.4. For a polynomial p with deg (p) ≥ 1, and any z ∈ Ĉ, the grand orbit [z] is

a completely invariant set.

Proof. If w ∈ [z], then pn(w) = pm(z) for some integers m,n > 0. This implies p(w) ∈ [z]

since,

pn(p(w)) = p(pn(w)) = p(pm(z)) = pm+1(z)

Therefore, we have p([z]) ⊆ [z]. Now suppose u ∈ p−1([z]) and p(u) = w for some w ∈ [z]. Then

we have,

pn+1(u) = pn(w) = pm(z)

Therefore u ∈ [z], and hence p−1([z]) ⊆ [z]

Proposition 6.2.5. [z] is the smallest invariant set containing z.

Proof. Let E be any invariant set containing z. Then E contains all the forward and reverse

iterates of z, in particular pn(z) ∈ E for all n. Obviously z ∈ [z]. If w is some other point in

[z] then pn(z) = pm(w) for some n,m ≥ 0 (Note both n > m, n = m and n < m are possible

and these are assumed to be the lowest choice of n and m for which this holds). If m = 0 we

immediately have w = pn(z) ∈ E. If m ≥ 1 we have,

pm(w) = pn(z)

⇒ p−1(pm(w)) = p−1(pn(z))

⇒ pm−1(w) = p−1(pn(z))

⇒ pm−1(w) ∈ p−1(E) ⊆ E

The first implication might not seem obvious until one realises that in this case (where m 6= 0),

taking p−1(pn(z)) gives two points, one in the orbit of z and one in the orbit of w. These points
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are distinct but the above is true for one of them. By induction on m we have w ∈ E, and so

[z] ⊆ E and so any invariant set containing z must also contain [z].

Theorem 6.2.6. For a polynomial p, with deg (p) ≥ 2, E(p) has at most two points.

Proof. ∞ is an exceptional point because [∞] = {∞}. If there exists a finite point z ∈ E(p),

then p must act as a permutation of the finite set [z]. Hence some iterate pn will be the identity

on [z]. By complete invariance of [z] the only solution w of pn(w) = z is w = z. Suppose pn

has degree d. Then pn(w) = z has d solutions counting multiplicities. Hence,

pn(w)− z = a(w − z)d

for some a 6= 0, and there is at most one z with this property. Therefore, there is at most one

finite point in E(p).

Example 6.2.7. We’ve seen p(z) = z2 a few times already. The grand orbit of the fixed point

0 is actually just {0} itself. This is because p(0) = 0 and p(z) = 0 implies that z = 0. The

orbit of 0 is the singleton set {0} because it is a fixed point. Despite the fact that 0 is a

superattracting fixed point (and thus points in the basin of attraction of 0 converge to it as

n→∞), there are no other points whose orbits actually contain 0. Thus the exceptional set is

given by E(p) = {0,∞}

Example 6.2.8. Take the polynomial p(z) = 2 + 4(z − 2)2. The grand orbit of the fixed point

at 2 is finite because p(2) = 2 and

p(z) = 2 ⇔ 4(z − 2)2 = 0 ⇔ z = 2

So [2] = {2} and E(p) = {2,∞}.

We already know a good amount about the exceptional set from the conclusions just made.

However, it is of utmost importance to understand how this set fits in with the already estab-

lished Julia and Fatou sets if we are to use it to our advantage. Given that the union of the

Julia and Fatou set of a polynomial is the whole of Ĉ, where does the exceptional set fit in?

Theorem 6.2.9. If p is a polynomial with deg (p) ≥ 2 then E(p) ⊆ F (p), i.e. all the exceptional

points lie in the Fatou set.

Proof. We have proved that ∞ ∈ F (p). From the previous theorem, if there is a finite point in

E(p) it must be a superattracting fixed point of some iterate pn. Therefore it must be in F (pn).

We claim that F (pn) = F (p). Firstly it is fairly obvious that F (p) ⊆ F (pn) since the iterates

of pn are a subset of the iterates of p. To see this note that,

pn ◦ pn ◦ · · · ◦ pn︸ ︷︷ ︸
k times

= pkn
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So, F (p) is the largest open set on which the family of iterates {p, p2, p3, . . . } is equicontinu-

ous, whereas F (pn) is the largest open set on which the family of iterates {pn, p2n, p3n, . . . } is

equicontinuous. Since n ≥ 1, the second set of iterates is contained in the first, i.e.

{pn, p2n, p3n, . . . } ⊆ {p, p2, p3, . . . }

Since there are extra functions in the bigger set, it is harder for that family (the family of

iterates of p) to be equicontinuous and thus the Fatou set for p can’t be larger than the Fatou

set for the smaller family of iterates of pn. Therefore, F (p) ⊆ F (pn). To see the reverse inclusion

first assume the iterates {pnk : k ≥ 0} are equicontinuous on F (pn). Then given any η0 > 0,

there exists δ0 > 0 such that,

σ(z, z0) < η0 ⇒ σ(pnk(z), pnk(z0)) < δ0

Note that η0, δ0 are chosen instead of the usual δ, ε in order to simplify forthcoming notation.

Now, pj is uniformly continuous on Ĉ means given any ε there exists δj > 0 such that,

σ(w1, w2) < δj ⇒ σ(pj(w1), p
j(w2)) < ε

We know from equicontinuity of {pnk : k ≥ 0} that given ηj > 0, there exists δj > such that,

σ(z, z0) < ηj ⇒ σ(pnk(z), pnk(z0)) < δj

and from uniform continuity,

σ(z, z0) < ηj ⇒ σ(pj(pnk(z)), pj(pnk(z0))) < εj

Therefore pnk+j is equicontinuous on the same set as {pnk : k ≥ 0} where k ≥ 0 and

j = 0, 1, . . . , n−1. Because a finite union of equicontinuous families is equicontinuous, it follows

that {pm : m ≥ 0} is equicontinuous on the same set and thus F (pn) ⊆ F (p). Hence,

F (pn) = F (p).

Proposition 6.2.10. If p a polynomial of degree at least one and z ∈ Ĉ, then O−(z) is finite

iff z ∈ E(p).

Proof. This is one of the most important theorems in this section. We’ve already stated that

for z ∈ E(p), O−(z) is finite. For the converse, assume O−(z) is finite, and let,

Bn =
⋃
m≥n

p−m{z} = {w ∈ Ĉ : pm(w) = z,m ≥ n}

This is the set of backwards iterates of the point z which go backwards at least n iterations (i.e.

they are at least n iterations away from z.) If n is large we have fewer inverse iterates, but as

n gets lower we include inverse iterates which are closer and closer to z (in terms of iteration),
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thus,

O−(z) = B0 ⊇ B1 ⊇ B2 ⊇ · · ·

Because O−(z) is finite we must have Bn+1 = Bn for some n, otherwise we would be taking

strict subsets of a finite set an infinite number of times which isn’t possible. Saying Bn+1 = Bn

is equivalent to saying that the inverse iterates only go back so far, after which point there are

no more (in other words that O−(z) is finite). From this we get p−1(Bn) = Bn which means p

must permute the elements of Bn which is thus invariant.

Because of this invariance we can say that z ∈ pm(Bn) ⊆ Bn, and thus [z] ∈ Bn since any

invariant set containing z must contain [z] by proposition 6.2.5.
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Chapter 7

Normal Families

7.1 Preliminary Work

Proposition 7.1.1. If D is a union of components of F (R), (where a component is a maximal,

connected subset of F (R)) such that D is invariant, then ∂D = J(R).

Proof. Any completely invariant subset of J(R) is dense in J(R). Because ∂D is an invariant

subset of J(R), it must also be dense in J(R). But ∂D is closed so ∂D = J(R).

This proof is adapted from [2, p 57]. We can prove a more concise version of this proposition

by using Montel’s theory of normal families.

7.2 Normal Families

The theory of normal families was initially formalised by Montel but put to extensive use by

Fatou and Julia in the study of complex dynamics. The Fatou and Julia sets can be defined

using normal families rather than equicontinuous families. It is unsurprising therefore that there

is a close relationship between the two concepts. However, the more powerful assumption of

normality is important for some subsequent results and discussion.

Definition 7.2.1 (Normal). A family of functions {Fi : i ∈ I} from a metric space (X, dX) to

another metric space (Y, dY ), is said to be normal in X if every infinite sequence of functions

from {Fi : i ∈ I} contains a subsequence which converges locally and uniformly (on every

compact subset) on X.

To emphasise the connection between normal families and equicontinuous ones, we’ll state

the following theorem.

Theorem 7.2.2 (Arzela-Ascoli). Let G ⊆ Ĉ be a domain, i.e. an open, connected set. A family

F of continuous functions with values in (Ĉ, σ) is normal on G iff F is equicontinuous on every

compact set K ⊆ G.

This is a version of the standard Arzela-Ascoli theorem in Complex Analysis which is sim-

plified greatly here because we’re working in the Riemann sphere which is compact. Already
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we’re in a position to prove a quite useful theorem this time due to another stalwart of both

Complex Analysis and Dynamics, Paul Montel. We’ll do this a little later on.

Definition 7.2.3 (Connectedness). A set X is called connected if there does not exist proper

closed subsets A,B ⊆ X such that A ∪B = X but A ∩B = ∅.

Definition 7.2.4 (Simple Connectedness). A set X is called simply connected if it is connected

and every closed curve can be continuously deformed into some constant curve in X.

Proposition 7.2.5. Let G ⊆ Ĉ be an open subset of the Riemann sphere. Then Ĉ \G = Gc is

connected iff each component of G is simply connected.

This will be particularly useful if we let G be the Fatou set F (R) of some rational function

R. Then the proposition becomes the following: J(R) is connected iff each component of F (R)

is simply connected [3, p 81].

Definition 7.2.6 (d-fold Map). A d-fold map f of V onto W is a map where for all w ∈ W ,

f(z) = w has d solutions in V (counting multiplicities). For example any rational function R(z)

of deg d is a d-fold map.

Theorem 7.2.7. If U is a completely invariant component of F (R), then ∂U = J(R). Further-

more, every other component of F (R) is simply connected and there are at most two completely

invariant subsets of F (R).

Before we prove this theorem we’ll need to familiarise ourselves with the Riemann-Hurwitz

relation. This says that a rational map of degree d has at most 2d − 2 critical points. If we

compose R with a Möbius transformation φ (which doesn’t change the critical points) so that

R̃(z) = (φ ◦ R)(z) =
P (z)

Q(z)
we can reduce to the case where R̃(∞) = 0. This implies that

deg (P ) is strictly less than deg (Q), and furthermore that R̃ is of the following form,

R̃(z) =
P (z)

Q(z)
=
αzd−1 + · · ·
βzd + · · ·

Then we have,

R̃′(z) =
Q(z)P ′(z)− P (z)Q′(z)

Q(z)2
=
−αβz2d−2 + · · ·

Q(z)2

And so R̃ (and hence R) has 2d− 2 critical points (counting multiplicities) [2, p 54].

Proof.[of 7.2.7] The first part is true from the proposition 7.1.1. If we consider {Rn : n > 0}
on Ĉ \ U , then {Rn : n > 0} is normal there because

J(R) = ∂U * Ĉ \ U

Also Ĉ\U ⊆ F (R) since {Rn : n > 0} is also normal on U by assumption but U isn’t in Ĉ\U .

Since U is connected, each component of Ĉ \ U must be simply connected. If we consider U to

be a simply connected invariant component then R is a d-fold map of U onto U . Thus U must
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contain d− 1 critical points and since there are at most 2d− 2 critical points, there are at most

two such components. [2, p 70]

Conveniently, we are now in a position to prove an assumption from our discussion of the

Mandelbrot set in a previous chapter. We stated that for a polynomial of the form p(z) = z2+c,

if the orbit of 0 stays bounded then J(p) is connected. Equivalently, we could say that if 0 isn’t

in the basin of attraction for ∞, then J(p) is connected. This is because 0 is the only finite

critical point of this map.

Theorem 7.2.8. For p(z) with degree p ≥ 2, if the basin of attraction of ∞ contains no finite

critical points then J(p) is connected.

Proof. Denote by A(∞), the basin of attraction of the superattracting fixed point at ∞.

Now we’ll use theorem 7.2.7. We know from Boettcher’s argument in example 4.1.4 that p(z)

is conjugate to ζd in a neighbourhood of ∞ under some conjugation function ϕ. If there

are no finite critical points in A(∞), then we can extend ϕ to the whole of A(∞). Then

ϕ : A(∞) → {ζ ∈ Ĉ : |ζ| > 1} which is the complement of the closed unit disk. This implies

that A(∞) is simply connected. Thus ∂A(∞) = J(p) is connected [2, p 65,66].

7.3 Montel’s Theorem

For the next section we’ll first state and prove a variant of Montel’s theorem and then extend it

to the Riemann sphere. The proof usually relies on the more general version of the Arzela-Ascoli

theorem stated earlier, but our version will not. The first theorem below was taken from [4, Ch

5], and the subsequent theory is adapted from [4, Ch 8].

Theorem 7.3.1 (Montel for C). Let G ⊆ C be open and F a family of analytic functions

F = {f : G→ G | f is analytic}

If there exists finite M with sup
z∈G
|f(z)| < M for all f ∈ F then F is equicontinuous on G.

Proof. For z0 ∈ G there exists r > 0 such that B(z0, r) ⊆ G. Choose δ0 <
r
2 , so 2δ0 < r . Then

we have,

B(z0, 2δ0) ⊆ B(z0, r) ⊆ G

From the Cauchy integral formula we have,

f ′(z) =
1

2π

∫
|ζ−z0|=2δ0

f(ζ)

(ζ − z)2
dζ
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for z ∈ B(z0, 2δ0). If we take z ∈ B(z0, δ0), then,

|f ′(z)| =

∣∣∣∣∣ 1

2π

∫
|ζ−z0|=2δ0

f(ζ)

(ζ − z)2
dζ

∣∣∣∣∣
≤ 1

2π
(2π)(2δ0) sup

|ζ−z|=2δ0

|f(ζ)|
(ζ − z)2

≤ 2δ0
M

δ20

=
2M

δ0

So for |z − z0| < δ0 we have,

|f(z)− f(z0)| =

∣∣∣∣∫ z

z0

f ′(ζ) dζ

∣∣∣∣
≤ |z − z0| sup

|ζ−z0|=2δ0

|f ′(ζ)|

≤ |z − z0|
2M

δ0

So given ε > 0, if we choose δ = min

{
δ0, ε

δ0
2M

}
we get,

|z − z0| < δ0 ⇒ |f(z)− f(z0)| < ε

for all f ∈ F . Thus F is equicontinuous on G.

We’ll now use Montel’s theorem to prove and equivalent version for the Riemann sphere.

As might be expected, the only real obstacle to deal with, is the treatment of the extra point

at ∞.

Theorem 7.3.2 (Montel for Ĉ). If G ⊆ Ĉ and H ⊆ Ĉ are open and not the empty set then,

F = {f : G→ Ĉ | f is holomorphic and f(G) ∩H = ∅}

is equicontinuous on G.

Proof. If ∞ ∈ H then there exists R > 0 with

{z ∈ C : |z| > R} ⊆ (H ∩ C) = H \ {∞}

Then f(G) ⊆ B(0, R) for all f ∈ F . Then by the standard version of Montel’s theorem, F is

equicontinuous at each point of G with respect to the Euclidean metric, i.e. given z0 ∈ G and
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ε > 0 there exists δ > 0 such that.

|z − z0| < δ ⇒ |f(z)− f(z0)| < ε

⇒ σ(f(z), f(z0)) < ε

since σ(f(z), f(z0)) < 2|f(z)−f(z0)|. Thus F is also equicontinuous with respect to the chordal

metric. If ∞ /∈ H, choose w0 ∈ H and let E be the family,

E =

{
g(z) =

1

f(z)− w0
: f ∈ F

}

Then we have a set H̃ =

{
1

w − w0
: w ∈ H

}
such that g(G) ∩ H̃ = ∅ and ∞ ∈ H̃. Thus E is

equicontinuous on G by the first part. Now define φ : Ĉ→ Ĉ by φ(ζ) =
1

ζ
+w0. Then φ ◦ g = f

since,

φ(g(z)) = φ

(
1

f(z)− w0

)
= f(z)− w0 + w0 = f(z)

and φ is uniformly continuous on Ĉ. By uniform continuity, given ε > 0, there exists δ > 0 such

that,

σ(g(z), g(z0)) < δ ⇒ σ(φ(g(z)), φ(g(z0)) < ε

for all g ∈ E . Hence, F = {φ ◦ g : g ∈ E} is equicontinuous on G.

Theorem 7.3.3. If p is a polynomial with deg (p) ≥ 2, then J(p) has empty interior.

We’ve seen two examples of such polynomials already (p(z) = z2 and p(z) = z2 − 2) whose

Julia set is a simple curve and thus has empty interior.

Proof. Let G = (J(p))◦ ⊆ J(p). Since J(p) is invariant, the values of the iterates {pn : n ≥ 1}
restricted to G can’t intersect F (p) so pn(G)∩F (p) = ∅ for all n ≥ 1. Because F (p) is open and

non-empty for deg (p) ≥ 2 (since ∞ ∈ F (p)), we can apply Montel’s theorem with H = F (p)

to say that the family,

F = {pn : n ≥ 1}

is equicontinuous on G. This is due to the fact that polynomials are holomorphic on C and

pn(G) ∩ F (p) = ∅ as stated already. Thus G ⊆ F (p) and G ⊆ J(p) which is a contradiction.

Hence G = ∅ and J(p) has empty interior.

7.4 Inverse Iteration Method

Theorem 7.4.1 (Montel/Picard). If G ⊆ Ĉ is open and a, b, c ∈ Ĉ are three distinct points

then,

F = {f : G→ Ĉ | f is holomorphic and f(G) ∩ {a, b, c} = ∅}

is equicontinuous on G.
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Proof omitted, see [1, p 76].

This bears a resemblance to Montel’s theorem which we proved in the previous section. How-

ever, the specific choice of three points {a, b, c} rather than an unknown set makes this theorem

highly useful. We omit the proof as it is quite involved and would constitute a significant di-

gression from the topics covered here. We shall however, make extensive use of this theorem to

prove some subsequent ones.

Corollary 7.4.2. If p is a polynomial with deg (p) ≥ 2, z ∈ J(p) and U is an open set containing

z then the set,

A = Ĉ \
∞⋃
n=1

pn(U)

contains at most two points and is contained in E(p). Intuitively, the union of the forward

orbits of points in the set U will contain every point in Ĉ apart from the exceptional points, of

which there are at most two.

Proof. If this set had more than two points then {pn : n ≥ 1} would be equicontinuous on

U by previous theorem. Then U ⊆ F (p) which is a contradiction since z ∈ U and z ∈ J(p).

Say there were a point w ∈ A which is not in E(p). Then [w] is infinite by definition of E(p)

which implies the set of inverse iterates O−(w) =

∞⋃
n=1

p−n(w) is infinite. Since A has at most

two points, some inverse iterate of w must be in
∞⋃
n=1

pn(U) which means w ∈
∞⋃
n=1

pn(U). This

contradicts our choice of w.

At last we have an obvious interesting conclusion from the previous theorem-heavy section.

We’ve covered a fair bit of ground in terms of complex analysis to get here having seen the the-

orems of Ascoli-Arzela, Montel and Picard. This corollary also demonstrates a nice dichotomy

between the orbits of certain points and the exceptional set. This connection will become even

more clear in subsequent theorems but first we need another quite elementary result.

Proposition 7.4.3. If p is a polynomial function with deg (p) ≥ 2, then J(p) is infinite.

Proof. Firstly, we need to show that J(p) 6= ∅. Assume the contrary, that J(p) = ∅. Then

{pn : n ≥ 1} is equicontinuous on Ĉ meaning F (p) = Ĉ. We know∞ is a superattracting fixed

point of p so the iterates tend to infinity in its basin of attraction. By Vitali’s (see [3, p 56])

theorem pn →∞ uniformly on compact subsets of Ĉ. And since F (p) = Ĉ is compact, pn →∞
on F (p). This is a contradiction since p must also have a finite fixed point. Thus J(p) 6= ∅.

Now we know there exists some point z ∈ J(p). Since J(p) is completely invariant, if it is

finite then z must be an exceptional point as [z] would be finite. This is a contradiction because

we know that the exceptional points are contained in the Fatou set. Therefore J(p) must be

infinite.
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Now we’ll introduce a new concept which will all but complete our analysis of the Julia set.

The following definition was coined by Georg Cantor.

Definition 7.4.4 (Derived Set). For a subset S of a topological space X, the derived set S′ (of

S) is the set of limit points of S. We’ll use this to simplify the next definition.

Definition 7.4.5 (Perfect Set). A subset S of a topological space X is called a perfect set if it

is the set of limit points (accumulation points) of S. In other words, every point of S is a limit

point of a sequence in S. Equivalently, a subset S of a topological space X is called a perfect

set if it is equal to its derived set, i.e. if S = S′.

From this we can say that a perfect set is a closed set with no isolated points.

Theorem 7.4.6. If p is a polynomial function with deg (p) ≥ 2, then J(p) is a perfect set.

Proof. We know that J(p)′ ⊆ J(p) because J(p) is closed. Because J(p) is an infinite closed

subset of a compact space, it is also compact and therefore J(p)′ is non-empty. We claim that

J(p)′ is invariant. Because p is surjective we need only show backwards invariance p−1(J(p)′) =

J(p)′. Firstly, for z ∈ J(p)′ there exists a sequence (zn)∞n=1 ⊆ J(p) such that zn → z as n→∞.

Then by continuity of p,

p(zn)→ p(z) ⇒ p(z) ∈ J(p)′

⇒ p(J(p)′) ⊆ J(p)′

⇒ J(p)′ ⊆ p−1(J(p)′)

since p(zn) is in J(p) due to invariance. Secondly, fix z ∈ p−1(J(p)′) and let w = p(z). If u is an

open neighbourhood around z then, p(U) is an open set around p(z) = w. We know w ∈ J(p)′

and this implies p(U) ∩ J(p) 6= ∅ since w is in there. But also we have,

p−1(p(U) ∩ J(p)) = U ∩ p−1(J(p)) = U ∩ J 6= ∅

Hence, z ∈ J(p) and so p−1(J(p)′) = J(p)′, which when combined with the first part means

p−1(J(p)) = J(p) and thus J(p)′ is invariant. Now we have that J(p)′ is a closed, invariant set

distinct from F (p) and so because J(p) is already minimal, J(p) ⊆ J(p)′. The reverse inclusion

was the first claim of this proof. Thus J(p) = J(p)′ and J(p) is perfect.

This shows that every point of J is a limit point or accumulation point. The following

theorem formalises a remarkable application of this development.

Theorem 7.4.7. If p is a polynomial with deg (p) ≥ 2, and z /∈ E(p), then J(p) is contained

in the closure of O−(z). Furthermore, if z ∈ J(p), then J(p) is the closure of O−(z).

Proof. Say z /∈ E(p). For w ∈ J(p) and an open set U containing w, we must have z ∈ pn(U)

for some integer n ≥ 1. Then there exists ζ ∈ U such that pn(ζ) = z. Since p−n(z) ∈ O−(z) we

now have that U contains a point in O−(z). Therefore J is contained in the closure of O−(z).

If we furthermore assume that z ∈ J(p), then by invariance of J(p), p−n(z) ⊆ J . Since J is
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closed, it must contain the closure of O−(z). If we combine this with the first part, then we see

that J is equal to the closure of O−(z).

This theorem shows that the limit of the backwards orbit of almost any point in Ĉ gives a

point in the Julia set. The inverse iterates of any non-exceptional point are infinite and con-

verge to a point on the boundary of the Julia set. This simple observation yields a fairly näıve

algorithm for computing Julia sets.

J(p) can be computed explicitly using a method called the inverse iteration method (IIM).

This is done by taking the inverse of the given polynomial function and iterating this inverse.

For an informal discussion, consider the earlier case where p(z) = z2 + c. By iterating the

inverse function p−1(z) =
√
z − c one will eventually get a point on the border of the Julia set.

Obviously with the square root, there usually exists two inverse iterates for each point. For

example note that in this case,

(p ◦ p−1)(z) = p(p−1(z)) = p(
√
z − c ) = z − c+ c = z

(p−1 ◦ p)(z) = p−1(z2 + c) =
√
z2 + c− c =

√
z2 = ±z

so the number of inverse iterates doubles at every iteration of p−1. The algorithm normally is

pre-programmed to pick one or the other of these values. As a primitive example take c = 0,

then p(z) = z2 and the inverse is p−1(z) =
√
z . If we take the positive root every time and

start at the point 2 ∈ F (p) we get,

f(2) = 2
1
2 = 1.414

f2(2) = 2
1
4 = 1.068

f3(2) = 2
1
8 = 1.033

where fn(2)→ 1 as n→∞ which is a point in J(p).

Although this method is fairly näıve and costly in computing terms, most of the more re-

fined algorithms used nowadays for generating pictures of Julia sets are based on the analysis

in the previous chapter and the algorithm presented above. The revival of the area of Complex

Dynamics in the 1980’s was aided massively by the development of computer technology to the

point where Julia sets for more complicated examples could be computed and presented in an

elegant fashion to those unfamiliar with the subject.
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Chapter 8

Components of the Fatou Set

8.1 Classification

Definition 8.1.1. A component U of the Fatou set F (R) is said to be:

• periodic if for some integer n ≥ 1, Rn(U) = U ,

• eventually periodic if for some integer m ≥ 1, Rm(U) is periodic

• wandering if all the sets Rn(U) for n ≥ 1 are pairwise disjoint.

A component of F (R) which is wandering is also called a wandering domain. The following

theorem, due to Sullivan, shows that no such domains actually exist.

Theorem 8.1.2 (Sullivan). Every component of the Fatou set F (R) of a rational map is even-

tually periodic (or periodic).

This theorem which was proved by Dennis Sullivan in 1985, is more generally known as

the “no wandering domains” theorem. By eventually periodic we mean pre-periodic as in

the definition given already. There are examples of entire functions in particular which have

wandering domains as Baker’s proved in his paper [8] (in fact he proved a conjecture of his

own from some years previous). Rather than prove this quite lengthy theorem rigorously, we’ll

simply provide a sketch of the proof. I’ll warn the reader that a lot of the specifics are omitted

here and for a full version of the proof consult [3, Ch 8].

Proof.[(Sketch)] The first simplification relies on a theorem by Baker which says that the ex-

istence of a wandering domain implies the existence of a simply connected wandering domain.

Specifically, if U is a wandering domain then Rn(U) is simply connected for sufficiently large n

[9].

From the Cauchy-Riemann equations we know that a function f is analytic if
∂f

∂z
= 0. From

this we introduce the Beltrami equation
∂f

∂z
= µ

∂f

∂z
where µ is a complex-valued function known

as the Beltrami coefficient. If µ = 0 then a solution of the Beltrami equation is analytic. µ
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is a measure of how close a solution to
∂f

∂z
= µ

∂f

∂z
is to being conformal. We say that f is

quasiconformal with deviation µ. While this only sets the background, the remainder of the

proof relies heavily on manipulation of this Beltrami coefficient.

Proposition 8.1.3. If the Fatou set F (R) of a rational map consists of a finite number of

components then they are all periodic.

Proof. Say there are finitely many components and let U0 be one of them. The claim is that U0

must be periodic. From Sullivan’s theorem we know that the only other possibility is that U0

is pre-periodic so lets assume that and find a contradiction. Any rational function R maps the

Fatou set F (R) onto F (R) since otherwise, R(F (R)) would be strictly contained in F (R) and

there would be a component Ui ⊆ F ((R)) with R(Ui) * R(F (R)) which contradicts invariance

of the Fatou set. If we’re assuming that there are a finite number of components Ui then this

map will also be injective.

U0 pre-periodic means that Rn(U0) 6= U0 for all n ≥ 1 and Rn+j(U0) = Rj(U0) for some

n, j ≥ 1. In other words some iterate Rj(U0) is periodic. Now,

Rn+j(U0) = Rj(U0) and Rn+j(U0) = Rj(Rn(U0))

Since Rn(U0) 6= U0, these are two distinct components of F (R) mapped to the same component

by Rj which contradicts injectivity of R. Thus Rn(U0) = U0 for some n ≥ 1 and therefore U0

is periodic.

Theorem 8.1.4. The number of components of the Fatou set can be 0, 1, 2,∞ and all cases

occur.

Proof. Assume first that the number of components is finite. Then from previous proposition

we know that the components are periodic. Furthermore, we have that there exists N such that

RN (U) = U for every component U . So every component is invariant under RN . By theorem

7.2.7, there are at most 2 of these components [2, p 70].

Here are examples (most of which we’ve seen before) of the cases where the Fatou set has

0, 1, 2,∞ components.

Example 8.1.5. The Lattés function l(z) =
(z2 + 1)2

4z(z2 − 1)
has Julia set J(l) = Ĉ and Fatou set

∅ and therefore has 0 components. There is a theorem which states that for a rational function

R, if every critical point of R is pre-periodic then J(R) = Ĉ [3, p 75]. The above is probably

the most famous example and was discovered by Samuel Lattés. As a simpler case take John

Guckenheimer’s example R(z) =
(z − 2)2

z2
. It is easy to check that this map has three critical

points at 0, 2,∞. However, under this map 2 7→ 0 7→ ∞ 7→ 1 7→ 1 7→ . . . which means all

three points are pre-periodic and thus R has Fatou set F (R) = ∅. The only justification worth
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making is that ∞→ 1; the rest are obvious. To see this let,

f(z) =
z2 − 4z + 4

z2
=

1− 4
z + 4

z2

1

This gives lim
z→∞

f(z) = 1.

Example 8.1.6. The Fatou set of the map p(z) = z2 + c where |c| > 2 has one connected

component. In fact, this is true for all c /∈M where M is the Mandelbrot set.

Example 8.1.7. The Fatou set of the squaring map p(z) = z2 has 2 components namely

{z ∈ Ĉ : |z| > 1} and {z ∈ Ĉ : |z| < 1}.

Example 8.1.8. The map p(z) = z2−1 has a Fatou set with an infinite number of components.

We know from Sullivan’s theorem that every component of the Fatou set is periodic or

eventually periodic. In order to classify these components we shall now state several definitions

and combine them in a subsequent theorem.

Definition 8.1.9 (Periodic Components). A periodic component U (with period n) of the

Fatou set F (R) is called:

• parabolic if there exists a neutral fixed point z ∈ ∂U for Rn such that all points in U

converge to z.

• a Herman ring if it is conjugate to an irrational rotation of some annulus {z ∈ Ĉ : 0 <

r < |z| < 1} onto itself.

• a Siegel disk if it is simply connected and Rn is conjugate to an irrational rotation of the

disk {z ∈ Ĉ : |z| < 1} onto itself.

“Conjugate to an irrational rotation” means there exists a conjugation map ϕ such that

(ϕ ◦ f ◦ ϕ−1)(z) = eiθz where θ is irrational.

Theorem 8.1.10. Suppose U is a periodic component of the Fatou set F (R). Then exactly one

of the following holds:

• U contains an attracting fixed point,

• U is parabolic,

• U is a Siegel disk,

• U is a Herman ring.

For the proof see [2, Sec 4.2] or [3, Ch 7]. The existence of Siegel disks and Herman Rings

was unsurprisingly proved by Carl Ludwig Siegel and Michael Herman respectively. Their ex-

istence was one of the main problems which Fatou and Julia encountered in their analysis of

Complex Dynamical systems.

47



8.1. CLASSIFICATION CHAPTER 8. COMPONENTS OF THE FATOU SET

We’ve dealt a lot of the main aspects of dynamics in this paper. Specifically, Sullivan’s “No

Wandering Domains” theorem, Koenig’s theorem and the Inverse Iteration Method (IIM), are

three great eclectic examples of how the field has been developed over the past century. Firstly

Sullivan proved that rational functions can’t have wandering domains. This initially was a

strong reason for the ailing interest in complex dynamics post Fatou and Julia, who hadn’t

managed to prove this conjecture.

Koenig’s theorem was based largely on the work of Ernst Schröder ten years previous [7, p

10], while the IIM emphasises how modern computational power revived the subject in the

1980’s.

Having said all this, for any avid readers of the field there are a few areas which deserve

further investigation. In particular the paper by Jean-Christophe Yoccoz [10] (which won a

fields medal in 1994) would be very interesting to analyse in depth as his results were some of

the most important recent developments in the area. Specifically, his use of the Wolff-Denjoy

theorem (which is actually a collection of separate results from Arnaud Denjoy and J. Wolff)

seems to have a particular elegance; one might say a mathematical “Je ne sais quoi” - quite apt

given that he was a Frenchman. Also, the work of Douady and Hubbard which we’ve mentioned

in connection with the Mandelbrot set is a bounty of mathematics waiting to be discovered.

Again, their conclusions were so powerful that they wouldn’t be lost on one who would be less

familiar with complex dynamics.
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