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Summary

Simulation is one of the primary tools used in studying computer networks.

However the difficulties of simulating a network grow with its size. With the

hardware resources currently available it is not feasible to simulate Internet scale

networks using conventional techniques. The sheer size of the Internet prohibits

its detailed simulation by, for example, discrete event simulation. The complexity

of its underlying protocols has hindered the development of analytic models.

The problem has been attacked on two fronts. One approach involves increas-

ing computational power by harnessing many processors at once, typically using

the methods of parallel discrete event simulation. The other approach advocates

increasing the abstraction of a model, accepting that some approximation will

be introduced into the model, but seeking to minimise its effect on behaviour of

interest.

Parallel discrete event simulation in network modelling has met with mixed suc-

cess. The overheads of the event handling system are high, and often the method

does not scale well to many processors. On the other hand, abstraction methods,

if applied too freely, can reduce the accuracy of a model and even eliminate the

behaviour under study.

We believe we have struck a balance in our implementation, Psim, of a network

simulator. Both abstraction and parallelisation techniques are used. In particular

algorithmic routing is used to avoid the cost of per node routing tables. Our

parallelisation scheme eschews the complexities of a parallel discrete event handler.

Instead, links that cross interprocessor boundaries manage their communication

directly. This has the advantage of confining interprocessor communication to just

the area in which it is needed.

The simulator models TCP traffic in high speed wired networks. We demon-

strate an unrivalled degree of scalability, both in terms of number of simulated

nodes, and in the number of simulating processors. A single processor is capable

of simulating over one hundred thousand nodes. With sixty four processors we can

simulate ten million nodes. This is an order of magnitude larger than previously

recorded. Even with sixty four processors, and scaling the results to take into

account worst case performance of the event handling code, the simulator exhibits

a half linear speedup.
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Chapter 1

Introduction

As computer networks have grown in size and complexity, the demand for network

simulation has grown in tandem. Simulation is a tool used in diverse areas of data

network research. It has been used to test protocols prior to their deployment,

to help understand unexpected behaviour, to predict future requirements and to

help verify theories. In recent years the Internet has become an object of interest

in itself, having reached such a size and complexity that large scale phenomena,

unseen in small networks, have begun to emerge. In this thesis we are concerned

primarily with large scale network simulation.

Simulation is a close relative of analysis and emulation. All three are used as

tools in our efforts to build and understand modern computer networks. Emulation

typically involves testing a real implementation, whether a hardware device or a

software protocol, in an artificial environment. Analysis attempts to describe the

behaviour of a system in mathematical terms. Simulation falls between the two. It

builds a model, usually simplified to a greater or lesser extent, aiming to join the

accuracy of emulation with the convenience of analysis. However the boundary

between these methods is often blurred, and hybrid models, combining elements

of simulation and analysis have become widespread.

The explosive growth of the Internet has posed a grand challenge to network

modellers; can we create analytic models or simulations that are even a fraction of

the size of the Internet, while at the same time retaining enough detail to ensure

their validity? The complexity of the Internet makes its analysis intractable. On

one hand there has been some success in deriving expressions for aspects of its

behaviour (for instance models of TCP window size [70], stationary TCP flow

rates [21], or short TCP connections [69]). However no unifying description of the
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complex traffic flows has been developed. But on the other hand, the sheer number

of connected nodes, the profusion of protocols and number of packets transferred

make a full scale, highly detailed simulation impossible.

but no unifying description of the complex traffic flows.

Although full simulation may not be feasible, we desire to push the envelope of

the possible. Before describing our approach to enabling larger scale simulation, let

us review some of the uses to which it might be put. One of the first applications

of simulation was in the testing and prototyping of new network protocols. As the

arena in which these protocols are deployed is now larger than ever, it is necessary

that we model them at, or close to, this scale. A new protocol may scale well from

tens to hundreds to thousands of nodes, but that is no guarantee it will scale to

the millions of nodes in the Internet; large scale simulation is necessary.

The Internet is a large, complex system. The protocols that regulate its be-

haviour are relatively simple, but the phenomena that have appeared are alto-

gether unexpected. These include congestion storms, route instabilities and sud-

den bursts of traffic. Let us consider a theory recently proposed and discuss how

large scale network simulation could help verify or understand it.

In two preprints [1] [2], Abe and Suzuki propose a similarity between sudden

congestion in the Internet and earthquakes. In the first preprint [2] they claim to

have found an analogue of Omori’s law. This is an empirical law in seismology

stating that the number of aftershocks, dN(t) in the period (t, t + dt) after the

primary earthquake at t = 0 are related by

dN(t)

dt
∼ 1

tp

where the exponent p ranges from 0.9 to 1.5. An Internet aftershock is defined

to be a point in time at which the round trip time between two hosts exceeds a

threshold value.

Their second preprint [1] relates the magnitude of a shock to the frequency

of its occurrence, just as the Gutenberg-Richter Law does for earthquakes. This

law states that the logarithm of the cumulative frequency of earthquakes with a

magnitude greater than m is proportional to the magnitude. The magnitude of

an Internet quake is defined to be the logarithm of the round trip time between

two hosts.

The authors present evidence, gathered using the ping utility, to support their
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claims. How can large scale simulation be of use here? Abe and Suzuki make

the observation that it is easier to study Internet quakes than earthquakes, and

that knowledge gained from studying shocks in the Internet may be of benefit to

seismology. It is easier again to measure these shocks in a simulation — not to

mention less dangerous than measuring earthquakes!

In addition, a simulation allows unrivalled control over an experiment. For

instance, the size and organisation of the network can be modified at will, the

traffic load can be altered, shocks can be induced. This control of the parameter

space could allow a researcher to determine under what conditions the proposed

laws hold — how big does the network have to be for this complex behaviour to

emerge, does it depend on the traffic load, or network topology? This level of

experimentation is not possible in the real Internet.

1.1 Aims and General Approach

Our aim is simple. We wish to advance the state of the art in large scale network

simulation. We are interested in:

• Networks using feedback protocols, in particular the Internet protocols,

TCP/IP.

• High speed wired networks.

• Large networks — at least one hundred thousand nodes.

Our approach to the task has several distinctive features:

• Our techniques are tailored specifically for the problem. In some cases we

have sacrificed generality to achieve the best performance in our area of

interest.

• Our approach stresses memory efficiency and its design is tailored specifically

for network simulation. To simulate a network of over a million nodes,

a simulator cannot afford superfluous features that impact performance or

scalability.

• We use parallel supercomputing techniques so that the largest possible mod-

els may be simulated.
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We have developed a network simulator, Psim, guided by the principles above.

This simulator has achieved the aims we set for it. In particular we demonstrate

that it is capable of modelling networks with over ten million TCP clients. Need-

less to say this demands enormous resources and was made possible by using

parallel computing techniques. We had access to a sixty four processor cluster for

testing the code. However even on a single processor computer Psim is capable of

modelling a one hundred thousand node network.

1.2 Contributions

Our contributions to the field of large scale network simulation are:

• Enhancements to Algorithmic Routing to increase its scalability, perfor-

mance and accuracy

• A parallelisation scheme adapted to network simulation, which avoids the

complexities and overhead of traditional parallel discrete event simulation.

• Offline load balancing of simulations to ensure that all processors in a cluster

contribute fully to the simulation.

• A lightweight, flexible approach to simulator design.

1.2.1 Algorithmic Routing

Algorithmic Routing (AR) [46] [47] is a technique that approximates shortest path

routing and removes the need for routing tables at each node in the network. This

is an immense advantage to the network simulator, as maintaining routing tables

can consume large amounts of memory. For instance a flat routing table has

memory requirements that scale O(N2), where N is the number of network nodes.

A balanced hierarchical scheme scales roughly with O(N log N), where there are

log N levels of hierarchy. A two level hierarchy such as the Internet scales with at

best O(2N
√

N) [58]. AR scales linearly with O(N).

AR maps a network graph onto a tree and uses a simple algorithm to calculate a

path between two nodes. However, AR has problems that until now have restricted

its use in network simulation. The worst of these issues include route lengthening

and concentration of all traffic onto N −1 links. They arise because most network
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graphs are not trees, and hence when mapped to a tree certain links are left

unused. There have been some proposals to mitigate these effects, for instance

by maintaining a separate tree for important traffic sources, but these are not

altogether satisfactory [47].

We propose several enhancements to AR: direct AR, fixed cost routing, route

improvement and multitree AR. Direct AR makes the tree mapping implicit in

the network graph structure. This allows a network simulator to route packets

without any additional memory usage. In some situations it may not be practical

to arrange the network graph in this manner, but in this case the parent of a node

can be explicitly stored. Direct AR also has the benfit of reducing the number of

operations needed to perform packet routing, increasing its performance.

We propose a method for computing the routing algorithm in fixed time. Pre-

viously it had taken O(log N) time to compute. This new scheme makes use of a

double numbering system for nodes.

We devise a method for improving the quality of routes generated by AR. This

heuristic takes a tree and iteratively modifies it so as to reduce the total distance

between nodes.

Our final enhancement is perhaps the most important. We describe a pro-

cedure for generating multiple routing trees in such a way as to reduce traffic

concentration at the busiest nodes, and increase the utilisation of links that are

ignored in single tree AR.

These enhancements collectively make AR a viable tool for use in large scale

network simulation.

1.2.2 Parallelisation

Parallel computing holds the promise of enabling simulations far larger than those

possible on a single computer. In theory, by combining the power of n processors

a simulation should be able to run up to n times faster. However the extra

memory that a parallel computer offers is almost more significant. Many of today’s

computers — especially the low cost, high performance x86 class — are limited

in the amount of memory available to a single processor. This limit is often quite

low — 4 to 8GB for a x86 processor. By running a simulation in parallel one can

model far larger networks than would otherwise be possible.

Parallel discrete event simulation (pdes) has been applied by several groups

to the problem of network modelling. In pdes the nodes comprising the network
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model are partitioned between the processors of the parallel cluster.

pdes is not easy to implement and harder again to implement efficiently. Syn-

chronising event timelines between processors introduces a considerable overhead.

The event handling code we use is entirely sequential in nature. Each processor

maintains an event list but events are not synchronised in the event handling code,

rather we employ a special bridge device to transfer packets between nodes on dif-

ferent processors, and provide synchronisation. This provides a clean interface for

parallelisation. The extra complexity introduced by parallelisation is present only

at the boundary between partitions. This also reduces the complexity of the event

list handling code, which is critical to performance.

1.2.3 Load Balancing

In order to obtain the maximum efficiency from a parallel simulation, all processors

must contribute equally to the task. This requires that the network is partitioned

in such a way that each partition generates an equal number of events. It is not

sufficient to divide the network so that each partition has an equal number of

nodes, since a node in the core of a network will generate far more events than

one on the periphery.

With increasing numbers of processors in a parallel cluster, a good partitioning

scheme increases in importance. A higher number of processors means a corre-

spondingly smaller partition size. With small partitions, any variance in the work

required to simulate a partition has a far greater impact on the simulation effi-

ciency.

We have implemented a form of offline load balancing in our code in order to

ensure a good partitioning. By conducting a trial run and recording the number

of events generated by each node, it is possible to perform a weighted partitioning

of the network. This weighted partition can be used in a full simulation in order

to achieve maximum efficiency.

1.3 Organisation

We continue, in Chapter 2, with an overview of the Internet structure and pro-

tocols. We describe the traditional methods of network simulation and analysis.

With this foundation we can discuss new approaches to network modelling: ab-
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straction, parallelisation, fluid simulation and hybrid techniques. The chapter is

concluded with a survey of the current state of the art network simulators.

The following two chapters contain our contributions to large scale network

simulation. The first, Chapter 3, on Algorithmic Routing, details in depth the

enhancements we introduced above. We extensively test the new techniques, es-

pecially to ascertain their fidelity to shortest path routing. The final example of

the chapter uses a 2.3 million node scan of the Internet as the test case for the

viability of AR.

Chapter 4 describes our approach to implementing a highly parallel network

simulator. We discuss the general principles that guided its design and the tech-

niques used to parallelise it. We include detailed experimental analysis of its

performance and test cases that demonstrate its scalability.

We conclude with Chapter 5 and summarise our findings.



Chapter 2

Literature Survey

This thesis is concerned with large scale network simulation. Interest in the subject

has grown in parallel with the growth of the Internet. However, the origins of many

of the simulation techniques and analytical tools used by researchers in the field

predate the Internet, and even digital computers.

This chapter introduces the field of large scale network simulation. In order

to give a comprehensive view of the field we discuss some material not directly

connected to our own contributions. We begin by briefly describing the structure

of the Internet, and the protocols that lie at its core. We move on in Section 2.2

to a discussion of the two principal methods used to understand and model the

behaviour of a network: analysis and simulation. Pure analysis and pure simula-

tion lie at opposing ends of the spectrum. Some properties of the Internet make

it analytically intractable, while its sheer size makes it un-amenable to detailed,

faithful, simulation.

To surmount these problems, network modellers have pursued several lines of

research. These include parallel simulation, greater levels of abstraction, fluid

simulation and new analytic techniques.

Parallel computing has been used to increase the speed and size of simula-

tions by harnessing the resources of many processors linked together. Section 2.4

outlines new developments in parallelising simulations.

A network can be modelled by the loosest approximations or in the minutest

detail. The level of fidelity of course depends on the type of network behaviour

we wish to study. It is possible, indeed necessary, to abstract aspects of network

behaviour. The aim is to reduce unnecessary complexity without sacrificing the

essential properties that give rise to the richness of behaviour we observe in the In-
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ternet. The tradeoff between the approximations made and the errors introduced

by a particular model must be understood. Recent research to develop more ab-

stract simulations and to understand the effects of approximation and abstraction

is described in Section 2.5.

Fluid simulation, Section 2.6, treats data traffic as a continuous flow of infor-

mation rather than as discrete packets. This has the potential to reduce compu-

tational and storage requirements for simulations.

Several groups have attempted to take advantage of the speed of analytic mod-

els and the accuracy of simulation by creating hybrid models combining elements

of both. These are surveyed in Section 2.7.

Fluctuations in network traffic are expected. However rarely occurring events

can sometimes have a disproportionate effect on the state of a network. The in-

frequency of their occurrence leads to difficulties in simulating their consequences.

There are several techniques that seek to efficiently model these events. We briefly

survey them in Section 2.8.

Although the protocols that regulate the Internet are formally specified, these

alone do not provide enough information to model the Internet. They dictate

standards on how computers on the Internet communicate, but do not proscribe

when two computers communicate, or what is communicated. Nor is any particular

physical topology imposed. We must turn to studies and surveys of the Internet

to discover the types of network topology and traffic patterns to expect. Section

2.9 summarises some recent findings.

The chapter concludes with a discussion of the current state of the art in

network simulators.

2.1 The Internet in a Nutshell

The physical structure of the Internet consists of routers, hosts, links and sundry

other network devices. Hosts connected to the Internet communicate using a

shared family of protocols: in particular the Internet Protocol (IP). Other proto-

cols are layered on top of this base to add extra capabilites. The Transmission

Control Protocol (TCP), for instance, adds reliability and flow control. Informa-

tion is transferred between hosts by discretising it into packets. Packets are sent

through the links connecting two hosts, and reassembled at the destination.

It is the presence of protocols such as TCP, which employ feedback to reg-



2.1 The Internet in a Nutshell 10

ulate their behaviour, that adds substantial challenge to the task of network

modelling. Switched telephone networks, the predecessors of today’s computer

networks, lacked many of the complexities introduced by flow control, in particu-

lar.

2.1.1 The Transmission Control Protocol (TCP)

TCP is layered above IP, which provides a way for TCP to send and receive

variable length data packets. However IP does not guarantee reliability, or have

any notion of session or connection. Building on the lower level IP service, TCP

provides basic data transfer, reliability, flow control, connections, multiplexing and

security. TCP is described in [50], but has been gradually enhanced and extended

since [5]. We summarise its behaviour and operation here.

TCP can transfer a continuous stream of data between two hosts by split-

ting the data into segments and passing them to the IP level for transmission

through the network. Since IP does not guarantee the correct delivery of packets,

TCP must have mechanisms for dealing with lost, duplicated, delayed or damaged

packets. To this end each packet transmitted includes a sequence number and a

checksum. The sequence numbers start from a randomly chosen initial sequence

number (IST), and each data byte has an associated sequence number such that

SEQ(n) = IST + n

where SEQ(n) is the sequence number of the nth data byte.

The sequence number ensures that packets can be correctly ordered and du-

plicates detected. In addition, the receiver must acknowledge data by sending an

acknowledgement (ACK) back to the sender. At the receiver, the checksum allows

damaged packets to be discarded.

In TCP the receiver controls the rate at which the sender can transmit data.

With every ACK that the receiver sends back to the sender, it includes a window

indicating a range of sequence numbers beyond that of the last data byte received.

The sender may not send any packets with data whose sequence number is beyond

this window. The frequency with which ACKs are generated, and the manner in

which the window is calculated has evolved since the introduction of TCP. Several

algorithms for controlling the TCP window size have been developed and are in

common use [5].
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TCP allows for multiplexing of traffic (multiple independent connections be-

tween two hosts) by the use of port numbers. The combination of a port number

and a host address is known as a socket and a pair of sockets uniquely identifies a

connection. The port number is stored in the header field of a TCP packet. For

convenience, certain port numbers are commonly reserved for common applica-

tions; for example a telnet server usually uses port 23. A connection consists of a

socket pair, window size, sequence numbers and a few other state variables (these

may vary between implementations)

2.2 Traditional Network Analysis and Simula-

tion

Network modelling naturally falls into two primary categories. Analysis typically

builds a model based on the statistical properties of network traffic and seeks to

predict the bulk behaviour of a network. It is exemplified by queueing theory.

Queueing theory [12] studies the behaviour of systems of servers and queues. Jobs

(or packets in network modelling) arrive at a system, wait in a queue and are

eventually processed by a server. The theory has been applied to phone switches,

production lines, supermarket queues and baggage handling. It attempts to pre-

dict properties such as queue size, packet delay and interarrival distributions given

a description of the input to a system. Certain types of arrival and service time

distributions are well described by queueing theory. If both the interarrival time

of packets at a server and the service time are exponentially distributed, then it is

possible to predict the statistical properties of the queue occupation and output

traffic in many cases.

Unfortunately the traffic distributions observed in the Internet are not so easily

characterised [77]. This has led to the use of simulation as a tool in understanding

and predicting network behaviour.

2.2.1 Discrete Event Simulation

Discrete event simulation (DES) can be described using a mathematical formal-

ism called Discrete Event Systems Specification (DEVS), developed by Zeigler

[99]. It is a two level description, consisting of atomic DEVS and coupled DEVS.

An atomic DEVS models a system as a sequence of transitions between states.
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Furthermore it describes its reaction to external input events and how it generates

output events. An atomic DEVS model is defined as:

atomicDEVS ≡ (S, ta, δint, X, δext, Y, λ).

S is the set of possible sequential states the system may take. ta : S → <0,∞ is the

time advance function; that is, the length of time the system remains in one state

before making a transition to the next state. δint : S → S is the internal transition

function, which models the transition from one state to the next. X is the set

of possible input events. The system’s reaction to external inputs is described

by δext : Q × X → S, where Q is the state of the system, taking into account

the elapsed time, e, since the last transition: Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)}.
The set of possible outputs is given by Y . The output function λ is defined as

λ : S → Y ∪ {Ø}, where Ø is the null–event. Output events are only generated

at the same time as an internal transition, at which point the state before the

transition is used as input. At other times the null–event Ø is output.

Consider the following model of a network buffer in the atomic DEVS formal-

ism. The buffer can hold a finite number of packets, N . The state of the system is

represented by the set S = {queue = {0, 1, . . . , N}, status = {wait , send}}. There

are two input events, one representing a packet arrival, the other requesting that

a packet be output from the buffer (if possible). The buffer remains in a constant

state until either an arrival or ready event is input. On receiving an arrival event

the queue size is increased (up to a maximum of N). On receiving a ready input

the status is changed to send. If the status is send and there are one or more

packets in the queue, then an internal transition occurs. This transition changes

the status of the buffer to wait and removes a packet from the queue. At this

point an output event occurs (departure).
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More formally:

X = {arrival , ready}
Y = {departure}
S = {{(0, 1, . . . , N)}, {send ,wait}}

δext(((n < N, s ∈ {wait , send}), e), arrival) = ((n + 1, s), e)

δext(((n = N, s ∈ {wait , send}), e), arrival) = ((n, s), e)

δint((n 6= 0, send), e) = ((n− 1,wait), e)

λ((n 6= 0, send), e) = departure

ta((n 6= 0, send)) = 0

ta((0 ≤ n ≤ N,wait)) = ∞.

A coupled DEVS consists of a network of coupled components. Each compo-

nent is itself an atomic DEVS. For example a device in a TCP/IP network might

be represented by a buffer (such as the one above) and a processor that takes pack-

ets from the buffer and routes them. The processor could be an atomic DEVS, or

might be several atomic DEVS coupled together.

In a practical discrete event simulation, a timeline of events is created. These

events are sorted in time order. The computer processes these events one by one.

Each event represents an occurrence in the model network. In processing one

event, several others may be created. For example, an event representing a user

making a web page request will generate events to send packets to a web server;

each time a packet is sent over a link, an event is created to schedule the future

arrival of the packet at the destination host.

This method of simulation allows an almost unlimited degree of detail in a

model. It comes with a price though. The computational cost of a simulation

rises with increased simulation detail.

2.3 Analytic Models of Network Protocols

The complexity of the protocols used to regulate network traffic has increased

the difficulty of applying traditional queueing theory to network simulation [77]

and driven the focus of large scale network modelling from analysis to simulation.
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However, progress has been made in developing analytical models of TCP (and

other) traffic.

TCP responds to network congestion by changing the rate at which it injects

packets into the network. The window size reflects the amount of data that can be

transmitted without waiting for acknowledgement. The original TCP specification

[50] did not impose a scheme for updating the window size. Enhancements such

as slow start, congestion avoidance, fast recovery and fast retransmit were later

introduced [5].

Misra et al. [70] have modelled window size behaviour as a stochastic differen-

tial equation. They treat packet loss as a flow of events arriving at a source, rather

than as packets leaving the source with a loss probability. The technique enables

fluid analysis of TCP and TCP–like congestion control schemes. Cassetti and Meo

in [21] develop a model for the stationary behaviour of TCP flows. Their method

allows for the estimation of delay and packet loss for a single TCP source. They

use queueing theory to analyse several superimposed sources. Mellia et al. [69]

have developed a model for short TCP connections, those that remain in the slow

start phase. Such connections account for the majority of Internet connections, if

not for the majority of packets transferred.

The work above is a small representative example of current research into

analytic models of data traffic.

2.4 Parallel Computing

It is not possible to simulate the Internet in detail on a single computer. This

difficulty has motivated the two principle approaches to large scale network simu-

lation: parallelisation and increased abstraction. We will discuss the latter topic

in the next section.

The proposition advanced by advocates of parallel computing is simple: if one

computer can complete a task in ten days, then ten computers working together

should be able to complete the same task in one day, or alternatively a task ten

times larger in the same time. The reality, of course, is more complex. Whether or

not ten computers can simultaneously work on the same task with full efficiency

depends very much on the nature of the task. Parallel efficiency, E(N, P ) for a



2.4 Parallel Computing 15

problem of size N on P nodes is formally defined [59] as

1

P

Tseq

T (N,P )

where T (N,P ) is the runtime of the parallel algorithm, and Tseq is the runtime of

the best sequential algorithm. Typically E(N, P ) ranges from 0 to 1, with a high

value being better. Unfortunately it is not easy to efficiently parallelise network

simulation.

Before discussing the techniques for parallelising a network simulation, let us

review the the types of parallel computer generally available.

A parallel computer has two or more CPUs (processors). There are two primary

classes: shared memory and distributed memory parallel computers. In a shared

memory computer, all processors have equal access to a central store of random

access memory. Two and four processor shared memory computers are quite

common. Shared memory computers with more than four processors are difficult

to construct and are considerably more expensive.

In a distributed memory computer every processor has its own store of random

access memory. Indeed, distributed memory computers are very often clusters of

single processor computers linked by a communication backbone such as Myrinet,

or by a standard network such as Ethernet.

Hybrids of the above two classes also exist. For instance some supercomputers

consist of clusters of nodes. Each node is composed of several processors. Memory

is distributed between the nodes, but within a node it is shared by the processors.

The first task in running a simulation in parallel is to devise a method to split

the work among the available processors. One approach is Parallel Independent

Replication Simulation (PIRS) [63]. Every processor runs its own copy of the

simulation. This is useful if the modeller wishes to examine statistical properties.

Each simulation uses a different initial seed for random variables. The parallel

simulation can explore a greater proportion of the model state space in a given

time than can single processor simulation.

However, those who wish to model large networks turn more often to Parallel

Discrete Event Simulation (PDES) [35]. In this method the network model is par-

titioned between processors. The advantage is that one can model larger networks

since an individual processor needs only model a small portion of the network.

In PDES, the model is divided into a number of partitions, one per processor.
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Figure 2.1: Simple network example.

Each partition has an associated event list, containing events for the model entities

in that partition. Interactions between different partitions are managed by the

exchange of messages between processors. Each processor executes events on its

local eventlist, with messages from other processors periodically triggering the

insertion of events representing interactions with other partitions. The difficulty

of creating a PDES model arises in ensuring that these events are processed in

the correct order. Approaches to parallel simulation, and PDES in particular, are

surveyed in [73].

Consider the simple network of three nodes shown in Figure 2.1. Each node

is modelled on a different processor. On receiving a packet arrival event a node

schedules a packet departure event for one time unit later. Nodes zero and one

receive arrival events from an external source. Packet arrivals on node two are

triggered by departure events on nodes zero and one. Consider the scenario illus-

trated by Figure 2.2. Node zero receives an arrival event, e1 at simulated time

t = 1, causing it to schedule a departure event e2 at simulated time t = 2. Node

two similarly receives an arrival event e3 at t = 3 and schedules at departure event

e4 at t = 4. On node two, event e2 causes an arrival event e5 at t = 2 and event

e4 causes an arrival e7 at t = 4. These arrivals cause departures e6 at t = 3 and

e8 at t = 5.

Next, consider the order in which the three processors generate and receive

these events in real time, Figure 2.3. Suppose that processor zero is considerable

slower than processors one and two. Events e1 and e2 are processed much later

in real time than events e3 and e4. This means that processor two receives input

arrival event e7 before it receives event e5, even though e5 is scheduled to occur

first in simulated time. If the events are to be handled by processor two in the

correct order, it must wait until processor zero has handled departure event e2
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Figure 2.2: Events in simulated time.

causing arrival event e5. How is processor two to know that it must wait?

This problem, known as the causality constraint, has led to two different ap-

proaches to PDES. Some method of synchronising the processors in a PDES sim-

ulation is needed. In conservative parallel simulation, a processor refrains from

processing an event e1 at simulated time t1 until it is certain that no event e2

at time t2 < t1 will arrive from another processor. This can be achieved by the

exchange of null messages. A null message is a message with an associated times-

tamp sent from one processor to another saying that the sender guarantees not to

send any events with a simulated time less than that of the null message times-

tamp. For instance at time t = 0 node zero has not received an arrival event.

Therefore it knows that it will not schedule a departure event until t ≥ 1. Hence

it can send a null message with a timestamp of 1 to processor two. Node one can

also send such a null message. Processor two will not process any events beyond

t = 0 until it has received both of these null messages. Nodes one and two send

null messages again at t = 1 with a timestamp of 2. However at t = 2, only node

one sends a null message with a timestamp of 3, while node zero processes its de-

parture event e2, which causes input arrival event e5 at node two. Since processor

two knows that processor one will not cause any arrival events before t = 3, it

knows that it can safely process e5.
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Figure 2.3: Event generation in real time.

In optimistic synchronisation, processors are allowed to execute events, without

the guarantee that events with an earlier simulated time will not arrive later in

real time. However, the simulator must be able to undo any changes made to the

model state, roll back simulation time to the earlier timestamp and continue from

there.

Distributed and shared memory simulators call for different approaches to par-

titioning a network. In a shared memory model, the entire model lies in main

memory. In contrast, in a distributed memory model each processor has access

to only a small part of the network, stored in its local memory. It should be

noted that it is possible to run a distributed memory model on a shared memory

computer and vice versa. This does not make optimal use of the hardware, but

commonly occurs when a distributed memory model is run on a cluster of shared

memory computers. Running a shared memory model on a distributed memory

architecture is less efficient again, as access to shared memory must be simulated

by message passing between processors.

Designers of distributed memory parallel simulators have run into many com-

mon problems: in particular the issue of the global name space [65] [85]. Suppose

that a traffic generator wishes to send data to a random traffic sink (a network

node that accepts packets without forwarding them on). In a shared memory
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model, the processor responsible for the generator also has access to the entire

network topology and can chose a sink at random. In a distributed model, the

processor responsible for the generator may know only about the traffic sinks it

models itself. How does it choose a sink at random, when it only knows about

part of the network? One solution involves keeping a full copy of the network on

each processor, though each processor remains responsible for only its own parti-

tion. This however negates the primary advantage of using a distributed memory

computer: the ability to simulate larger models due to the partitioning of the

network.

It should be noted that the techniques used to partition a model for a dis-

tributed memory computer will work on a shared memory computer, but the

converse does not hold. Generally simulators are tailored for one approach or the

other. This has raised problems for several groups seeking to move from shared

memory computers to distributed memory computers. Model initialisation, for

instance, is more difficult to program in a distributed memory environment. In a

shared memory model, the network configuration is loaded once, and all processors

have access to it. In a distributed model there are several possible approaches. In

the simplest, each processor reads in the full model, the network is partitioned and

each processor discards those parts not relevant to itself. This has the drawback

that the total model size is limited to the largest model a single processor can load.

Another approach might be to prepartition the network, and have each processor

load its part of the prepartitioned network. A different problem arises when two

network devices on different processors must be connected. How does one describe

a linkage when only one end of the link is present? While most of these issues are

purely technical, they are symptomatic of the greater difficulty of programming a

distributed memory simulator. Liu [65], describes some of the problems encoun-

tered in porting the SSF simulator [26] from a shared to a distributed memory

environment.

The attraction of distributed memory computers is that they can often be

constructed using low cost, commodity parts. Therefore they frequently possess

more processors and more memory than an equivalently priced shared memory

computer.

One criticism levelled at parallel computing is that at best a parallel computer

offers a linear speedup. This is true in most cases. (An example where this might

not be true is when the parallel model resides entirely in main memory, but the
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sequential model needs to use swap, with a resulting slowdown in operation). The

argument is that the Internet is growing exponentially, and a linear improvement

in size or speed of simulation is not sufficient — increased abstraction is called

for. However the two approaches are complementary. Increased abstraction is

undoubtedly needed to model large networks, but at any given time, parallel

simulations — perhaps also using abstraction techniques — will be able to model

the largest networks. Some conflicting viewpoints are presented in [82], [26] and

[46]. Cowie et al. [26] argue that Moore’s Law (a rule of thumb that states that the

maximum number of transistors on a single chip doubles every eighteen months),

will ensure that we will eventually be able to model Internet scale networks. Huang

[46] emphasises the importance of abstraction, since parallelisation offers only a

linear increase in model size. Riley et al. demonstrate that running an Internet size

model in parallel using their pdns [85] simulator is not possible in the foreseeable

future.

Section 2.10 surveys several large scale parallel network simulation packages,

and briefly describes their approach to parallelising a simulation.

Chapter 4 discusses our implementation of a parallel network simulator. We

chose to implement our simulator as a parallel rather than sequential simulator

as we believe that the extra memory and processing power of parallel computers

is necessary to simulate the very largest networks. Some level of abstraction,

discussed in the next section, is also required, but not sufficient.

2.5 Increased Abstraction

In modelling any system we hope to capture the essential details of the system,

while ignoring those that do not affect the behaviour of interest. An almost

universal abstraction in network simulation, for instance, is to ignore the payload

of the simulated data packets, and retain, at most, the packet headers.

Huang, in her thesis [46], studied abstraction techniques. Her work is unique in

that rather than proposing single techniques on an ad hoc basis, she systematically

compares existing techniques (and proposes several new ones) to determine their

efficiency and range of applicability. Many of these techniques are now part of

the ns simulator [8], and Huang’s work allows a network modeller to choose an

appropriate abstraction so as to combine the fastest simulation with the required

level of accuracy in the areas of interest.
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The abstraction techniques discussed are: end-to-end packet delivery, Finite

State Automata (FSA) TCP models and Algorithmic Routing (AR) [46].

End-to-end packet delivery is a modification to a discrete event network sim-

ulation. Packets are delivered directly from source to destination, with a delay

corresponding to the link delays on the intermediate links. This avoids the detailed

hop by hop simulation of the packets through the network and greatly increases

performance. It is suitable for networks where there is little congestion, or for

simulations where accurate packet delay is not needed. In congested networks this

technique does not reflect queueing times at nodes.

FSA TCP is a simplified model of the TCP protocol. A TCP state is rep-

resented by a node in a directed graph. A TCP flow in the model contains a

pointer to a node in this FSA diagram which represents its current state, rather

than maintaining the state variables as in a real TCP stack. States are linked by

directed edges, which represent allowed transitions. A TCP flow moves from state

to state as packets are acknowledged, window size is increased and packets are

dropped, etc. There are slightly different state diagrams for the various flavours

of TCP. The simplified FSA TCP model can be used in situations where there is a

low rate of packet loss, and the connections are short. A full model must be used

in other situations.

AR is a technique for eliminating full scale routing tables or protocols. It

works by first building a k-nary tree from the network topology, breaking links

if necessary to remove cycles. Given this tree, there is a simple algorithm to

determine which link a packet at a router need take to reach its destination. If the

network contains no cycles, the path determined by the algorithm is the shortest

path. If there are cycles in the graph, then there are some paths that will be

longer than necessary. This technique can be used in simulations where routing

details are not vital.

NIx–Vectors is another approach to efficiently simulating routing [84] [86].

Rather than maintain routing tables, every packet contains an extra field, con-

taining a Neighbour Index Vector, or NIx–Vector .

The basis of the NIx–Vectors routing technique is the observation that at any

router, the act of routing simply involves choosing one element from an ordered

set of directly connected neighbours. If there are N neighbours, then a particular

routing choice can be recorded in dlog2 Ne bits. An entire route can be represented

as the concatenation of these choices, starting at the source node and ending at



2.5 Increased Abstraction 22

0

0 0 1

2

3

1

2

0

1

0
1

0

1 4

5

6

0 2

3

7

0

1

0

Figure 2.4: Simple network example

the penultimate node in the route. Riley et al. term this a NIx–Vector .

In order to route a packet using a NIx–Vector , a node simply extracts the next

dlog2 Ne bits from the vector and uses this value as an index into its ordered set

of connected neighbours.

As an example consider the network shown in Figure 2.4. Each node is num-

bered, and each link from a node is also numbered (sequentially from zero). By

inspection it is clear that the shortest path between node zero and node seven is

0 – 2 – 6 – 7. The table in Figure 2.5 shows how a NIx–Vector for this route

can be constructed. The column labelled Node indicates the node at which the

routing choice is made. The column Neighbours gives the number, N , of directly

connected neighbours at that node, and the column Bits is the number of binary

bits needed to record any number from 0 to N − 1. The column labelled Link

indicates the neighbour index of the link to the next node in the route. The final

column, NIx–Vector is the concatenation of the individual routing choices. In an

actual implementation of NIx–Vectors in the ns simulator, the minimum size of

a NIx–Vector was 96 bytes, consisting of two 32 bit units storing the current and

maximum vector lengths, and a minimum of 32 bits for the vector itself [84].

Hop Node Neighbours Bits Link NIx–Vector (binary)
0 0 1 1 0 0
1 2 4 2 2 0 10
2 6 2 2 1 0 10 01

Figure 2.5: NIx–Vectors example

Both NIx–Vectors and AR address a serious problem in large scale network sim-
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ulation, namely the growth of routing tables. A naive implementation of routing,

for instance, where each node maintains an entry for the next hop to every other

node, will use memory proportional to N2 for a N node network. A method such

as AR or NIx–Vectors is essential to allow network simulation scale to Internet

size models.

We believe that AR allows for greater scalability than NIx–Vectors . In the NIx–

Vectors technique each packet must contain a 96 bit NIx–Vector. In AR, using

the modifications introduced in Chapter 3, N 32 bit values for a N node network

are sufficient. Thus, if there are more than N packets active in a simulation,

which is almost certainly the case in any realistic simulation, then AR is more

memory efficient then NIx–Vectors . The lesser memory usage of AR comes at

a cost in computational complexity. Each route lookup in AR requires O(log N)

time. However the creation of a NIx–Vector for a route between two nodes requires

O(N + E) time (using a breadth first search of the network topology), where E is

the number of links in the network. Consider a traffic flow between two nodes that

transmits p packets over n links. Then the time taken to route the packets using

AR is O(np log N), and using NIx–Vectors is O(N + E). Now, in the Internet,

the vast majority of flows carry fewer than twenty packets (most of these short

connections are due to webserver and domain name server requests) [24] and the

default maximum path length is sixty four [81]. This indicates that for large

networks AR should also be more computationally efficient than NIx–Vectors .

While it is possible to cache NIx–Vectors so as to eliminate the need to calculate

a NIx–Vector more than once, this increases its memory requirements further,

especially if there are many different short lived flows.

Unfortunately, AR has one flaw that is not present in NIx–Vectors : the routes

generated by AR all lie on a tree superimposed on the network topology graph.

This means that routes are not always shortest path routes, and in addition some

links are completely unused, resulting in congestion on the remaining links. How-

ever, due to the better scalability and performance offered by AR we decided to

investigate methods to improve the quality of the routes it generates. This work

is discussed in Chapter 3.

Another abstraction, first introduced by Jain [53] and developed by Ahn and

Danzig [3] involves taking advantage of packet trains. Jain noticed that packets

from the same flow are often clumped together in trains even after traversing many

links in a network. Ahn and Danzig developed ways of processing an entire train
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of packets in a switch, rather than processing them individually. If the trains are

long enough this can result in a considerable saving of memory and computational

time. Unfortunately it has been observed that in larger, modern, networks the size

of packet trains has reduced due to greater mixing of flows, and so the potential

reward of exploiting packet trains is correspondingly lower. The idea has been

extended in fluid simulation.

2.6 Fluid Simulation

Fluid simulation [56] [60] represents the flow of data through a network as a fluid

rather than as discrete packets. Several groups have explored the potential of this

idea.

A fluid simulator keeps track of the flow rate at each point in the network.

Every time the flow rate of a source changes, this change is propagated onwards

to other nodes. Typically sources are represented by Markov-Modulated processes

[64]. Sources are either on or off at a particular time. A source emits packets when

it is on. The on and off periods are both Poisson distributed, as is the packet

interdeparture time. In a fluid representation, fluid is emitted at a constant rate

when the source is on and not emitted otherwise.

Every time the rate of fluid arrival at a queue changes, the departure rate must

be recalculated. (The update may not be immediate, as fluid already in the queue

continues to depart at the old rate).

Studies on the accuracy of the method have found that it agrees quite closely

with packet level simulations [74] [97].

Fluid simulation of small networks has also generally been found to have far

better performance than packet level simulations. Nicol et al., using the SSF

simulation package for both fluid and packet level simulation, observed a speedup

of three orders of magnitude [74].

Unfortunately, with large networks the ripple effect severely degrades perfor-

mance. Each time the input flow rate at a queue changes (for instance when a

source turns on or off), its output rate must be updated. This change in output

rate causes a change of the input rate of the queues it feeds. In this way any

change of a flow rate generates a ripple of updates through the network.

A large network has a correspondingly large number of flows. Both Nicol et

al. [74] and Liu et al. [64] observed that as the size of the network increased, each
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update of a flow rate became more expensive, due to the need to propagate the

change. In fact with 256 switching nodes one fluid simulation executed as many

events as a full packet level simulation [74]. To compound the problem, an event

in a fluid simulation is more computationally expensive than a packet simulation

event. This limits the application of fluid techniques in large scale simulation.

Time-stepped hybrid simulation (TSHS) [41] is an enhancement of fluid simu-

lation. Packets are grouped into chunks — not dissimilar to Jain’s use of packet

trains [53]. All packets at a queue during a given timestep belong to the same

chunk. A chunk is processed as a unit at a queue. However if the protocol simu-

lated requires packet headers, for instance sequence numbers in TCP, these must

be stored separately. TSHS replaces the buffering, dropping and processing of

individual packets with a rate based calculation. If the timestep is large so that

there are many packets in a chunk, this greatly reduces the number of events to

be processed. Compared with a packet level simulation, TSHS is up to an order

of magnitude faster. It should be noted that unlike the SSF comparison [74], two

different simulators were used for the fluid and packet simulations.

Differential traffic modelling [16] [36] [15] is a new approach to the analysis of

networks. It models the statistical evolution of a network by means of differential

equations. It is similar to fluid simulation in that it deals with averaged quan-

tities rather than discrete packets. The differential equations describe how the

statistical values of network variables, for instance the expected queue occupancy,

change with time. With traditional queueing theory it is possible to calculate the

stationary state of a queue. Differential modelling extends this to allow analysis

of its transient behaviour. The theory, and its hybridisation with discrete event

simulation, is discussed in greater depth in Appendix A.

2.7 Hybrid Techniques

Hybrid simulation is the term used to describe the combination of two or more

simulation methods in the same model. Many groups have applied this idea to

network simulation — each with a different approach. The motivation is usually to

use a fast analytic method for as much of the model as is practicable, and resort to

discrete event simulation or other computationally expensive methods only when

required. The hope is that the hybrid simulation will have accuracy close to that

of a normal discrete event simulation, with the speed of a fast analytic model.
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Schwetman [89] was among the first to apply hybrid techniques to simulation

of computer systems. He modelled the competition for resources (CPU, memory,

etc) among jobs in a computer system. Since the resources were modelled as a

network of queues, and jobs as customers of those queues, his methods are relevant

to network modelling. Schwetman divided resources into two categories — long

term and short term. Long term resources included use of main memory and

storage space, short term resources included the CPU and IO devices.

Discrete event simulation was used to describe the arrival of new jobs and the

use of long term resources, while an analytic model was employed to describe the

use of short term resources. Each job required a number of cycles through the

short term resources. Rather than simulating these cycles for each job, the time

interval, based on the current number of active jobs, was computed. This gave

the time until the first job completed, or a new job arrived (changing the demand

for resources).

This highlights one of the important issues with hybrid techniques the tighter

the coupling within the problem, the harder it is to hybridise it. In this case, if

jobs arrive only infrequently and persist for many cycles of short term resource

usage (loose coupling) there is considerable speedup. If jobs arrive and persist

only for a handful of short term resource cycles there is almost no performance

gain — and decreased accuracy.

O’Reilly and Hammond [75] developed a quite different approach to hybrid

simulation. They modelled a network of CSMA/CD (Ethernet) ‘stations’. These

stations were partitioned in two: a small number of primary stations and a larger

number of background stations. The primary stations were modelled in detail by

simulation. The background stations were present to provide a realistic environ-

ment for the primary stations, but were themselves simulated in a less detailed

manner. In a simpler discrete event simulation the background station packets

were pre-recorded and only used to create collisions with the foreground traffic.

This of course meant that the primary nodes could not affect the background

nodes.

In a second, time driven method, the primary stations were simulated in detail

as before, but the background traffic was modelled using an algorithm.

This method was found to be more efficient than full event simulation whenever

the number of stations was large (more than 1000) and where there was a high

traffic intensity.
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Frost et al. [34] introduced yet another hybrid simulation technique, termed

conditional expectation. The simulation is of a CSMA/CD network again. Their

model was based on a queue with general interarrival times and a server with a

general service time distribution. They started with a known expression for the

expected waiting time, W , of a customer in the system:

E[W ] =
E[U2]

−2E[U ]
− E[I2]

2E[I]

where U = tn−sn and tn, sn are the interarrival and service times, respectively, of

the nth customer. I represents the length of the idle period and cannot be found

analytically. Simulation was used to estimate this parameter. With this approach

they were able to model the network in the same detail as a full event simulation,

but with a reduction in computational time by a factor between 9 and 16.

Huang [46], also describes hybrid combinations of abstraction techniques: in

particular mixed mode simulation. By creating a hybrid topology of neighbouring

end-to-end regions and fully simulated regions, Huang was able to take advantage

of the performance gains of end-to-end packet delivery in the end-to-end regions

while keeping the accuracy of simulation in congested regions where end-to-end

packet delivery is inaccurate.

2.8 Rare Events

Many of the distributions that arise in data networks are heavy tailed, for instance

the distribution of file sizes. Very rarely occurring events have an effect dispro-

portionate to their frequency. To take an example: the 0.5% tail of file transfer

protocol (FTP) bursts studied by Paxson et al. in [77] held over 40% of the data

bytes transferred.

The theory of large deviations describes these events. It is one of the most

active areas of probability theory. A tutorial overview using networking examples

is presented in [61]. Rare events pose a challenge for network simulators as well as

analysts. Large scale simulations are slow. To run a simulation for long enough

for rare events to occur is not always feasible.

The goal of parallel and abstracted simulation is to model networks more

quickly, so as to generate more events and explore more of the state space. A

complementary approach is advocated in rare event simulation: rather than just
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running faster simulations, spend more time in the areas of interest. An overview

of rare event simulation is presented in [42] and a larger survey in [43].

Approaches to simulating systems with rare events include importance sam-

pling, split/restart and cloning. Importance sampling changes a stochastic process

to make rare events more frequent. Split/restart [39] halts (or splits) a simulation

at a point of interest, and restarts a number of simulations from that point. This

allows the state space around rare points of interest to be explored more thor-

oughly. Cloning, introduced by Hybinette and Fujimoto [49], extends the idea of

split/restart. The approach is intended for parallel discrete event simulators. It

allows for interactive injection of decision points. In addition rather than cloning

the entire state of a model, the new state is made incrementally as it diverges

from the original. However, while this approach allows for flexibility in running

simulations, it does not itself enable very large simulations.

2.9 Network Topologies: Studies and Genera-

tors

While great attention has been paid to protocols in network simulation, far less

has been paid to the effect of the topology of the network itself. Routing and

traffic density are dependent on network topology. The efficiency of many network

simulators may vary with the network topology, for instance if large routing tables

are needed for a complex topology.

Zegura, Calvert and Donahoo [98] produced one of the first thorough com-

parisons of different topology models in network simulation. Although it is more

applicable to the users rather than to the designers of simulators, their results are

worth noting — particularly for performance evaluation.

They identified three common topology generation methods in frequent use in

network simulations, and proposed their own to overcome some of the shortcom-

ings found. The three extant methods were:

• Regular topologies — rings, trees, meshes and stars.

• Copies of existing real life networks.

• Randomly generated topologies.
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There are drawbacks to all three methods. Regular topologies do not occur —

large computer networks typically grow too organically for them to survive. They

are more common in centrally controlled networks such as traditional telephone

networks. While copies of real life networks are useful for modelling past or current

networks, they are less useful for designing future networks. The authors iden-

tify several ‘flat’ methods for randomly generating networks, from pure random

methods where the likelihood of two nodes being joined is a given fixed proba-

bility, to methods where the probability is a function of distance between nodes.

They also propose a hierarchical, random, method for network generation. This

transit-stub method consists of two types of sub-networks: stub networks, which

are only sources and sinks of packets, and transit networks which can forward

packets between stub networks or other transit networks.

This initial work was followed by surveys of the Internet topology and new

models were developed based on the findings. Surveys of Internet topology have

examined both its router level properties and Autonomous System level properties.

The observation that many properties of the Internet are governed by power laws

has prompted research into the extent of and the reason for this behaviour [68]

[30] [13] [67].

Network topology generators fall into two broad classes: degree based and

structural generators. Degree based models such as PLRG [4] and Inet [95] use

the observed distributions of node degree in the Internet to generate graphs.

Structural generators such as the transit-stub model of GT-ITM [19] and Tiers

[29] build hierarchical graphs. This is intended to emulate the division of networks

into sub networks connected by backbones.

In [91] the authors systematically compare several classes of topology genera-

tors. These include the simple canonical topologies (meshes, rings, trees), several

examples of degree based and structural generators as well as real networks. The

results suggest that for generating large networks, the degree based approach is

best. In particular, the hierarchy present in the Internet is looser than that gen-

erated by a structural model.

A further discussion of research into the properties of Internet topology and

routing is presented in context in Section 3.5.



2.10 State of the Art 30

2.10 State of the Art

Large scale network simulation has received much attention in recent years. Many

new techniques have been developed and tested. This is reflected in the large

number of network simulation packages currently extant. We now survey the

state of the art in the field.

• The Scalable Simulation Framework (SSF) [26] [27] is a an API for building

discrete event simulation models. There are several implementations of the

SSF, including one in Java and two in C++. The API describes five base

classes and associated methods. An SSF model extends these base classes

to create the specific features it requires. All details of the discrete event

processing are hidden from the modeller. This allows a modeller to change

SSF implementations — from a sequential to a parallel implementation for

example — without modification of the code.

SSF uses a Domain Modelling Language (DML) to allow configuration of

very large networks. Definitions can be stored in a database and composed

to create arbitrarily complex networks.

DaSSF is a C++ implementation of SSF developed at Dartmouth College.

The event processing subsystem uses conservative synchronisation of event

queues to run on shared memory symmetric multiprocessors. All processors

exchange events at set intervals. The choice of this synchronisation period

is such that events within these periods can be processed without affecting

causality.

SSF has been shown to be capable of modelling networks of hundreds of

thousands of UDP or TCP nodes, on shared memory symmetric multipro-

cessors.

Recently, DaSSF has been extended to run on distributed memory parallel

computers [65] using MPI. However the SSF API makes some assumptions

that hold only in shared memory environments — in particular that the net-

work configuration as a whole is available to each processor. In a distributed

memory system the model must be preprocessed to deal with global naming

issues, since the processors do not have access to the full network configura-

tion.
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SSF, because of the generality of its base classes, can be used to model more

than just wired networks. In particular it is being extended to model ad hoc

wireless networks [65].

Of the network simulators discussed in this section, SSF is closest in spirit

to our work. The similarities include a strong emphasis on very large scale

simulation of TCP networks and the use of PDES techniques. However

SSF was originally designed to run on shared memory computers and has

only recently been extended to run on distributed memory computers. The

most important difference between SFF and our work is our greater use of

abstraction. Our use of AR allows for the simulation of larger and more

realistic networks. On the other hand, SSF has more detailed and realistic

implementations of network protocols.

• The ns simulator [8] is an extremely mature and capable network simulator.

It provides a rich suite of modules for simulating network devices and pro-

tocols. It is written in a mixture of TCL and C++, and is easily extensible,

making it a popular platform on which to develop and test new ideas. In

particular it has been used to test hybrid and highly abstracted modelling

techniques [46] and has been extended to support parallel simulation [85].

• Parallel/Distributed ns (pdns) [85] is an extension of ns that runs on par-

allel computers. The network is distributed between processors. pdns uses

the RTIKIT [44] to replace the ns event scheduler. RTIKIT is a conserva-

tive parallel discrete event scheduler. RTIKIT implements its own message

passing system over either a TCP/IP network or Myrinet. pdns allows a

linear scaling of simulation size, while maintaining or possibly speeding up

the execution time compared to a sequential simulation of the same size.

The latest version also includes the NIx-vectors stateless routing algorithm

[84]. With the reductions in memory that this method makes possible, pdns

can model networks of over 250,000 nodes.

The extensibility of ns and pdns comes at a price. The demonstration by

Riley et al. [82] that an Internet scale simulation in pdns is not possible due

to memory and computational requirements emphasises the importance of

highly efficient programming. In contrast to ns and pdns, memory efficiency

is a high priority in our simulator (see Chapter 4). Likewise, we chose to



2.10 State of the Art 32

use the C programming language solely, as although a language such as TCL

offers increased flexibility and extensibility, it does not have the performance

of C.

• The Ultra-large Scale Simulation Framework (USSF) is described by Rao

and Wilsey [80]. Their aim is to simulate millions of network entities using

parallel techniques. In particular they seek to harness low cost commodity

computer systems, rather than dedicated multiprocessing clusters. USSF

isolates the simulation modules from the underlying simulation kernel. This

allows USSF to use different kernels. Rao and Wilsey [80] describe the

deployment of USSF on WARPED [20] and on NoTime [79]. These are an

optimistic parallel discrete event simulator and an unsynchronised parallel

discrete event simulator respectively.

USSF is demonstrated to be capable of simulating networks of hundreds of

thousands of nodes.

• Parsec(parallel simulation environment for complex systems) [7] and Glo-

MoSim (Global Mobile System Simulator) [100] are related projects devel-

oped at UCLA. Parsec is a simulation language that provides a discrete

event simulation kernel that runs both sequentially and in parallel. Glo-

MoSim is a library for building models of wireless networks. It uses Parsec

as its foundation.

Parsec is based on the older Maisie language [6], but considerably enhanced.

It is a C based library that manages the message passing in a parallel discrete

event simulation. It has a large selection of synchronisation protocols —

including conservative, optimistic and mixed protocols. The protocol used

in a simulation can be changed without affecting the rest of the simulation.

This allows the most appropriate synchronisation protocol for a given model

to be easily selected.

GloMoSim simulates wireless networks. This is in itself a more difficult task

than simulating wired networks, since signal interference and attenuation

are much more significant than in wired media. In addition, due to the

broadcast nature of wireless communications, the topology is often denser.

It uses Parsec as its event handling kernel.

The protocol stack is broken into several layers that communicate through
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a common API. It includes a TCP/IP implementation and several media

access protocols as well as intermediate layers.

GloMoSim supports two forms of partitioning: horizontal and vertical. In

the first each network layer is simulated by a different processor, in the second

the nodes are partitioned and each processor simulates a given partition.

On an IBM 9076 SP GloMoSim is capable of simulating up to 3000 mobile

nodes in 800m × 800m area. With 16 processors it achieves a speedup of

between five and eight — the speedup increases with node density.

• The Dynamic Simulation Backplane [83] is not a simulator itself. Rather it

is a framework for connecting other simulators together. For instance, one

simulator may provide a rich set of network protocols, while another has

advanced wireless simulation capabilities. The backplane provides an inter-

face through which the two simulators can communicate. Each simulator

registers the protocols which it requires or provides. The backplane can link

together models that have compatible needs. This is a flexible approach that

takes advantage of disparate strengths of the simulators with which it can

interface. Currently it has interfaces for ns and GloMoSim, and an interface

for OpNet is planned.

2.11 Summary

The goal of this thesis is to develop new techniques to enable efficient simu-

lations of very large networks, in particular TCP/IP networks. This chapter

has introduced the techniques and methods that have been developed by

network simulation researchers to allow the simulation and analysis of larger

and more complex telecommunications networks. In the following chapters

we built on this base to create network simulations of unprecedented size

and speed.
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Algorithmic Routing

Arpanet, the predecessor of the Internet, used a distributed routing algorithm. It

took queueing delays at each link as a metric to decide between alternative paths

from source to destination. These measurements were forwarded to all routers.

However under heavy load this system was prone to routing oscillations. The hop

count, or number of links a packet traversed, was later used, as it proved to be

more stable.

The Internet is a collection of independent networks, including the original

Arpanet, sharing common protocols. At the highest level it consists of Au-

tonomous Systems (AS). Routing, rather than being a single flat layer, is instead a

two layer hierarchy. Each Autonomous System manages its own internal routing,

with one or other of the several Internal Gateway Protocols. Routing between

Autonomous Systems is managed by an Exterior Gateway Protocol: typically

BGP4.

The routers within an Autonomous System usually have access to a large

amount of knowledge about the network topology within the Autonomous System.

The most popular Internal Gateway Protocol is Open Shortest Path First, OSPF.

It is a link state protocol, based on the Dijkstra shortest path algorithm [28]. In a

link state protocol each router distributes the distance to its neighbours to every

other router in the network. Each router can then apply Dijkstra’s algorithm

to calculate the shortest path to each destination in the network. In OSPF the

distance metric can be chosen; it could be based on the bandwidth of links, or

simply the number of hops in the path. OSPF is a memory and CPU intensive

algorithm, since it creates a graph containing every node in the network, though

there are various ways to make it more efficient.
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The first Exterior Gateway Protocol was simply called EGP. It constructed

a path between source and destination that traversed the fewest number of Au-

tonomous Systems. As the Internet grew and commercialised, network managers

demanded greater control over routing between networks, often because of con-

tractual agreements between network service providers, load balancing, cost min-

imisation and other factors that EGP did not take into account. Today the most

commonly used Exterior Gateway Protocol is BGP version 4. It allows providers

to specify policies, for instance, on where packets enter or exit their system or

whether or not to allow packets between other providers to traverse the network.

If there are several possible paths from source to destination, BGP chooses the

path with the best metric. The simplest metric is the AS–path length, which is

the number ASs crossed on the path to the destination.

Two connected BGP routers in different Autonomous Systems exchange mes-

sages detailing the networks to which they are connected, and pass on other such

messages that they have received from other routers. Business policy may also

play a role. For instance a small provider might have links to two larger backbone

providers. It will want to accept packets originating or terminating within its

own network, but will not want to have packets between the two larger networks

traversing its own small network.

As the Internet has grown, the size of the routing tables has also grown in

tandem. The hierarchy imposed by Autonomous Systems helps, but routing tables

may still have over 50,000 entries, taxing the computational capacity of routers.

The fact that this figure is as low as it is, is due to route aggregation. Rather than

routers advertising each network or host individually, they are aggregated into

blocks of contiguous address space, and the route to the entire block advertised

as a single path.

How do the exterior and interior protocols interact? BGP calculates the next

Autonomous System in the path and OSPF provides the path from the source to

a BGP connected to that Autonomous System.

A key property of Internet routing is that each router maintains its own routing

table, even if this is built by communicating with its neighbours. This is necessary

due to the decentralised nature of the Internet. However in simulation we are not

bound by the same constraints as router designers. For instance, a simulated router

has access to global network information that is not available to a real router. This

allows the simulated router to more easily calculate routes. The approximation
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introduced is that less routing information packets are sent through the network.

Whether that is acceptable depends on the simulation goals. Unless we are in-

terested in the details of the routing protocols it is more efficient to precalculate

routes and store them, than to have each simulated router build its own routing

tables by the exchange of BGP or OSPF messages. This centralised computation

of routing information is a common approximation. It has several advantages:

the simulation does not need to include complex protocols, computation overhead

is reduced and memory requirements lowered. However some phenomena, such

as route flapping (rapid, sometimes periodic, changes to routing tables), will not

appear, so central computation of routes is not always desirable. See [46] for a

more detailed discussion.

Unfortunately centralised computation of flat routing tables is not a panacea.

It has memory requirements that scale O(N2), where N is the number of nodes

in the network. Each router must know the path to every other router. As an

example consider a network of 10000 nodes. A flat routing table with a single four

byte integer for each entry would use 400 MB memory.

Kleinrock and Kamoun [58] demonstrated that the minimum routing table size

in a hierarchical network is obtained when there are log N levels. The minimum

table size per node is e log N for a total size of O(Ne log N). For a network

with logk N levels, where k is the branching factor, the total space complexity is

O(kN logk N). The Internet, for example, while hierarchical in nature, has only

two levels of hierarchy, and is unbalanced. Therefore

logk N = 2,

=⇒ k =
√

N,

so the total space complexity is

√
NN log√N N,

and

log√N N = 2,

so we can write the total space complexity as

O(2N
√

N).
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The space complexity of routing within the Internet backbone is O(N2
b ), where Nb

is the number of nodes in the backbone. The scaling properties of routing tables

pose a problem for simulations. A simulation of a large network would require an

inordinate amount of memory for the routing tables. In order to increase the size

of simulated networks a more memory efficient method of implementing routing

is needed. The two existing methods, NIx–Vectors and AR have been introduced

in Section 2.5, and the scaling properties of each discussed. In the remainder of

this Chapter we explore in detail the performance, scaling and fidelity to Internet

routing of AR. AR is described in Section 3.1. Performance improvements are

detailed in Section 3.2 and route quality improvement in Sections 3.3 and 3.4. The

observed properties of Internet routing are discussed in Section 3.5 and contrasted

with simulated properties generated using AR. We then apply the techniques

developed to two large, realistic case studies.

3.1 Algorithmic Routing

AR was introduced by Huang [46], was further developed by Huang and Heide-

mann [47] and implemented in the ns [8] simulator. The idea was based on work

for binary tree networks [78]. It trades computational complexity for a reduction

in memory usage.

Huang et al. noticed that by mapping the network topology onto a k-nary tree,

and numbering the nodes by a scheme described in Section 3.1.2, it is possible to

calculate the next node the packet must visit on its path from source to destination.

Before describing the algorithm, we introduce the notation we will be using.

3.1.1 Definitions

A network topology can be mapped to a graph G = (V,E) where V is a set of

vertices and E is a set of edges joining pairs of vertices. The number of vertices

is denoted by n = |V |, the number of edges by |E|. An edge between vertices vi

and vj is denoted by (vi, vj). The degree of G is the maximum number of edges

connected to any node. A spanning tree of G is defined as Ts = (V, F ) where

F ⊆ E, |F | = |V | − 1 and all vertices are connected. A rooted tree of T = (Ts, r)

of G is a spanning tree Ts of G and a vertex r ∈ V designated as the root node.

Let p, c ∈ V . We say that p is the parent of c if (p, c) ∈ F and p is closer to the
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root than c. In this case c is the child of p. A vertex d is a descendent of vertex a

if there is a child to parent path from d to a. We define a subtree S(a, T ) of a tree

T to be the subset of V consisting of vertex a and all vertices that are descendants

of a. A k–nary tree is a rooted tree where each vertex has at most k children.

3.1.2 AR Setup

AR superimposes a k-nary tree on the original network topology. This tree can

be generated by a depth first search or breadth first search (BFS) of the network.

The value of k is the maximum number of children possessed by any node in the

tree. If there are any loops in the network, they are broken by the mapping. The

choice of search algorithm has implications for the accuracy of the routing — see

Section 3.1.6 and 3.3. Figure 3.1 is an example of a map from a network topology

to a tree.

a)

0

2

4

6

1

8
3

5

7

b) 0

2 4

6

1

83 5 7

Figure 3.1: a) A simple network. b) The same network mapped to a tree. Links
that have been broken are drawn in red dots.

The second stage of the setup phase is to assign a new numbering scheme to

the nodes. The root of the tree is labelled 0. The other nodes are labelled as in
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Figure 3.2, where the child of node i is given by ki + j, j ∈ 1 . . . k. The parent of

any node i is given by

b i− 1

k
c. (3.1)

1

6 7

0

26

52 3 4

Figure 3.2: The network from Figure 3.1 with new node addresses. Here k = 5.
The parent of a node can be found using Equation 3.1. For example the parent of
node 26 is 26−1

5
= 5.

The memory needed for the new naming scheme is O(N). The tree mapping

and name reassignment are of O(N) complexity.

3.1.3 Next hop calculations in AR

Each time a packet arrives at an intermediate router, it needs to be forwarded

one step further. Suppose the packet is at the node labelled s in the new k-nary

tree scheme and its destination is node d, now its next hop is calculated using

Algorithm 1.

In this algorithm we start at the source node d and follow a child to parent

path up the tree, stopping at either the root node or at the destination node s,

whichever is is encountered first. If s is encountered first, then the node just before

s is the next hop in the path. If the root node is encountered first, then the next

hop is the parent of s. The packet is then forwarded along the link that connects

to the next hop node.

The tree has a depth of approximately log N so the algorithm has a computa-

tional complexity of O(log N).



3.1 Algorithmic Routing 40

Input: Routing tree of degree k. Source node s, destination node
d.
Output: The address of the next node in the path from s to d.
(1) if d = 0
(2) return s−1

k

(3) y ← d
(4) while y 6= 0
(5) if y−1

k
= s

(6) return y
(7) y ← y−1

k

(8) return s−1
k

Algorithm 1: The basic AR algorithm.

3.1.4 Lengthening of Routes

The routes generated by AR are not always the shortest possible, some distortion

is introduced. Packets are only forwarded between nodes that are connected in

the k-nary tree. In this tree, which is superimposed on the real network topology,

there is only one route between any two nodes. In the real topology there may

be many. This problem occurs wherever there is a cycle in the network topology

(three or more nodes that are connected in a ring). Figure 3.3 illustrates the

problem. To send a packet from A to C by shortest path routing is one hop.

However mapping the network to a tree breaks the A−C link, so the packet takes

two hops A−B − C instead.

B

A C

B

A C

Figure 3.3: When the network (left) is converted to a tree (right) the link A − C
is broken. Packets from A to C must now travel A → B → C rather than going
directly to C.

As the size of the cycle increases, so does the number of extra hops. We define
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relative difference in lengths, r as:

r =
Da −Ds

Ds

where Ds is the length of the shortest path between two nodes and Da is the length

of the AR path. The average relative difference, R = r, can be shown to be:

R =
k

2k + 1

where k is the largest integer less than N−1
2

(see [48] for details). As N increases,

R approaches 0.5, a 50% increase in route length.

In a network there may be many cycles. Each cycle contributes to raising

the average relative difference of path lengths, R. The length of cycles is also a

factor — though interlocking and overlapping cycles make analysis more difficult

than with a simple ring network. In addition to the number and size of cycles in

the network, the location of the cycles also has large affect on R. If the cycles

are on the periphery, as leaf nodes, the cycles will only raise the route length of

routes ending there. If, on the other hand, the cycles are in the backbone of the

network, they will have a greater influence on R since most routes need to traverse

the backbone. Finally, since there is only one path between any two branches of

the tree, whereas there may be many paths between the same nodes in the real

network, traffic may be concentrated in certain links and routers, while others are

idle.

In Section 3.2.3 several sample networks, both real and generated, are used

to compare shortest path and AR. AR is an approximation, and like all approx-

imations introduces errors. Whether these errors are important depends on the

purpose of the simulation. The first factor is the network itself; if it contains large

numbers of cycles or very large cycles, the node to node paths may be greatly

altered. If the cycles are in the backbone the effect is amplified. Networks which

already possess a treelike structure are least affected. Simulations that are only

concerned with a small number of senders can have increased accuracy by using

several routing trees.
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3.1.5 Implementation Problems

There are some implementation problems with AR. The method requires map-

ping each node in the network to a new id number. If the maximum number of

neighbours of any node in the network is k, then the network must be mapped

to a k-nary tree. If the tree has depth d, then the largest number needed in the

mapping is:

L =
d−1∑
i=0

ki =
kd − 1

k − 1
− 1 ≈ kd−1.

AR, even in a small network, will overflow a four byte integer if there is a combi-

nation of moderate depth and a single node with a large number of neighbours.

This explosion in mapped node addresses causes two problems. Firstly the

memory requirements for a node address rapidly exceed the standard four byte

integer. The memory needed for the node addresses scales as O(N log2(k
(d−1)))

binary bits. Secondly the new addresses are typically very sparsely distributed in

the range 0 . . . L. This is especially the case if the maximum number of neigh-

bours is much greater than the average number of neighbours. With the original

addresses in the range 0 . . . (N − 1) a simple array of length N can be used to

point to the memory used to store a node. With the mapped addresses an array

of length L would be required. This is clearly grossly inefficient. Sparse matrix

techniques or a tree data structure could be used to work around the problem, but

this both increases memory consumption and adds computational complexity.

As an example, using a network topology from the Internet circa November

1999 [51], the maximal observed number of neighbours is 1937, and the depth of a

mapped tree is between 12 and 14 depending on the root node chosen. The largest

node id in the resulting tree is approximately 193713. This requires eighteen bytes

of storage space, far exceeding the four bytes of a normal integer.

3.1.6 Existing Enhancements to Algorithmic Routing

Many of the problems associated with AR have already been noted by researchers.

There have been several proposals to avoid the worst of the issues. These proposals

can be roughly categorised into performance and route quality improvements to

the technique.
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Performance Improvements

Huang et al. suggest [47] that a Least Common Ancestor (LCA) [94] algorithm

could be used to perform fixed cost, O(1), routing.

The LCA of two nodes x and y in a tree is the node that is ancestor of both

x and y and is furthest from the root of the tree. The LCA problem has several

solutions that can answer LCA queries in constant time, although varying amounts

of preprocessing are necessary. Most of these solutions are extremely complex. In

fact it is said that

. . . the folk wisdom of algorithm designers holds that the LCA prob-

lem still has no implementable optimal solution. Thus, according to

hearsay, it is better to have a solution to a problem that does not rely

on LCA precomputation if possible [11].

However, Bender and Farach-Colton [11] present a simplification of the original

parallel algorithm developed by Schieber and Viskin [94]. This algorithm requires

O(N) time and space for preprocessing and O(1) time for a LCA query.

The second improvement suggested in [47] is to replace the indiscriminate BFS

of the network, with a BFS that selects highly connected nodes in preference. We

tested a simple form of this idea, as follows: when all nodes at depth n have been

identified, they are sorted in descending order according to their connectivity.

When visiting the children of a given node, they are visited again in descending

order of connectivity.

We define H to be the sum over all pairs of the number of hops needed to

connect any pair of nodes, i, j in a N node network:

H =
N∑

i=1

N∑
j=i+1

Dist(i, j) (3.2)

Then let Hp be the number of hops when the BFS tree is constructed giving

priority to highly connected nodes. For a random seed s, let Hs be the H that

results from choosing nodes randomly during the BFS. Let Havg be the average of

Hs, s ∈ S, and Hmax, Hmin be the maximum and minimum respectively. Denote

by D the value of H in shortest path routing.

Values of Hp

D
,

Havg

D
, Hmax

D
and Hmin

D
for example networks ranging in size from

one hundred to two thousand nodes are presented in Table 3.1. In each of these

examples one hundred different seeds were used.
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Nodes in Network Hp

D

Havg

D
Hmax

D
Hmin

D

10 1.12 1.16 1.20 1.12
100 1.05 1.06 1.07 1.05
200 1.09 1.09 1.09 1.09
300 1.14 1.14 1.14 1.14
400 1.12 1.14 1.17 1.09
500 1.12 1.16 1.19 1.12
800 1.19 1.20 1.21 1.19
1000 1.18 1.22 1.24 1.19
2000 1.13 1.14 1.15 1.13

Table 3.1: Relative path lengths for some sample networks. H is the total distance
between distinct, unordered, node pairs. Hp is the value of H when nodes are
chosen by order of connectivity in the BFS. Havg is the average value of a large
number of random orderings. Hmin is the best value of these random orderings. D
is the value of H using shortest path routing.

Figure 3.4 shows the values of H using three different nodes as root. Each line

represents the variation in H for different choices made during BFS.

It is clear from Table 3.1. that ordering the nodes is an improvement over

random choice in the BFS construction of the tree. However it is a slight im-

provement, typically lowering the relative increase over shortest path routing by

between 0.5 and 4 percentiles. The improvement over the worst case is better —

between 1 and 8 percentiles. After the setup phase of AR there is no extra cost

involved.

Quality Improvements

Huang et al. [47] propose some enhancements to improve the quality of the routes

generated by AR. A tree generated by BFS has the property that the path from

the root node to all other nodes is a shortest path. Consider a simulation with

s important source nodes. If a tree is generated for each of these source nodes,

then routing to and from these nodes will be shortest path. A separate tree may

be used for less important background traffic. This scheme requires s times the

memory of a single tree. It guarantees correct routing for important traffic flows.

However it does not prevent congestion on certain links due to the concentration

of the background traffic on the N −1 links of the background traffic routing tree.
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Figure 3.4: Each line shows a range of possible values of H for a single choice of
root node. The order in which nodes are visited during BFS has a large impact on
H. Here the order is selected randomly and H plotted by increasing value.

In addition, this method is only feasible for relatively small values of s.

A second suggestion in [47] concerns a network with a large ring component. If

two trees are rooted on opposite sides of the ring, then by choosing the appropriate

tree for a given source and destination pair, it is possible to get shortest path

routing. In a large and complex network with many interlocking cycles it would

be much more difficult and expensive to do this.

Their final proposal is to perform two passes while routing. The first pass

checks to see if the destination is directly connected to the current node. If the

destination is directly connected to the current node, then the packet is passed

to it, even if the link joining the two nodes is not present in the routing tree. If

the two nodes are not directly connected then the normal algorithm is applied to

determine the next hop. This will result in shorter paths for all routes in which a

node in the AR path is separated from the destination by a broken link. However

this is a relatively small number of routes, and for a network with N nodes and

E links, requires on average E−N+1
N

extra checks in each next hop calculation.
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3.2 New Efficiency Improvements

In this section we introduce two separate improvements to AR. The first is a

small implementation change to the basic method which makes the tree structure

implicit in the network graph and avoids the overflow issues discussed in Section

3.1.5. It also has the advantages of not requiring any memory (depending on the

implementation), and replacing several arithmetic operations by a single lookup.

The second is a new algorithm which has fixed O(1) complexity, regardless of

network size, but produces the same paths as basic AR.

3.2.1 Direct Algorithmic Routing

In AR each node is given a new address when the network is mapped to a tree.

Given the address of a node one can calculate its parent node and any possible child

nodes. This, however, is more information than is actually needed. In calculating

the next hop from a node, the only requirement is the ability to determine the

parent of any node.

Direct AR is the name we have given to an enhancement of AR that obviates

the need for mapped node addresses. It assumes that each node stores a list of its

neighbours in an array. When the network is being mapped to a tree, rather than

assigning a new address to the node, this neighbour list is instead reordered so

that the parent is placed at a known position in the list: first or last, for example.

However, the root of the tree must be explicitly stored. Direct AR also has the

advantage of replacing the (i− 1)/k calculation to find the parent of node i with

a direct memory lookup. Division is a relatively expensive operation, so this is a

measurable improvement. If it is not practical to reorder the neighbour list, the

parent of each node may be explictly stored, at a cost of O(N) memory. Even so

it retains the performance improvement.

Consider the small network in Figure 3.5. It might be stored, prior to mapping,

as Figure 3.6a. After the mapping to a tree, the root is noted, and the neighbour

lists are reordered so that that parent node is first in each list, Figure 3.6b. We

now have a system in which the tree structure is implicit in the ordinary network

structure. The parent of a node can be instantly determined by looking at the

first element of the neighbour list, and the children are those neighbours that have

the node as their parent. Finding the children is more complicated than before,

but that does not matter since they are not needed in the next hop calculation.
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Figure 3.5: a) A simple network. b) The same network mapped to a tree. Links
that have been broken are drawn in red dots.

The next hop algorithm itself needs to be changed slightly. As before, let s and

d be the source and destination respectively. The modified next hop calculation

is presented in Algorithm 2.

Why is this better than normal AR? There are a number of reasons. It requires

no extra memory for mapping new node addresses. Since we don’t use new ad-

dresses it does not suffer from the address overflow problems discussed in Section

3.1.5. Finally, finding the parent of a node by direct lookup is faster than perform-

ing the Parent(i) = (i − 1)/k calculation, especially since division is a relatively

expensive operation. The next hop calculation still has O(log N) complexity.

Section 3.2.3 compares the costs and performance of this new method with the

original algorithm.

3.2.2 Fixed Cost Routing

AR has O(N) memory requirements and O(log N) complexity. Direct AR has no

extra memory requirements, but has O(log N) computational complexity. In this

section a third algorithm is introduced. This has O(N) memory requirements, but

fixed cost, O(1), computational complexity. However it does suffer from the same

implementation problems as AR.
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a)

Node Neighbours
0 3
1 2 4
2 1 3 4
3 2 4 0
4 1 2 3

b)

Node Neighbours
0 3
1 2 4
2 3 1 4
3(root) 2 4 0
4 3 1 2

Figure 3.6: Two representations of the network in Figure 3.5.a) Pre-mapping
representation of network. b) Post-mapping representation of network.

Consider Figure 3.7: if the nodes are numbered using the AR numbering

scheme, it should be possible to determine whether a destination node is in Re-

gion A, B or C, ie whether the next hop is to the parent node or to one of the

child nodes. In this section we present an address scheme similar to that of AR

that allows us to do this. We term the new numbering scheme, and associated

algorithm, Fixed Cost Routing.

Rather than using one number as the address of a node, we use two numbers.

The first part of the address, x, is unique among all other nodes at the same depth

in the tree. The second part of the address is the depth of the node in the tree.

The root node has an address of (0, 0). As in direct AR, the list of neighbouring

nodes is reordered at each node so that the parent node is at the end of the list.

Let k be the maximum number of neighbours belonging to any node in the

network. Let p be a parent node with child node c. Let the address of p be (xp, yp)

and the address of c be (xc, yc). Let c be the ith node in the neighbour list of p,

with i ∈ {0 . . . k − 1}. Then (xp, yp) and (xc, yc) are related by:

yc = yp + 1 (3.3)

xc = xp × k + i (3.4)

This is illustrated by example in Figure 3.8.



3.2 New Efficiency Improvements 49

Input: Routing tree with a named root. Function Parent that returns the parent
node of a non-root node. Source node s, destination node d.
Output: The next node in the path from s to d.
(1) if d = root
(2) return Parent(s)
(3) y ← d
(4) while y 6= root
(5) if Parent(y) = s
(6) return y
(7) y ← Parent(y)
(8) return Parent(s)

Algorithm 2: The implicit AR algorithm, in which parent nodes are stored rather
than calculated.

s

Region A

Region C Region B

Figure 3.7: The destination node can be categorised into one of three types, ac-
cording to the region it is in.

Let s and d be a source and destination pair. Initially node d can be sorted

into one of three regions, see Figure 3.7, on the basis of the nodes’ addresses. The

first area, Region A, is all nodes that are higher than s in the tree. This is easy to

test for: if yd < ys, then node d is in region A. The second area, Region B, consists

of all nodes directly below node s in the tree, so yd > ys. Now, from Equation 3.4,

if d is in this region then:

xd ∈ {xc × k(yd−ys), . . . , xc × k(yd−ys) + k − 1}

If d belongs to neither of these first two regions, it must then belong to the third,
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0,0

1,3 3,3 9,34,3 10,3 12,3 13,3

4,23,21,20,2

0,1 1,1

0,3

Figure 3.8: The two number address scheme of fixed cost routing. The maximum
node degree, k = 3.

Region C: nodes that are below s in the tree, but in a separate subtree.

If the destination node is in either Region A or Region C, then the next hop

from the source s is the parent of s. If the destination is in Region B, there may

be more than one child node that could be the next hop. Let q = xd−xs×k(yd−ys).

Then the next hop node’s position in the neighbour list of node s is the integer

part of:
q

k(yd−ys−1)
.

Algorithm 3 shows the full procedure in practice. Below are three examples using

Figure 3.8:

Example (3, 2)→ (0, 1): yd < ys since 1 < 2 so the next node is the parent of

(3, 2).

Example (3, 2)→ (12, 3): yd 6< ys since 3 6< 2 and yd 6∈ {3 × 33−2 . . . 3 × 33−2 +

k − 1} since 12 6∈ {9 . . . 11}

Example (1, 1)→ (10, 3): yd 6< ys since 3 6< 1. But, xd ∈ {1× 33−1 . . . 1× 33−1 +

k−1} since 10 ∈ {9 . . . 11} and q = xd−xs×k(yd−ys) = 10−1×3(3−1) = 1 and

the integer part of 1
k

= 0. So the next hop is the first item in the neighbour

list (using a zero offset) which is (3, 2) as expected.

Although this method has a fixed cost for all next hop calculations, that does

not by itself make it more efficient for all networks one might wish to simulate.

Currently only networks with less than one million nodes can feasibly be simulated.

In AR it is necessary to perform a calculation on average log N times to find the
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Input: Routing tree with maximum degree k. Each node a in the network has
a two part address (xa, ya). The root node is (0, 0). If node p is parent of node
c then yc = yp + 1 and xc = xp × k + i where 0 ≤ i < k. The function Parent
returns the parent of a node (either by lookup or by calculation). Source node s,
destination node d.
Output: The next node in the path from s to d.
(1) ∆y ← yd − ys

(2) if ∆y < 0
(3) return Parent(s)
(4) else
(5) q ← k∆y

(6) r ← xd − xs × q
(7) if r ∈ {0 . . . (xs × q − 1)}
(8) n← Integer Part( r

k(∆y−1) )
(9) return neighbour n of node s
(10) else
(11) return Parent(s)

Algorithm 3: Fixed cost AR.

next node — roughly 14 times with a million node network. We need to perform

one calculation with fixed cost AR. However it is conceivable that this single

calculation might be more than 14 times as expensive. In AR (Algorithm 1), the

most expensive part of the calculation is the division to find the parent node.

In fixed cost routing it is necessary to calculate k∆y twice and perform several

multiplications, additions and a division. The power calculation is the expensive

part. It is relatively simple to work around this problem: since ∆y has a small

range of values — typically 1 to log N it is easy to precalculate them and perform

a table lookup rather than repeat the power calculation each time. Section 3.2.3

contains systematic comparisons of the methods.

This fixed cost method suffers from the same problem with large node address

values as the original method. The largest number needed is of the order of kd

where k is the maximum node degree, and d is the depth of the tree. If addresses

are restricted to standard 4 or 8 byte integers, the size of networks we can study

is limited. An alternative is to use multiprecision arithmetic libraries, such as

GNU MP [33]. The disadvantage is that memory use no longer scales linearly

with N , and the cost per arithmetic operation is no longer constant. Section 3.2.3

presents experimental results using such a library for both original AR and fixed

cost routing.
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3.2.3 Scalability and Performance

In Sections 3.2.1 and 3.2.2 two new methods for implementing AR were presented.

This section compares their memory and computational efficiency on networks of

many scales. Since both basic AR and fixed cost AR are limited by the default

size of hardware integer variables (usually 32 bit or 64 bit), we denote by MP basic

AR and MP fixed cost AR, implementations of basic AR and fixed cost AR that

use a multiprecision arithmetic library rather than the 32 bit or 64 bit arithmetic

that can be performed directly by the computer hardware. Using a multiprecision

library allows us to overcome the node address explosion discussed in Sections

3.1.5 and 3.2.2.

It should be noted that when using the multiprecision library for node ad-

dresses, the amount of memory per address is not fixed. The memory used is

dependent on the maximum node degree and the tree depth. The number of ma-

chine operations involved in a multiprecision operation is dependent on the size

of the operands. This makes estimating the cost of MP AR more difficult.

Table 3.2 summarises the theoretical properties of the five methods. With these

theoretical figures in mind let us examine the experimental results presented in

Figure 3.9. Tests were performed on networks with one hundred to one million

nodes. A fixed number (107) next hop lookups were performed. This tests the

methods without the need to generate traffic. A 1.0GHz Pentium running FreeBSD

4.6, with code compiled using GCC 2.95, was used to run the tests.

Algorithm Memory Operations per lookup
Basic O(N) O(log N) divisions
Direct O(0) O(log N) lookups
Fixed Cost O(N) 1 division, 1 multiplication
MP Basic < O(N log kd−1) O(log N) MP divisions
MP Fixed < O(N log kd−1) 1 mp division, 1 mp multiplication

k is the maximum node degree and d is depth of tree.

Table 3.2: Memory and computational cost for several types of AR.

The networks were all generated with GT-ITM [19] using the transit–stub

model. This mimics the structure of the Internet by dividing nodes into core

routing domains and periphery stub domains. Many properties, such as con-

nectedness, of the generated networks depend quite sensitively on the parameters

chosen. However the performance of the AR lookup depends only on the depth of
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Figure 3.9: The time taken (in seconds) to perform a fixed number (1e7) of nexthop
calculations

the routing tree, which varies less than other properties

The first item of note is that Figure 3.9 has three distinct regions: networks

with up to four thousand nodes, networks with four to twenty thousand nodes and

networks with more than twenty thousand nodes. For small networks fixed cost

routing is fastest, but is followed very closely by direct routing. AR is several times

slower. Both original and fixed cost routing are unable to deal with networks above

a certain size: eight hundred nodes for the original method and three thousand

for fixed cost. This is expected — the mapped node addresses overflow standard

integers for these networks.

For these small networks, the original and direct methods quite clearly scale

with O(log N). The fixed cost method is not perfectly fixed, but the variation is

quite low.

Something unexpected happens with medium sized networks. The relative

performance of the three methods left remains the same, but all have a large jump

in computational time. This, we believe, is due to memory cache effects. Above

two thousand nodes the network cannot be held in cache and performance drops

quite sharply — even for fixed cost routing.
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Above twenty thousand nodes, the expected behaviour reasserts itself again as

most of the network is stored outside of the memory cache. Direct and original AR

scale with O(log N) while fixed cost routing has roughly constant performance.

The best method?

At this point it is pertinent to ask which of the proposed methods is best. Unsur-

prisingly, there is no simple answer. Direct algorithmic routing has the advantage

of having no extra memory requirements and scaling very well up to about forty

thousand nodes (for this set of networks). Direct routing is also very simple. For

small networks, where memory is not an issue, fixed cost routing has the best per-

formance. For large networks the choice comes down to a speed/memory tradeoff.

Multi precision fixed cost routing has a roughly constant performance, but does

require extra memory, while direct AR requires no extra memory but is slower.

3.3 Route Length Improvement

Figure 3.4 demonstrated how the quality of routes generated by AR can depend

on the order in which nodes are searched during BFS. In this section the behaviour

is explored further and a method is suggested for improving the trees generated

by BFS.

The choice of route node in a BFS tree influences both route quality and the

work necessary for the next hop calculation. The following example demonstrates

how the position of the root node affects the amount of work done. Consider the

network of five nodes connected in a straight line, Figure 3.10a, with two choices,

Figures 3.10b, 3.10c of root node for the BFS tree. In the next hop calculation,

using the algorithm in Section 3.2.1, we ascend the tree from the destination node

until we reach either the source or the root node. If the tree is shallow, Figure

3.10b, one of these nodes is encountered sooner than if the tree is deep, Figure

3.10c. For this reason it is beneficial to choose a node that will minimise the

average depth, or to rebalance the tree after its creation.

The root node of the tree can be changed after creation without altering the

routes generated by the tree. However, choosing a different root node at search

time may create a different tree. All links emanating from the root node are

present in the tree, but this is not necessarily true for other nodes.
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Figure 3.10: It takes fewer hops to reach the root in a shallow tree than in a deep
tree

As before, H is defined to be the sum total of the number of hops needed to

join all distinct pairs of nodes in the network:

H =
N∑

i=1

N∑
j=i+1

Dist(i, j). (3.5)

Figure 3.11 shows the range that H can take in a 100 node network. The nodes

have been sorted in ascending order of H and plotted against H. See Figure 3.12

for a diagram of the network. Table 3.3 lists the average and standard deviation

of H
D

for several networks of different sizes. In all cases highly connected nodes

were given precedence in the BFS creation of the routing tree. The relative qual-

ity of routes varies from between 1.1 and 1.27 times the shortest path lengths.

Unfortunately there is no obvious way of choosing a root node and BFS order to

minimise H.

Number of Nodes E
N

Average H
D

Standard Deviation of H
D

100 3.26 1.23 0.053
200 3.29 1.10 0.028
400 3.33 1.12 0.062
800 3.20 1.11 0.030
1600 3.21 1.16 0.069
3200 3.22 1.17 0.076
6400 3.25 1.27 0.092

Table 3.3: A sample of H
D

values for several networks.
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Figure 3.12: A 100 node network generated by GT-ITM. Other similar networks,
with between 10 and 100000 nodes were also generated and used for testing the
accuracy and efficiency of AR.
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Optimal Solutions of Shortest Path Spanning Tree

Creating an optimal tree for AR is a special case of a more general problem

in graph theory, known as the optimal communication spanning tree (OCST)

problem, proposed by Hu [45]. This can be formally defined as follows: a complete

undirected graph G is defined as G = (V,E) where V is a set of vertices and E

is a set of edges joining all pairs of vertices. The number of vertices is denoted

by n = |V |. An edge between vertices vi and vj is denoted by (vi, vj) A spanning

tree of G is defined as T = (V, F ) where F ⊆ E, |F | = |V | − 1 and all vertices are

connected.

The OCST problem involves finding a spanning tree of G that satisfies certain

constraints. A demand matrix R = (rij) determines the amount of traffic between

vertex pairs. R is an n× n matrix, and rij is the traffic required to flow between

vertices vi and vj. An n×n distance matrix W = wij specifies the distance weight

of each vertex pair. Let Pij(T ) ⊆ F be the set of edges linking vertices vi and vj

in tree T . The weight w(T ) of a spanning tree T is defined as

w(T ) =
∑

vi,vj∈V


rij

∑

(vp,vq)∈Pij(T )

wpq


 .

A tree T is a solution of the OCST problem if w(T ) ≤ w(T ′) for all other spanning

trees T ′.

An optimal routing tree for AR is a solution to a special case of the OCST

problem. Let Gn be the graph corresponding to a network, with edges En cor-

responding to the links in the network. Certain conditions are imposed on the

OCST problem. These are: |G| = |Gn|, rij = 1 if i < j, rij = 0 if i ≥ j, wij = 1 if

(vi, vj) ∈ En and wij = ∞ if (vi, vj) /∈ En. As before G is a complete undirected

graph.

Finding an optimal AR tree is also a special case of the Shortest Total Path

Length Spanning Tree problem. This problem has the same conditions as the

optimal AR tree problem except that wij is not restricted to wij = 1 if (vi, vj) ∈ En,

but may assume any non–negative value. The problem is NP–complete. Another

related problem is k-source shortest paths spanning tree problem [25] [31].

The general OCST problem isNP–complete [38]. Recent approaches to solving

the OCST problem have concentrated on evolutionary algorithms [62]. However

solutions to the general OCST problem have been limited to small graphs, typically
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with fewer than twenty five vertices [87]. These approaches are not feasible for

use with the large, but less general, graphs used in AR.

Recent work has concentrated on finding approximate algorithms for near op-

timal solutions. In particular Wu et al. [96], building on work of Bartal [10] [9],

have demonstrated how to build a spanning tree with a cost within a factor of

(1+ ε) of the minimum, in time O(NO( 1
ε
)). However, this approach is not suitable

for large graphs as it requires the calculation of the all-pairs shortest paths of the

graph. For a large graph, this is not computationally feasible.

We now propose a O(N log N) method for generating a tree for AR. Unlike

the method above, it does not guarantee that H will be within a bound, but does

work on large graphs. It is implemented as an iterative algorithm. At each step an

alteration is made to the tree. H is measured. If H has decreased the alteration

is kept, otherwise it is reversed.

Types of modification

The network itself cannot be modified. All that is changed is the mapping to a

tree. If the network contains cycles then there is more than one way to map it to

a tree, and this may affect the value of H: consider the small network in Figure

3.13a. This can be mapped by a BFS to either Figure 3.13b or Figure 3.13c. Both

are valid trees, but have very different values of H. However by making node z

rather than node y the parent of node x we can convert one tree to the other.

These are the modifications we will test — changing which links are broken by the

mapping to a tree. However the change must not introduce a cycle in the tree, or

result in a tree that is not fully connected, Figure 3.14.

As before G(V, E) is the network graph and (T, r) is a routing tree where T is

a spanning tree and r is the root node. S(T, a) is the set of nodes in the subtree

of T rooted at a. Let x, y, z ∈ V and let y be a child of x

We denote a modification to the tree by

Tnew = T/{(x, y)} ∪ {(z, y)}

where z /∈ S(T, x). We write H(T ) or H(Tnew) to specify the value of H using

H(T ) or H(Tnew) respectively.

We propose two types of iterative improvement. The first approach tests each

legal modification in the network and accepts or rejects each one immediately.
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Figure 3.13: Two different choices of root node result in trees with different values
of H. However by making z the parent of x rather than y in tree (b) we can convert
one tree to the other.

The second examines a node, reconnects all possible broken links and accepts or

rejects the change based on the overall change in H, and repeats this for every

node. The two methods are shown in Algorithms 4 and 5 respectively.

Results showing the improvement in route quality after applying this method

are presented in Section 3.3.1.

Input: A graph G = (V,E). A routing tree T = (V, F, r) where F ⊆ E. The
sum of distances between all unordered node pairs in tree T is written H(T ).
Output: A routing tree Tnew with H(Tnew) ≤ H(T ).
(1) Ttest ← T
(2) Tnew ← T
(3) foreach z ∈ V
(4) foreach (x, y) ∈ Fnew s.t. (x, z) ∈ E and z /∈ S(x, Tnew)
(5) Ttest ← Tnew/{(x, y)} ∪ {(x, z}
(6) if H(Ttest) ≤ H(Tnew)
(7) Tnew ← Ttest

(8) return Tnew

Algorithm 4: An iterative method for modifying a routing tree so as to lower H,
the sum of distances between node pairs. Each modification is tested immediately
and either accepted or rejected.
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Figure 3.14: An illegal modification to a tree. Since z is a descendant of x, if we
make z the parent of x as well, we end up with both a cycle in the tree, and two
disjoint islands.

Input: A graph G = (V,E). A routing tree T = (V, F, r) where F ⊆ E. The
sum of distances between all unordered node pairs in tree T is written H(T ).
Output: A routing tree Tnew with H(Tnew) ≤ H(T ).
(1) Ttest ← T
(2) Tnew ← T
(3) foreach z ∈ V
(4) foreach (x, y) ∈ Fnew s.t. (x, z) ∈ E and z /∈ S(x, Tnew)
(5) Ttest ← Tnew/{(x, y)} ∪ {(x, z}
(6) if H(Ttest) ≤ H(Tnew)
(7) Tnew ← Ttest

(8) return Tnew

Algorithm 5: An iterative method for modifying a routing tree so as to lower H,
the sum of distances between node pairs. Several modifications are tested at a time
and either accepted or rejected on the basis of the overall change in H.
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3.3.1 Measurement of H

Each time the tree is modified in the route improvement algorithm, it is necessary

to measure the change in H, so as to decide whether to accept or reject the change.

In a network with l = |E|−|V |−1 broken links the calculation is performed O(Nl)

times and this is a significant cost if l is large. In order for the algorithm to scale

with N , we need to be able to measure the change in H in at worst O(log(N))

time at each step.

In this section we propose a method for performing an initial calculation of

H in O(N log(N)) time, and a method for updating H in O(log N) time. It has

memory requirements of O(N).

First some definitions. Let d(x, y) be the distance between nodes x and y along

the path chosen by AR. For two sets of nodes X and Y let D(X ,Y) be the sum of

the lengths of paths joining each pair of nodes x, y, s.t x ∈ X , y ∈ Y and x 6= y.

More formally:

D(X ,Y) =
∑

x∈X ,y∈Y
d(x, y)− 1

2

∑
x,y∈Y∩X

d(x, y) (3.6)

The second term in this expression compensates for nodes that are in both X and

Y , and are counted twice in the first term. Using this notation, if V is the set of

all vertices in the network graph then H = D(V, V ).

We wish to be able to quickly update H when a subtree rooted at a with a

parent b and broken link to c, has its link to b broken and has c made its parent

(provided that this modification results in a fully connected tree).

Let S(a, T ) be the set of nodes in the subtree of tree T rooted at a. Let

S ′(a, T ) = V \S(a, T ). Let T1 be a routing tree for the network. For conciseness

we write S1 = S(a, T1) and S ′1 = S ′(a, T1). Let a be a node with parent b in T1.

Note that

(V, V ) = (S1,S1) ∪ (S1,S ′1) ∪ (S ′1,S1) ∪ (S ′1,S ′1).

Now

H(T1) =
1

2

∑
x,y∈V

d(x, y)

=
1

2


 ∑

x,y∈S1

d(x, y) + 2
∑

x∈S1,y∈S′1

d(x, y) +
∑

x,y∈S′1

d(x, y)


 . (3.7)
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Since S1 and S ′1 are disjoint sets, if x ∈ S1 and y ∈ S ′1 then

d(x, y) = d(x, a) + d(a, b) + d(b, y) = d(x, a) + 1 + d(b, y) (3.8)

and

∑

x∈S1,y∈S′1

d(x, y) = N(S1)N(S ′1) +
∑

x∈S1,y∈S′1

(d(x, a) + d(b, x))

= N(S1)N(S ′1) + N(S ′1)
∑
x∈S1

d(x, a) + N(S1)
∑

y∈S′1

d(b, y)

= N(S1)N(S ′1) + N(S ′1)D({a},S1) + N(S1)D({b},S ′1).(3.9)

Using Equations 3.6, 3.7 and 3.9 we can write

H(T1) = D(S1,S1) + D(S ′1,S ′1) + N(S1)N(S ′1)
+N(S ′1)D({a},S1) + N(S1)D({b},S ′1). (3.10)

Let T2 be a modification to T1 such that a has parent c, where c /∈ S1. This

implies that S2 = S(a, T2) = S1. Denote by H(T1) and H(T2) the distance

function of the network when using trees (T1) and T2 respectively. Now H(T2) can

be expressed similarly to Equation 3.10

H(T2) = D(S1,S1) + D(S ′1,S ′1) + N(S1)N(S ′1)
+N(S ′1)D({a},S1) + N(S1)D({c},S ′1). (3.11)

and by combining Equations 3.10 and 3.11

∆H = H(T2)−H(T1) = N(S1) [D({c},S ′1)−D({b},S ′1)] (3.12)

We need simple expressions for these final two terms:

D({b},S ′1) = D(S1 ∪ S ′1, {b})−D(S1, a)−N(S1)

D({c},S ′1) = D(S1 ∪ S ′1, {c})−N(S1)d(b, c)−N(S1)−D(S1, a)

We get:

∆H = N(S1) [D(V, c)−D(V, b)−N(S1)d(b, c)] (3.13)
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The last step is to show how to calculate these values, and most importantly, how

to efficiently update them as the graph is modified.

Implementation

At each iteration we measure the ∆H of the proposed change to the network tree.

This modification consists of moving a subtree rooted at x from y to z, where y is

the parent of x and the link between x and z is broken — this change must also

result in a connected tree. Figure 3.15 is an example.

After Modification

x

y z

x

y z

Before Modification

Figure 3.15: An example of a legal modification to a tree, in which z replaces y as
the parent of x. The dashed line is a broken link.

In order to calculate both H and ∆H we store two values for each node x:

Nx and Dx. If S(x, T ) = Sx is the set of nodes in the subtree rooted at x then

let Nx = |Sx| and Dx = D(x,Sx). We can build Nx and Dx for all x ∈ V using

Algorithm 6. The relationship between Nx, Dx and Ny, Dy of connected nodes x

and y is illustrated in Figures 3.16 and 3.17.

Now recall that Dx = D(x,Sx). Therefore

D(x, V ) = Dx + D(x, V \Sx) (3.14)

and if y = Parent(x) we can write D(x, V \Sx) as
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Input: A routing tree T = (V, F ).
Output: Nx and Dx for all nodes x ∈ V .
(1) foreach x ∈ V
(2) Nx ← 0
(3) Dx ← 0
(4) foreach x ∈ V
(5) y ← x
(6) d← 0
(7) repeat
(8) Ny ← Ny + 1
(9) Ty ← Ty + d
(10) d← d + 1
(11) y ← Parent(y)
(12) until y = root
(13) return Nx and Dx ∀ x ∈ V

Algorithm 6: Construction of Dx and Nx.

D(x, V \Sx) = D(y, V \Sy) + N −Nx + Dy + Nx −Dx − 2Nx (3.15)

= D(y, V \Sy) + N + Dy −Dx − 2Nx (3.16)

This is a recursive definition for any x 6= root. The recursion terminates when y

is the root node:

D(y, V \Sy) = D(root, V \V ) = 0 (3.17)

We can generate D(x, V \Sx) using Algorithm 7.

Input: A routing tree T = (V, F ) and a node x ∈ V .
Output: The value of d = D({x}, V \Sx) where Sx is the set of nodes in the
subtree rooted at x.
(1) d← 0
(2) repeat
(3) y ← Parent(x)
(4) d← d + N + Dy −Dx − 2Nx

(5) x← y
(6) until y = root
(7) return d

Algorithm 7: Calculation of D({x}, V \Sx).
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Figure 3.16: Relationship of Dx and Nx between nodes in a tree.

Once Dx and Nx for all x ∈ V are set up we can generate D(x, V ) using

Equations 3.16 and 3.17. With this we have all that is necessary to calculate the

∆H of a proposed modification to the tree. If the modification is accepted we

then need to update Dx and Nx for the network. The first step is to detach the

subtree at x from b and update the nodes above x as in Algorithm 8. The second

Input: A routing tree T (V, F, r) and a node x. Ny and Dy for all nodes y ∈ V .
Output: Updated values of Ny and Dy for all nodes y ∈ V when x is detached
from its parent.
(1) y ← Parent(x)
(2) d← Dx

(3) repeat
(4) d← d + Nx

(5) Dy ← Dy − d
(6) Ny ← Ny −Nx

(7) y ← Parent(y)
(8) until y = root
(9) return Ny and Dy ∀ y ∈ V

Algorithm 8: When x is detached from its parent the values of Ny and Dy ∀ y ∈ V
must be updated.

step is to reattach the subtree to its new parent p, and update the nodes above

it, Algorithm 9.

If two or more modifications are to be made simultaneously then the situation
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Figure 3.17: Example of Dx and Nx between nodes in a tree.

Input: A routing tree T (V, F, r) and a node x. Ny and Dy for all nodes y ∈ V .
Output: Updated values of Ny and Dy for all nodes y ∈ V when x is attached
to a new parent.
(1) y ← p
(2) d← Tx

(3) repeat
(4) Ny ← Ny + Nx

(5) d← d + Nx

(6) Ty ← Ty + d
(7) y ← Parent(y)
(8) until y ← root
(9) return Ny and Dy ∀ y ∈ V

Algorithm 9: When detached subtree rooted at x is reattached to a new parent the
values of Ny and Dy ∀ y ∈ V must be updated.

is more complicated. As we make each individual change we calculate the ∆Hi of

that change, and base our final decision on the sum of these ∆Hi, Algorithm 10.

Efficiency of Algorithm

There are several stages in determining the initial values of H, calculating ∆H and

in updating the network after a successful modification. The initialisation of Nx

and Dx using Algorithm 6 has complexity O(N log N) and requires O(N) memory.

The calculation of D(x, V ) hasO(log N) complexity. Finding the distance between

two nodes x and y, d(x, y), has complexity O(log N) (depending on the next hop

algorithm used). So, overall, one modification of the network requires O(log N)
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Input: A routing tree T (V, F, r). A number of modifications of the form Tnew = T/
{(xi, yi)} ∪ {(zi, yi} where 0 < i < n.
Output: A new tree Tnew with H(Tnew) ≤ H(T ).
(1) ∆H ← 0
(2) Ttest ← T
(3) foreach i ∈ {1 . . . n}
(4) Ttest ← Ttest − {(xi, yi)} ∪ {(zi, yi}
(5) ∆H ← H(T )−H(Ttest

(6) if ∆H > 0
(7) Tnew ← T
(8) else
(9) Tnew ← Ttest

(10) return Tnew

Algorithm 10: A method for making several modifications to a tree and accepting
or rejecting them based on the overall change in H.

time.

Improvements in H

Figures 3.18, 3.19 and 3.20 present the results of performing the improvement

algorithms on an initial BFS tree. We tested three approaches for each network. It

should be noted that the improvements in H discussed below will vary considerably

from network to network. These results should not be taken as indicative of all

networks of the given size, but rather as examples to demonstrate some typical

behaviour and scaling properties. Later in the chapter we will use more realistic

networks taken from Internet surveys and modern network generation tools.

It is interesting to note that there is little variation in local minima of H

between different starting points, suggesting that the evolutionary approach to

tree generation used in the general OCST problem would not be particularly

useful in AR tree generation, even if it were possible on large networks.

Method one is that of Algorithm 4 and is shown in Figures 3.18a, 3.19a and

3.20a. We iterate through each node in the tree, make that node the parent of

any neighbours to which it is connected by a broken link and accept or reject

the modification immediately. The overall improvement depends on the initial

tree, which in turn depends on the root node chosen. Additionally the final value

of H varies with the initial tree and root node. H has a minimum value with

occasional local maxima. These maxima occur when two or more modifications



3.3 Route Length Improvement 69

a)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0  10  20  30  40  50  60  70  80  90  100

T
ot

al
 D

is
ta

nc
e

Root Node (Ordered by H)

Shortest Path
Algorithmic

Improved Algorithmic

b)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0  10  20  30  40  50  60  70  80  90  100

T
ot

al
 D

is
ta

nc
e

Root Node (Ordered by H)

Shortest Path
Algorithmic

Improved Algorithmic

c)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0  10  20  30  40  50  60  70  80  90  100

T
ot

al
 D

is
ta

nc
e

Root Node (Ordered by H)

Shortest Path
Algorithmic

Improved Algorithmic

Figure 3.18: A one hundred node network. The graphs show the improvement
in H. Each point on the x axis represents a different choice of root node. a)
the tree is modified one link at a time. b) all broken links of a node are updated
simultaneously and the combined change rejected or accepted. c) the above two
steps are both applied.
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Figure 3.19: A 1600 node network. The graphs show the improvement in H. Each
point on the x axis represents a different choice of root node. a) the tree is modified
one link at a time. b) all broken links of a node are updated simultaneously and
the combined change rejected or accepted. c) the above two steps are both applied.
The improvement process is sometimes trapped in local minima.



3.3 Route Length Improvement 71

a)

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 0  100  200  300  400  500  600  700  800  900 1000

T
ot

al
 D

is
ta

nc
e

Root Node (Ordered by H)

Shortest Path
Algorithmic

Improved Algorithmic

b)

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 0  100  200  300  400  500  600  700  800  900 1000

T
ot

al
 D

is
ta

nc
e

Root Node (Ordered by H)

Shortest Path
Algorithmic

Improved Algorithmic

c)

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 0  100  200  300  400  500  600  700  800  900 1000

T
ot

al
 D

is
ta

nc
e

Root Node (Ordered by H)

Shortest Path
Algorithmic

Improved Algorithmic

Figure 3.20: A 25600 node network. The graphs show the improvement in H. Each
point on the x axis represents a different choice of root node. a) the tree is modified
one link at a time. b) all broken links of a node are updated simultaneously and
the combined change rejected or accepted. c) the above two steps are both applied.
The improvement process is sometimes trapped in local minima.
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taken together cause a decrease in H, but individually cause an increase and so

are rejected by Algorithm 4.

Method two uses Algorithm 5. The results are plotted in Figures 3.18b, 3.19b

and 3.20b. In this case a node becomes parent to all possible neighbouring nodes

and the overall modification to the tree is accepted or rejected. The results are

not substantially different to those of the first method. Local minima of H still

occur.

Method three is more interesting. It is a combination of the first two methods.

The first method is applied, then the second and finally the first method is applied

a second time. The results, in Figures 3.18c, 3.19c and 3.20c are noticeably better.

There are far fewer local minima.

On average, for these networks, the improvement algorithms reduce the value

of H by between 6 and 17 percent. While this is not a huge improvement, the cost

is so small that it is worthwhile to apply the improvement process, at least once.

Performance of Algorithm

The algorithm for determining and updating H is fast. It has complexity of

O(N log N). To emphasise the importance of being able to efficiently update

H, consider the case in which the distance between nodes is directly measured.

It takes O(log N) work to find the distance between two nodes. This must be

calculated N(N − 1) ≈ N2 times, for an overall cost of O(N3 log N). This clearly

does not scale, even if it were to be reduced to O(N2 log N) by only updating

the routes that are modified. The 12800 node network, which can be improved

in 1.2 seconds with the O(N log N) method would take at least four hours with a

O(N2 log N) method.

The times taken for improving the tree using Algorithm 4 or Algorithm 5 show

no significant differences.

Table 3.4 contains the times taken to improve the BFS tree for several different

sized networks. These are taken from a single measurement and illustrate the order

of magnitude time, rather than precise performance figures. A 1.0GHz Pentium

running FreeBSD 4.6, with code compiled using GCC 2.95, was used to run the

tests.

The times are graphed against network size in Figure 3.21 for the combined

method, and a plot of kN log N is fitted. The theory and experimental results

match very closely.
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Size of Time for Method 1 Time for Method 2 Time for Method 3
Network (seconds) (seconds) (seconds)
100 0.0021 0.0020 0.0055
200 0.0043 0.0044 0.013
400 0.010 0.0098 0.028
800 0.021 0.020 0.060
1600 0.044 0.044 0.12
3200 0.095 0.095 0.27
6400 0.20 0.20 0.57
12800 0.43 0.41 1.17
25600 0.90 0.84 2.40

Table 3.4: Time taken to improve routing tree quality using the three different
methods discussed in Section 3.3.1.
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Figure 3.21: A fit of the experimental times to improve BFS trees against the
theoretical time of O(N log N).
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3.4 Quality Improvements

Previous sections in this chapter have concentrated on two aspects of AR. The

first consideration was the performance and scalability of the algorithm. It is

important to note that, though new algorithms were developed for calculating the

next hop in a path between two nodes, the actual paths remain the same for a

given network and tree. The second consideration was the generation of the k-nary

trees that provide the highest quality routes.

This section is concerned with improving the quality of routing beyond that

which is possible by modifying the routing tree. In particular the issues of route

length and link utilisation are examined.

Consider a network of N nodes and E links. In a connected network E ≥ N−1.

For example in the SCAN [40] [51] map of Internet routers N = 228298 and

E = 320203. A tree generated from a connected N node network has exactly

N − 1 links. Each link connects a child node to a parent node one level higher

in the tree. Every node, apart from the root, has a parent node. Let E tree be

the number of links in the tree generated from a network of N nodes and E links.

Then E tree = N−1 ≤ E. This results in two differences between AR and shortest

path routing. First, since only N − 1 links are present in the tree, E − N + 1

links will be completely unused by AR. All the traffic will be concentrated in the

remaining N − 1 links, leading to a greater utilisation of these links and possibly

greater congestion. The second difference, which has been discussed in previous

sections, is that the average path length may increase. This is an inaccuracy

in itself, and also increases packet delay times. In addition, since packets spend

longer in the system, congestion is further increased. Finally, since there is only

one path between a pair of nodes, all routes are symmetric. While in real networks

most routes may be symmetric, this is not necessarily true for all routes.

Huang and Heidemann [47] proposed several schemes for mitigating the worst

of these effects, as described in Section 3.1.6. The new routing scheme developed

in this section generalises and extends some of these ideas.

3.4.1 Multiple Tree Routing

AR with a single tree can only utilise N − 1 of the E links in a network and has

effects on link congestion and packet delays, as discussed above. Using multiple

trees may spread the utilisation of links and shorten route lengths. However the
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Number of Nodes, N Fraction of links used
in 95% or more trees.

Fraction of links used
in 5% or fewer trees.

100 .33 .31
200 .57 .30
1000 .62 .28
10000 .63 .29

Table 3.5: Certain links are highly likely to be present in a BFS routing tree, no
matter which node is the root, while others are likely not to absent.

choice of trees is vital to the success of this approach. Clearly building a tree for

every source node would provide shortest path routing, and high link utilisation,

but would be even more wasteful than maintaining a flat routing table. The aim

is to maximise link utilisation and minimise route lengths while maintaining the

lowest possible number of routing trees.

In our new approach several trees are generated, with as little overlap as pos-

sible. A packet uses the tree that provides the shortest path between source and

destination. The calculation of the distance between nodes takes O(log N) time.

The procedure is simple. From both nodes ascend the tree to the root. Discard

nodes visited twice. The distance is then the number of nodes remaining (includ-

ing the source nodes) plus one. As an aside, this distance measurement could

be performed in constant time with a LCA algorithm and the fixed cost routing

scheme of Section 3.2.2, in which the depth in the tree is already stored.

If this calculation is performed for every packet, it would make routing expen-

sive. However if it is done only once at the beginning of a session between two

nodes the cost is relatively low — no more than the cost of a single next hop

calculation.

The key to the success of this scheme is the choice of routing trees. Simply

generating t trees using BFS will not guarantee that significantly more links will

be used, as the figures in Table 3.5 demonstrate. Given a network of N nodes, a

tree rooted at each node is generated. The second column in the table contains

the fraction of links used in more than 95% of the N routing trees. The third

column contains the fraction of links used in less than 5% of the N trees.

In these cases at least, tree structure does not differ considerably depending

on root node, as most links remain either in or out of the tree irrespective of root

node. A new method for generating trees is needed if using multiple trees is to
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increase link utilisation.

The mechanics developed in Section 3.3.1 will be used again. Recall that

∆H = N(S(a, T )) [D(V, c)−D(V, b)−N(S(a, T ))d(b, c)] (3.18)

where V is the set of all nodes, N(S(a, T )) is the number of nodes in a subtree

rooted at a, D(V, a) is the sum of the distances from every node to node a and

d(b, c) is the distance between nodes b and c. ∆H is the change in the value of H

in an algorithmic routing tree when the subtree rooted at node a is disconnected

from node b and reconnected to node c.

In Section 3.3 the value of ∆H was used as a test to accept or reject the

modification of a tree. The criteria are now different. The task is not to generate

the single best tree, but to maximise the number of links used while maintaining

trees of a reasonable quality. The first tree can be generated normally, as described

in Section 3.3. Subsequent trees are initially generated by a BFS and modified

according to the following criteria:

• Each tree should have a different root to maximise diversity of the tree

structures.

• Modifications to the tree should result in the use of a previously unused link.

• Modifications that have a positive ∆H (decrease in quality) should be some-

times accepted in order to increase the diversity of the trees.

The first two items in this list are easily understood and implemented. The third

item, the acceptance of modifications with positive ∆H requires more care. Con-

sider again Equation 3.18. This can be rewritten as:

∆H = N(S(a, T ))D(V, c)−N(S(a, T )) [D(V, b) + N(S(a, T ))d(b, c)]

= ∆H bad −∆H good,

where ∆H bad and ∆H good are non negative. When deciding whether to accept

a change with a positive ∆H it is necessary to look at both its components.

If ∆H good is very much smaller than ∆H bad then the change would result in

degradation of the quality of the tree. If the ∆H good is larger than ∆H bad then

the change results in an improvement. However if the ratio of ∆H good to ∆H bad
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is only slightly less than one, the modification should be considered if it results in

the use of a previously unused link.

The choice of the exact ratio r =
∆H good

∆H bad
to use as a cut off point is somewhat

arbitrary and may require tuning. There is a balance between maximising link

utilisation and maintaining route quality. If r is close to one, then H is lower than

if r is close to zero. In addition, as more trees are generated, and more links are

utilised, it is necessary to lower r in order to include more unused links.

3.4.2 Measurements of Routing Quality

In order to improve the quality of routing, a method for measuring it is required.

The first metric is total path length, H, which was introduced in Equation 3.2.

This metric and others based on path length are discussed in Section 3.4.3.

The second measurement of quality reflects the utilisation of the links. Let uij

be the number of times that the link between two connected nodes i and j appears

in the set of all paths linking distinct, unordered, node pairs. Then uij = uji and

U =
∑

(i,j>i)

uij = H.

It is relatively simple to compare the value of H for shortest path routing in

a network and the value of H for AR with a tree generated from that network. It

is more difficult to compare utilisation figures. Since there may be multiple paths

of the minimum length between two nodes in a network, the utilisation figures uij

are not fixed, even for shortest path routing. Section 3.4.4 introduces methods for

comparing the utilisation patterns of different routing schemes.

The accuracy of multitree routing and AR in general, depends on the topology

of the network. The closer the network is to a tree, the closer the approximation

to shortest path routing. Its behaviour is illustrated Section 3.4.3 with example

networks created by network topology generators. In Section 3.5 the results of In-

ternet topology surveys are examined and the implications for the use of multitree

AR in large scale simulations are discussed.

3.4.3 Path Lengths in Multitree Routing

In this section we examine how multitree routing affects path length. In particular

three aspects of its behaviour will be discussed. The simplest task is the measure-
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ment of the variation in the value of H as the number of trees in multitree routing

is increased, using a single tree AR as the baseline. Next is comparison of the

cumulative distribution function of path lengths. Finally the ratio and difference

of individual path lengths under multitree routing are compared with those of

shortest path routing.

Consider Figure 3.22. Figures 3.22a, Figures 3.22c and Figures 3.22e show

the variation in path length as the number of routing trees is increased, for three

different size networks.

Figures 3.22b, Figures 3.22d and Figures 3.22f show the variation in path

utilisation as the number of routing trees is increased, for the same three networks.

The smallest of these networks is one hundred nodes, the largest ten thousand.

The maximum number of routing trees is ten. It is clear that multitree routing

improves the value of H — in each case the ratio H
Hmin

is reduced by factor of at

least five. Moreover, the more trees used in multitree routing the better. However,

the benefit of an extra routing tree decreases with every tree added. The greatest

improvement in H is when the number of trees is raised from one to two and from

two to three. After four or five trees the improvement is less dramatic.

Figure 3.23 shows the cumulative distribution function of path lengths for a

ten thousand node network. The shortest path routing distribution, and several

multitree routing distributions are shown. The distribution for single tree AR is

the furthest from the shortest path routing distribution, and the addition of each

tree to multitree routing brings it closer to the shortest path. Again though, the

benefit of an additional tree is lower if there is already a large number of trees.

Due to the greater number of links used, the improvements in path length with

multitree routing are more significant than any improvements possible in finding

an optimum single spanning tree.

So far we have examined the changes in the bulk behaviour without looking at

how individual paths change. For instance, we know that multitree routing reduces

total path length, but we do not know whether all paths are equally reduced, or

whether, say, only the longest paths are shortened.

Figures 3.24 to 3.25 focus on different aspects of the route length changes in

a 1600 node network. Figure 3.24 plots the cumulative distribution function of

the ratio of multitree route length to shortest path route length. Even with single

tree algorithmic routing, almost 70% of routes are uninflated. This increases to

over 95% with nine trees. With single tree routing there is a small fraction of
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Figure 3.22: Improvement of route quality for several networks as the number of
routing trees is increased. a) and b) One hundred nodes. c) and d) One thousand
nodes. e) and f) Ten thousand nodes. a), c) and e) As the number of trees used
in routing is increased, the quality increases. The value at x = 0 is the value of
a single unimproved tree. The value at x = 1 is the value for a single improved
tree. b), d) and f) The fraction of links used in routing increases with the number
of trees.



3.4 Quality Improvements 80

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20

C
um

ul
at

iv
e 

Fr
ac

tio
n

Path Length

10000 Node, 32510 Link Network

One tree
Two trees
Four trees

Eigth trees
Twelve trees
Shortest Path
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routes that are over five times the minimum, some up to eleven times. Multitree

routing reduces the maximum inflation ratio. In single tree routing over 90% of

paths are inflated by four hops or less, but some are inflated by up to ten hops.

With multitree routing, over 90% are inflated by one hop or less.

It is interesting to isolate certain paths and examine them. In Figure 3.26

we take the node pairs with the longest 10% of shortest path route lengths and

examine the route length ratio and route length difference between multitree and

shortest path routing. It can be seen that these long routes are far less inflated

than the average. The fraction of routes that are minimum length is higher and

the maximum ratio of multitree to shortest path length is 1.3 rather than 11.

Virtually all of these long inflated paths are lengthened by just one hop, though

with single tree routing, some are up to three hops longer. These results are readily

understandable. With node pairs whose shortest path is relatively long, there is

less ‘space’ for AR to extend the path. If there is a cycle between the nodes,

they are already, most likely, at opposite ends of the cycle, AR cannot make this

situation worse. It is when the shortest path route traverses nodes that are close

together on a cycle that the path is lengthened by AR. These longest length paths

are also the least affected by increasing the number of trees in multitree routing.

The situation with the node pairs that have the shortest 10% of shortest path

route lengths is the reverse, Figure 3.25. The number of uninflated paths is lower

than that for the network as a whole, and lower than that of the longest path.

With single tree routing, under 60% of paths in our sample network are minimum

length. Even with nine tree multitree routing, less than 95% are minimum length.

With single tree and three tree routing a small number of paths are up to five

times longer than the minimum — some up to twelve times longer. The difference

between these paths and the longer paths is that a small difference in hop count

has a much larger relative affect on the path length. Increasing the number of

trees used has the greatest affect on these routes.

3.4.4 Utilisation of Links in Multitree Routing

So far discussion of AR has centred around the length of routes generated. In this

section attention is switched to the distribution of link utilisations: how frequently

a given link is used. We assume that every source–destination pair has the same

probability of occurring.

AR generates routes that may not be minimum length. However, this is less
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Figure 3.24: Two sections of the cumulative distribution function for the ratio of
path length in multitree AR to the path length in shortest path routing. Increasing
the number of trees increases the fraction of uninflated paths, and reduces the
extent of the inflation of the average.
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Figure 3.25: The short paths in shortest path routing tend to be the most inflated
in AR, both in absolute hops and in ratio to the minimum.
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Figure 3.26: If we consider only the longest paths from the set of shortest path
routes, we see that they are less inflated than the others. The maximum path length
ratio is 1.3 as compared to approximately 11 in the previous diagram. Increasing
the number of trees reduces the number of inflated paths, and the extent of those
still inflated.
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significant than the unbalanced link utilisation pattern. In algorithmic routing,

only N − 1 links are used. E −N + 1 links are completely unused and the others

are overused. To compound the problem, the route lengthening effect causes still

more use of the already overused N−1 links in the tree. The discrepancy increases

as the number of links in the network increases beyond the minimum of N − 1.

The first task in quantifying this effect is to establish a standard which can

be used to compare different routing schemes. In measuring H, the shortest path

value of H was taken as the point of comparison. The situation is more complex

when comparing link utilisations. If there are any cycles in the graph, there may

be more than one shortest path between two points. This then implies that the

utilisation patterns for two full sets of shortest path routes may be different. In

addition, in a large network or even in a highly connected small network, it is not

feasible to calculate every possible set of shortest path routes. The solution used

involves generating as large as possible a selection of shortest path routes, then

taking the average utilisation of each link as the baseline for comparison. The

next task is how to compare a given utilisation pattern with our new standard.

Due to the complexity and range of possible behaviour, it is not usually useful

to compare the utilisation of a given set of routes to the standard by a single

criterion. Let Uij be the average number of times the link from node i to node j is

used, where the average is taken over all possible sets of shortest path routes. In

practice, this would have to be estimated by an appropriately sized sample. Let

uij be the utilisation for the set of routes whose quality we wish to examine. Two

possible single number measurements of utilisation quality are:

Udiff =
∑
i,j

|(Uij − uij)|

and

Uratio =
∑
i,j

uij

Uij

However, these single value measurements are not as useful as an examination of

the distribution of either the difference or ratio of uij and Uij. It should be noted

that even for a full set of shortest path routes, there will be a difference between

uij and Uij.

A graphical approach can yield a greater understanding of utilisation of the

links. The graphs used as examples in the following sections show the cumulative
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distribution function. They plot either (Uij−uij) or uij/Uij on the x–axis and the

probability that x ≤ X on the y–axis.

However, even this method of studying utilisation is not very discriminating.

For instance, a given value of (Uij − uij) has very different importance depending

on whether the link from node i to j is a busy link or a quiet link — it’s a smaller

relative difference for the busy link. Similarly, if a core link is twice as busy as

the average, this will affect more routes than if a peripheral link is twice as busy

as the average.

Since a core link has a greater affect on traffic than a peripheral link, it is

sometimes illuminating to isolate the busiest links — those with the highest Uij

— and examine the cumulative distribution of the ratio and difference restricted

to just those links.

Utilisation and Connectivity

Let us now consider the link utilisation patterns of some example networks. We

look at three networks. Each network has one hundred nodes, but different con-

nectivity: 146 links, 949 links and 1995 links.

Figure 3.27 plots the cumulative distribution functions for the three networks.

Each graph plots the CDF for a single shortest path set of routes and for a basic

AR set of routes. We can see the fraction of unused links increasing as link/node

ratio increases for AR. In addition the maximum link utilisation ratio also increases

as the link/node ratio increases For the sample shortest path route some under

utilisation and some over utilisation is also visible, but is less than that for AR.

However the slope of the CDF flattens as the link/node ratio increases.

Utilisation in Multitree Routing

In multitree AR several trees are constructed. They are chosen so as to maximise

the number of links used. This, as we saw in Section 3.4.1, improves the value of

H, but should also improve the utilisation of links.

Figures 3.28 to 3.31 show the cumulative distribution function of the ratio and

difference of link utilisations for a one thousand node network. Figure 3.32 shows

the distribution for the busiest nodes in a larger ten thousand node network.

We will make some general comments about these graphs. The multitree algo-

rithm is closer to a typical shortest path set of routes than single tree AR. There
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Figure 3.27: One hundred node network. With a higher ratio of links to nodes, the
proportion of unused links increases and the overuse of the utilised links worsens.
a) and b) show the utilisation ratio of a network with 146 links. c) and d) show
the utilisation ratio of a network with 949 links. e) and f) show the utilisation
ratio of a network with 1995 links. a), c) and e) show the CDF at low utilisation
ratios, b), d) and f) at high utilisation ratios.
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Figure 3.28: Utilisations for several routing schemes. Each plot is the CDF of the
difference between the routing scheme link utilisations and the averaged shortest
path link utilisations. The four and eight tree multitree schemes are similar to
each other. The multitree schemes are closer to the sample shortest path scheme
than the single tree scheme. The three graphs look at different areas of the CDF
plots.
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Figure 3.29: These graphs plot the CDF of the link utilisation difference of the
busiest 10% of links in the network. As in the previous diagram, the multitree
routing schemes have similar utilisation patterns, and are closer to the sample
shortest path than the single tree AR scheme.
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Figure 3.30: Utilisations for several routing schemes. Each plot is the CDF of
the ratio of the routing scheme link utilisations to the averaged shortest path link
utilisations. The four and eight tree multitree schemes are similar to each other.
The multitree schemes are closer to the sample shortest path scheme than the
single tree scheme. The three graphs look at different areas of the CDF plots. The
biggest differences are for small utilisation ratios — less than one, and for large
utilisation ratios.
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Figure 3.31: In the busiest 10% of links, the difference between single tree AR and
multitree or sample shortest path, is large. In the sample shortest path scheme and
the multitree schemes, no link is used more than twice as often as in the averaged
shortest path. In single tree AR, some links are used up to fourteen times more
often than in the averaged shortest path.
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Figure 3.32: In a large ten thousand node network, the link utilisation ratio on
busy links is even higher, and the difference between single and multitree routing
more pronounced.
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are both fewer under utilised links and fewer over utilised links. This difference is

particularly noticeable when the busiest links are considered in isolation (Figures

3.31 and 3.32). These graphs plot the cumulative distribution function for two

multitree sets of routes, one with four trees and one with eight trees. The plots

are similar. It seems odd, initially, that doubling the number of trees from four

to eight does not result in a significant improvement of link utilisation. The cause

of this is the variation in link utilisation. Each extra tree uses more links in the

network. Links that result in the best change in H are chosen first. Thus, most

busy links are present even when the number of trees is low. The situation is

different for quiet links. Few of these are present when the number of trees is

low. These two phenomena are illustrated by Figures 3.33 and 3.34. There is a

considerable improvement in the utilisation of quiet links as the number of trees

is increased. A small fraction of these quiet links are greatly overused. This effect

is reduced as the number of trees is increased.

Constructing multitree routing is an inexpensive operation. Therefore, before

running a very large simulation, it is worthwhile testing the network topology with

varying numbers of routing trees to determine the optimum number to use in a

full network simulation.

3.5 Discussion of Routing and Network Topol-

ogy in the Internet

We now turn to research on the topology and routing behaviour of the Internet.

Section 3.6 follows with a discussion of the appropriateness of AR to large scale

simulations in the light of this research.

3.5.1 Distortion and the presence of tree structures in the

Internet

Recent studies [13] [30] [67] on the topology of the Internet have revealed that

large sections of it have a tree structure. This has remained true during several

years of sustained high growth. The structure is present in both router level and

Autonomous System level network graphs.

Faloutsos et al. [30] studied three data sets containing partial snapshots of the

inter-domain topology of the Internet between 1997 and 1998. The graphs ranged
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Figure 3.33: For the busiest links, increasing the number of trees beyond a certain
point does not significantly improve the link utilisation ratio. Contrast this with
the quiet links in Figure 3.34.
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Figure 3.34: The number of trees used in multitree routing has a large effect on
the utilisation of quiet links. As the number of routing trees is increased, so does
the utilisation of quiet links. Some of these quiet links are overused in single tree
routing. Multitree routing helps reduce this.
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in size from 3015 nodes in 1997 to 4389 in 1998. They observed that 40% to 50%

of nodes (Autonomous Systems) were in trees. However the maximum observed

tree depth was three, and 80% of trees had a depth one. They also noted that the

tree size was decreasing; the Internet was becoming more connected on the scale

of Autonomous Systems.

Magoni and Pansiot [67] collected BGP data between 1997 and 2000, to build

Autonomous System level graphs of the Internet. In the most recent data set, there

were 7624 Autonomous Systems. Of these, 2801 (38%) were in trees (excluding

the tree roots). There were 591 distinct trees, with a maximum depth of three.

Once again the trees were small: a mean size of 5.74 nodes, including the tree root.

Over 90% of the Autonomous Systems in trees consisted of single leaves directly

connected to the tree root.

Broido and Claffy [13] studied data collected by CAIDA with their skitter tool

in 2001. Their data set consisted of over 655,000 Internet hosts. They found that

55% of nodes are in trees (not including the roots of the trees). The maximum

tree depth was nine. It should be noted that this was a router level survey rather

than the Autonomous System level surveys of [30] and [67].

A very recent paper by Tangmunarunkit et al. [91] uses a metric called distor-

tion to compare topologies. They include router level and Autonomous System

level Internet maps as well as topologies generated by several widely used network

topology generators [98] [4] [95] [29]. Distortion [91] [45] is a metric describing how

treelike a graph is. It is calculated as follows. Take a spanning tree T (V, F ), of a

graph G(V,E) where F ⊆ E. Calculate the average distance in the tree between

all nodes that are connected in the original graph G(V,E). This measures how

much T distorts G, that is, how many extra hops are needed to get from one side of

an edge in E to the other if the path is restricted to the edges in F . The distortion,

D, is the minimum of all such averages taken over all possible trees, T . Random

and mesh networks have a high distortion; they are not treelike. On the other

hand, Tangmunarunkit et al. found that the two real Internet topologies had a

low distortion, as did the topologies generated by most generators. Unfortunately,

distortion is quite hard to calculate (it is an NP complete problem), otherwise it

would be a useful metric in predicting the accuracy of AR for a given graph.
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3.5.2 Asymmetries in Internet Routing

A routing asymmetry arises when the forward path between a pair of hosts differs

from the return path. Asymmetries can arise for several reasons. Firstly, errors in

network equipment or errors in configuration can cause a link in one direction to

be unused or underused. Secondly, there may be an inbuilt imbalance between

the two directions: for instance due to a bandwidth difference. The third case is

the most common. It is due to the hierarchical and policy based nature of inter

domain routing in the Internet.

Hot potato routing is the name given to a very common policy for routing

packets between Autonomous Systems. Two Autonomous Systems may be linked

at several points. For instance, two national networks, each an Autonomous Sys-

tem, might be connected at several major cities. Suppose that network A, needs

to deliver a packet to network B. In hot potato routing, network A hands over

the packet to network B at the transfer point between the networks that’s closest

to the source. Network B, when returning packets from the destination, chooses

the transfer point that is closest to the destination. For example, in network A,

Galway and Cork are connected via Dublin and Waterford. In network B, they

are connected by Limerick. In addition the two networks have transfer points in

both Cork and Galway. Consider the path between a node a in network A in

Galway, and a node b in network B in Cork. The path in one direction is:

a −→ A(Galway) −→ B(Galway) −→ B(Limerick) −→ B(Cork) −→ b

the return journey is:

b −→ B(Cork) −→ A(Cork) −→ A(Waterford) −→ A(Dublin) −→ A(Galway) −→ a

So, in this case, not only are the paths asymmetric, but one has more hops than

the other.

There are two reasons for this. The practical reason is due to the lack of

knowledge each network has about the other. Network A will typically have no

knowledge of the internal topology of network B. Therefore it is unable to deter-

mine a shortest path between individual nodes in the networks, and the best it

can do is to choose the shortest path out of its own network and into network B.

The economic reason is that the faster the packet leaves network A, the smaller
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the cost is to network A, since that packet is not using its resources.

Paxson [76] studied routing data from 1995. The data included over 11,000

paths. In this set, 49% of paths were asymmetric — visiting at least one different

city. When considering Autonomous Systems, rather than cities, about 30% were

asymmetric. Most asymmetric paths on the Autonomous System level were only

asymmetric by one hop. However, on the city level, about a third of these paths

were asymmetric by two or more cities.

3.5.3 Suboptimal Routing in the Internet

In Section 3.5.2 we discussed the asymmetries observable in Internet paths, due

in the most part to policy based and hierarchical routing. Several papers [88] [93]

[92] have demonstrated that the policy and hierarchy based routing protocols of

the Internet are also responsible for the choice of suboptimal paths. (It was known

in theory that hierarchical routing can be suboptimal, but its effects had not been

previously studied in practice).

Savage et al. [88] have shown that for 30% to 80% of Internet routes, a superior

alternative exists. They examined several datasets collected between 1995 and

1999, consisting of paths between a number of hosts. Bandwidth, round trip time

and drop rate were used as measures of path quality. To test for the existence of a

superior path between two endpoints, they composed two or more other paths so

that the composition formed a new path between the same points. Despite some

of these synthetic paths traversing the same links twice, they found that the new

path was superior surprisingly often. For 30% to 55% of paths they could create a

path with a lower round trip time. For 75% to 85% of paths, an alternative with

lower packet loss was found. Finally, 70% to 80% of routes had alternatives with

a higher bandwidth.

Two papers by Tangmunarunkit and colleagues [93] [92] used routing simu-

lations to gauge the effect that the hierarchical nature of the Internet routing

protocols has on path length. They took a router level map of the Internet [40]

and, using simulations, compared shortest router level paths with the paths gen-

erated by hierarchical routing. They used a simplified model of inter-AS routing

where the AS level path was chosen to minimise the AS-level hop count. A more

faithful system was used in their second paper [93], and confirmed the earlier

findings.

Comparing shortest path and policy based routes, they showed that 20% of
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paths are longer than the shortest path by more than five hops. In addition 20%

are inflated by 50%. Only 20% of policy based paths are shortest paths.

3.5.4 Node Degree

The node degree distribution and link/node ratio have a strong influence on routes

in a network.

In the three data sets of Faloutsos et al. [30] the link/node ratio at the Au-

tonomous System level increased from 1.71 to 1.88 over the course of the two years

of the study. They proposed a power law relation for the frequency of outdegree

values (the outdegree of a node is the number of directed links from that node to

other nodes). The maximum outdegree was 979.

Magoni and Pansiot [67] in their Autonomous System level graphs of the In-

ternet found a link/node ratio of 2.0. The maximum node degree was 1704.

In the CAIDA [13] survey of individual routers, Broido and Claffy found the

link/node ratio to be 1.92. The maximum node degree in the core of the graph

was 850.

For comparison, the link/node ratio in a tree is (N − 1)/N which is close to

unity for large trees.

3.6 Case Studies

The research on Internet topology surveyed in Section 3.5 provides some encour-

agement for the use of AR in large scale simulations of the Internet. Two fac-

tors, in particular, suggest that it is an appropriate approximation. First the low

link/node ratio and presence of tree structures mean that the Internet topology

is close to that of a tree. This suggests that the approximation error introduced

by AR is low. Second, routes in the Internet are frequently not shortest path so

that the lengthening introduced by AR may in fact be an advantage, especially if

the magnitude of the lengthening can be adjusted to match that observed in the

Internet.

Other factors must also be taken in account: link utilisation and the perfor-

mance of the algorithm, for example.

In previous chapters we used relatively small networks generated by GT-ITM

as test cases. We wish to use AR as a tool in large scale Internet simulation.
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Therefore in this chapter we use two networks that embody Internet topologies.

The first is the SCAN map of the Internet [51]. It is a router level map consisting

of 2,282,298 nodes and 320,203 links (the original contains several loopback and

duplicate links which have been removed). The second test case is a 10,000 node

Autonomous System level map with 20575 links, generated by the Inet 3.0 topology

generator [95]. This is a modern generator, which creates networks consistent with

recent topology research [91]. These networks provide a true test of the usefulness

of AR in large scale network simulation.

3.6.1 Route Length

Since the networks, in particular the SCAN map, are large, it is impractical to

measure the lengths of all N × (N − 1) routes. Instead a large random sample of

routes was selected and used to provide an estimate. Figure 3.35 shows the ratio

of H to Hmin for several varieties of AR. This diagram clearly shows the dramatic

improvements made possible by the techniques introduced in this chapter. For

both networks H/Hmin is over 1.3 with AR using a BFS tree. The tree improvement

algorithms of Section 3.3 reduce the error by approximately half. Multitree routing

reduces the error still further so that with eight trees H/Hmin is 1.08 for the SCAN

map and 1.05 for the Inet map. The graph of H/Hmin flattens considerably as the

number of trees is increased. In fact, as Figure 3.35 shows, the effectiveness of

multitree routing increases only as the log of the number of trees.

Figures 3.36 and 3.37 plot the cumulative distribution function for individual

paths: their ratio to the minimum and the increase in length. There are several

noteworthy points. The fraction of unlengthened paths is very low with the BFS

routing tree. The multitree schemes show a large improvement over the BFS tree,

but adding extra trees only results in small incremental improvements.

Table 3.6 compares route length inflation figures as estimated by Tangmu-

narunkit et al. [93] and those resulting from AR using both a BFS tree and

multitree routing. Tangmunarunkit et al. used a 102,000 node map of the Inter-

net, while the figures from AR were generated using the SCAN 2,282,298 node

network.

Somewhat surprisingly, multitree AR generates routes that are actually shorter

than those generated by hierarchical routing. These figures are not conclusive,

as two different network graphs are involved. However as both maps are taken

from the Internet, it shows that AR can generate paths that are shorter than real
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BFS Tree Multitree
(with eight
routing
trees)

Internet
Survey [93]

Percentage of shortest length paths 5% 38% 20%
Percentage of paths over 50% inflated 50% 3% 20%

Table 3.6: Comparison of the frequency of path length inflation. The columns
marked BFS tree and Multitree used AR on the SCAN network map, the column
marked Internet Survey shows the results from an Internet survey by Tangmu-
narunkit et al. [93]

Internet paths. If desired, multitree AR could generate longer paths by not always

choosing the best routing tree for a source destination pair.

3.6.2 Link Utilisation

It is difficult to calculate link utilisation in the two test cases. Due to the size of

the networks, it is not feasible to calculate the large number of paths necessary for

a good estimate of average shortest path link utilisation. There are N × (N − 1)

source–destination pairs, which may each have several shortest path routes joining

them. Taking a large random sample of node pairs allows for a good estimate of

the utilisation of busy links, but is less accurate for quiet links.

Figures 3.38 and 3.39 show the ratio of AR link utilisation to a shortest path

link utilisation. It is important to note that the ratio is to a sample shortest path,

not to an averaged shortest path utilisation. In addition, only the busiest 10% of

links were compared. It can be seen that a large proportion of links are either over–

or under– used by AR as compared to the sample shortest path routing. Multitree

routing reduces the difference, but does not match the sample shortest paths. A

better comparison would be to match the AR utilisation with the utilisation that

results from the hierarchical, policy based routing of the Internet.

3.6.3 Performance

The performance of AR is a final, important consideration. It proves to be efficient.

There are three aspects to the issue: the time taken to create the routing trees,

the time taken for a next hop calculation, and the time taken to decide on the

best routing tree (for multitree routing). These results are summarised in Table



3.7 Summary 102

Routing Scheme Creation Time (s) Choosing best tree (µs) Next Hop (µs)

BFS Tree 0.211 NA 0.992
Improved Tree 4.070 0.211 0.945
2 Multitree 7.930 2.359 1.016
3 Multitree 11.242 3.586 1.008
4 Multitree 14.133 4.758 0.969
5 Multitree 17.242 6.039 0.984
6 Multitree 20.250 7.297 0.984
7 Multitree 23.016 8.539 0.992
8 Multitree 26.055 9.969 1.000

Table 3.7: Timings for the three phases of multitree routing using the SCAN net-
work. The column titled Creation Time records the time taken to setup AR of the
type specified in the Routing Scheme column. The column titled Choosing best
tree records the time taken to choose the best routing tree in multitree AR. It is
the average of one million samples. The column titled Next hop records the time
taken to choose the next hop in a routing path. It is the average of one million
samples.

3.7 using the SCAN network.

These timings were gathered on a 1.0 GHz Intel Pentium. Unsurprisingly, the

tree creation and improvement time increases linearly with the number of trees.

The next hop calculation time remains roughly the same.

3.7 Summary

One necessary part of large scale network simulation is the modelling of a rout-

ing protocol. Three factors must be balanced when implementing such a model:

accuracy, speed and scalability. The most faithful method involves detailed simu-

lation of the routing protocols, building routing tables at each node. However, if

full routing tables are maintained at each simulated router, the memory required

precludes the simulation of large networks. Some level of approximation is called

for.

Two methods already address the problem of routing in large scale network

simulations: algorithmic routing (AR) and NIx–vectors. NIx–vectors creates

routes on demand, and caches them. However in the worst case scenario this

could consume O(N2) memory. Each route computation requires O(N) time. Al-

gorithmic routing (AR) maps the network to a tree and uses a simple algorithm



3.7 Summary 103

to calculate the path between two nodes. It trades a small increase in compu-

tation for a significant reduction in memory use. AR has an advantage in that

it requires only O(N) memory in total and O(log N) time per packet forwarded.

NIx–Vectors can generate shortest path routes while AR lengthens some routes

and concentrates traffic onto N − 1 links.

We chose to enhance algorithmic routing so as to improve both its speed and

accuracy; it already scales well. The improvements made to the basic technique

include:

• A modification to the original method that represents the routing tree in a

different manner, reducing memory usage and increasing performance (Di-

rect AR).

• A new fixed computational cost routing algorithm.

• A fast, efficient, method for improving routing tree quality.

• A routing scheme using multiple trees for generating shorter paths.

• A method for creating multiple trees to minimise route length and spread

link utilisation.

While the performance gains are considerable, the increase in route quality is more

significant. Routing tree improvement reduces the the length of generated routes

in a single tree. Multiple tree routing reduces route length further, and increases

the diversity of paths.

We explored the behaviour of AR across a range of network sizes, including

topologies created by up to date network generators, and taken from Internet

surveys. The approximations introduced by AR were found to affect long and

short paths, quiet and busy links differently.

AR is not hierarchical Internet routing. We have examined data from surveys

of Internet routing behaviour and demonstrated that multitree AR can generate

routes that are as short or shorter than those found in the Internet. Those gen-

erated using a BFS tree are considerably longer. Nevertheless, there are some

situations in which AR cannot be used, for instance:

• The testing of routing protocols.

• Simulations in which the behaviour of interest depends sensitively on the

routing protocol.
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• Simulations in which detailed delay timings are important — route length

and path changes will alter packet delay times.

In Chapter 4 we demonstrate that it is possible, using AR, to model networks

with over ten million nodes. Although AR adds some computational complexity,

this is compensated by reduced memory usage. Without a method such as AR, it

would not be possible to simulate such large scale networks.
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improves roughly with the log of the number of trees.
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Figure 3.36: Different sections of the CDF of the path length ratio. Using the
route improvement techniques is clearly better than using a BFS tree. Multitree
routing offers further improvements
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Figure 3.38: Multitree routing results in less non– and under–utilisation of links.
The decrease in over utilisation is not as dramatic.
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Figure 3.39: Multitree routing results in less nonutilisation and under utilisation
of links. The decrease in over utilisation is not as dramatic.



Chapter 4

Large Scale Simulation

This chapter introduces the second half of our work: the Psim simulator. Psim is

a large scale parallel network simulator. Our approach stresses memory efficiency

and its design is tailored specifically for network simulation. We aim to simulate

the largest possible networks. We believe that with Psim we can model networks of

unprecedented size; on a single processor one hundred thousand nodes is possible,

with eight processors a million nodes and on a sixty four processor cluster we have

modelled a ten million node network. Using sixty four processors we have achieved

a packet event rate of over 16× 106 events per second on a large network.

In addition the code parallelises well. Our PDES synchronisation scheme is a

hybrid of null message synchronisation and windowing [66] [72] synchronisation.

However it avoids the global synchronisation point of windowing methods and also

generates far fewer null messages than a traditional null message approach. We

have been able to produce almost linear speedups.

Despite an approach targeted primarily at large scale simulation, Psim allows

for easy addition of new network device and protocol types through its modular

design. It currently has network modules to represent routers, links, UDP traffic

sources and TCP traffic sources.

The chapter is structured as follows. We begin with a survey of PDES synchro-

nisation techniques. This is an extension of the introduction to PDES in Section

2.4. We move then to an overview of the simulator design and an in-depth look at

the simulator kernel, network configuration and the commonly used modules. In

Section 4.7 we perform small experiments to explore aspects of the parallelisation

scheme. This is followed in Section 4.8 by experiments to determine the scalability

and performance of the simulator using large networks. Section 4.9 summarises
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the work.

4.1 PDES Synchronisation

PDES was introduced in Section 2.4. In this section we explore in greater depth

the synchronisation protocols available. Synchronisation schemes can be divided

into two classes: conservative synchronisation and optimistic synchronisation. As

our work uses a conservative synchronisation protocol we discuss these protocols

in depth. Before proceeding, we provide our rationale for avoiding optimistic

synchronisation.

In optimistic synchronisation a processor may execute an event e1 with times-

tamp t1 without the guarantee that another event e2 with timestamp t2 < t1

cannot arrive. Since e2 could alter the state of the simulation at time t1, the

simulation must be restored to its state at time t2, then event e2 processed and

finally event e1 must be re–executed. In a large simulation, the necessity of having

to continually save the simulation state could prove prohibitively expensive, espe-

cially since a rollback, or reversion to an earlier simulation time, on one processor

may result in a cascade of rollbacks on other processors. In addition, it has been

shown that an optimistic PDES running on a P processor parallel machine is on

average no more than O(log P ) faster than a conservative PDES [32].

The first conservative PDES synchronisation protocol was developed by Chandy

and Misra [22] and Bryant [17], and is known as the CMB algorithm. It uses null

messages, as described in Section 2.4 to enforce causality. It was soon found that

large numbers of null messages were generated, indeed that null messages could

outnumber real messages. As this leads to a decrease in efficiency, methods to

reduce the number of null messages were developed.

The carrier null message [18] method adds extra information to a null message.

For instance it adds a list of nodes and the timestamps reached at those nodes to

null messages. This extra information about the state of its neighbours allows a

node to process events with greater timestamps than would otherwise be possible.

However even this approach still generates many null messages.

The cost of sending these null messages (and indeed ordinary messages) be-

tween processors can be reduced by amalgamating several messages into one large

message. The cost of sending a B byte message can be approximated by α + βB,

where α is a fixed overhead needed to initialise a communication between pro-
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cessors, and β is the cost per byte of sending a message. If n identical messages

are sent independently the cost is nα + nβB. However if it is possible to send

them simultaneously in one large message, the cost is only α + nβB. We use this

optimisation in our model in the case where two or more separate simulated links

join two physical processors. If several simulated packets need to be transferred

from one processor to the other in a sufficiently short period of time, they are sent

as part of one large MPI message.

The concept of lookahead is important in building efficient PDES models.

Lookahead is the distance into the simulation future that a processor can pre-

dict. The further ahead it can predict, the more information it can give other

processors on when to expect messages. Let the lookahead at time t on a pro-

cessor be l. If a neighbouring processor knows that it will receive no messages

until time t + l, then it can process events up to time t + l. The larger the value

of l, the less time wasted in unnecessary blocking. Of course, a large lookahead

cannot eliminate blocking. For instance if one processor has a lighter workload

than another, it will have to block while waiting for the slow processor to catch

up. In order to improve lookahead it is often necessary to make use of model

specific information. For example, Nicol [71] describes a network of first-come

first-served (FCFS) queues. As soon as a job enters a queue its service time is

calculated, rather than when the job reaches the server. This increases the looka-

head, especially if there are many jobs in a queue. The technique is possible due

to the non-preemptive nature of the FCFS queue. It would not be possible in a

preemptive queue, as the exit time of a job arriving at t1 could be altered by a

more important job arriving at time t2 > t1.

Chandy and Sherman [23] introduced the idea of conditional events. They

divided events into two types, definite events and conditional events. It is always

safe to process a definite event. A conditional event may only be processed under

certain circumstances, and may depend on the outcome of earlier events. Thus,

even if the simulation cannot model any conditional events due to blocking, it can

continue to work by processing definite events.

Window based synchronisation [66] [72] is an alternative form of conservative

synchronisation to null messages. It typically involves global synchronisation be-

tween all processors. Each processor i, at time t calculates the interval δi till the

next message it will send. A global minimisation to determine δ = mini δi is per-

formed and all processors are then free to simulate any events in the window from
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t to t+δ. At time t+δ a new window is calculated. In order for this method to be

efficient, it is necessary to calculate the largest possible lookahead. Lubachevsky

demonstrated [66] that performance of this scheme does not worsen when both

the problem size and the number of processors are simultaneously increased.

Our approach to PDES can be characterised as a hybrid of null message and

windowing synchronisation. Unlike the window scheme described above, the win-

dow is not recalculated globally at the end of each window period. Instead each

pair of processors i and j, where i simulates node ni, j models node nj and ni and

nj are linked, determine at startup a window δij based on the type of simulated

communications link. Processors i and j must synchronise at simulated times

nδij, n > 0. The requirement for a global minimisation of δi is removed, but

processors i and j, with nodes ni and nj respectively, must synchronise if ni and

nj are linked even if the link between the two nodes is quiet for long periods. In

practice, in a large simulation, such null synchronisations are not likely to occur,

especially if synchronisations due to multiple links between simulated nodes on

two processors are amalgamated.

4.2 Overview

We now outline our approach to constructing the Psim simulator. Psim is designed

primarily for large scale simulations. This required a conscious decision to make

many tradeoffs in favour of scalability and performance. Nevertheless, due to the

modular nature of its design, it is highly flexible and not restricted to large scale

simulation alone.

Among the first issues that must be examined in building a simulation is that

of abstraction. How detailed a model do we wish to build? A researcher developing

a new wireless protocol may wish to model as faithfully as possible the attenuation

of the signal and interference between sources. Another researcher investigating a

TCP congestion avoidance algorithm may require that the IP layer be modelled,

but might ignore the MAC layer of the network.

In our case we wish to construct as large a model of the Internet as possible.

This necessitated some approximations: in particular the use of algorithmic rout-

ing and the minimisation of the number of protocol stacks. It should be noted

though that these approximations are not imposed by the simulator kernel, but

are features of the modules in question.
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The use of algorithmic routing eliminates the need for routing tables at every

node. The issues of route lengthening and link utilisation have been discussed in

Chapter 3. Some scheme of this sort is a prerequisite for large scale simulation.

In order to simulate the largest possible models, Psim was designed to use

distributed memory parallel computers. However the simulator kernel is entirely

sequential. Most parallel simulators (for example SSF [27], pdns [85] and USSF

[80]) integrate the parallelisation scheme into the simulator kernel.

Our approach is orthogonal to those mentioned above. The event list on each

processor is entirely sequential, and all the parallelisation is handled in the mod-

ules. This approach is motivated by a simple observation. Consider a large net-

work partitioned among n processors. Each partition contains roughly the same

number of nodes, and is as contiguous as possible. There is only one reason that

two processors, simulating two separate partitions, need communicate; that is if a

packet departs one partition and enters the other. This provides a clear interface.

If we provide a module that accepts packets from the first partition and sends

them to the processor responsible for the second partition, we can parallelise the

simulation.

If two connected nodes are in the same partition, we join them using the

normal link module. If they are in separate partitions we join them with a special

bridge module. There is a bridge device on both partitions. The two bridges must

communicate at intervals to exchange packets. The communication interval is the

same length as the delay of the link that would be otherwise used. In fact, a bridge

has the same properties as a link, except that packets are transfered into or out

of a partition, rather than within it. Figure 4.1 illustrates the idea.

With our approach, a modeller can manually create the network, assign net-

work nodes to processors and then link them appropriately. However it is generally

more convenient to use a network building module, described in Section 4.5.5, to

automatically partition and link an entire network or subnetwork of nodes.

If the bridges between processors are chosen so that their delay is high, then

the communication costs involved will be lowered. Long distance links typically

have a high delay, which makes them good candidates for conversion to bridges.

Of course, the constraints of the network topology may occasionally dictate that

a low delay link be used.

It is important that the work is distributed equally between all processors.

Otherwise a bridge on one processor will need to stall until the corresponding
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Figure 4.1: In a normal link packets are transferred directly to the destination node
after the link delay time. In a bridge, the packets are collected and later trans-
ferred using MPI message passing to the connecting bridge on the other processor.
Both bridges then pass the packets on to the destination nodes. Interprocessor
communication takes place at intervals of the link delay time.

bridge on the second processor is ready to communicate. Psim does not provide

dynamic load balancing: it cannot currently migrate nodes from a busy processor

to a more lightly loaded one. However, offline load balancing is available. During

a simulation the kernel tracks how much work each network node generates. In

subsequent simulations this can be used by an automatic partitioning module to

distribute the work more fairly. While the exact load generated by a node will

vary from run to run, a backbone node, for instance, will always be busier than a

peripheral end node. This scheme is quite successful in reducing communication

waiting times.

A mapreader module, described fully in Section 4.5.5, can read topologies as

generated by tools such as GT-ITM [19] and Inet [95].

We developed two modules for traffic generation. One is a simple connectionless

packet source and sink. It alternates between on and off phases. During the on

phase it emits a train of packets with a specified interdeparture time. When it has

sent the required number of packets it switches off. After a period of time it turns

on again and starts sending packets to a new destination. This can be viewed as

a simple UDP traffic source.

The second traffic module developed is an implementation of the TCP protocol.

A number of simplifications were made. For instance a node is either a client or

server, but not both. However, it follows most of RFC 793 [50], and implements

slow start and congestion avoidance [52].
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4.3 Kernel of the Simulator

The kernel of the simulator consists of a framework for building network compo-

nents and a discrete event handler.

Five core C structures describe an interface through which network components

exchange data traffic. A module for a network component fills in the members

of these structures with the appropriate values and function pointers. Network

components communicate with each other solely through this API.

Events are either tied to a particular network component or components, for

instance a TCP timer, or are global events such as the stop event that termi-

nates the simulation. The event simulator on a processor stores events in a single

time ordered event queue, implemented as a splay tree [54, 90] (see also Section

4.3.2). The event simulator does not itself perform any synchronisation between

processors in a parallel simulation. All necessary synchronisation is performed

by special modules. These modules perform interprocessor communication: ex-

changing packets that cross interprocessor links and blocking event execution on

a processor when necessary to preserve causality.

4.3.1 Network Component Structures

There are five core structures which enable generic network devices to be described

and linked together. In addition a mechanism for defining more general properties

and behaviour is provided so that specialised network devices can be built as

extensions of the generic device. A module simulates the behaviour of a piece of

network equipment using this framework. The core structures in the framework

are:

class One instance of this structure exists for each module, and is initialised when

a module is loaded. It contains pointers to functions for initialising subclasses

and devices. Examples of a network class include routers, links and traffic

sources.

subclass A subclass is a specialisation of a class. For instance a subclass of a

TCP module might be either a server or a client, or might be a client with

a different request rate to another client.

device This is an actual instantiation of a subclass (and hence of a class). It
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provides an interface for linking to other, compatible, devices and may have

storage space for keeping track of its state as the simulation proceeds.

outpoint A device may have one or more outpoints. These contain pointers to

the inpoints of other devices.

inpoint A device may have one or more inpoints. An inpoint provides a pointer to

a handler function that is called whenever a packet is passed to the inpoint.

This function takes the appropriate action for the module in question.

The most important fields from the core structures are shown in Code Fragments 1

to 7. Appendix B presents the API in detail and illustrates its use by building a

simple network device.

struct class {

char *name;

struct subClass *(*xmlDefineSubClass)

(struct class *type, xmlDocPtr doc, xmlNodePtr params);

int (*initDevice) (struct device *node, struct network *net,

xmlNodePtr params, xmlDocPtr doc);

int (*delSubClass) (struct subClass *subClass);

int (*firstEvent)

(struct device *d, struct eventList *eList, int state);

int (*postProcess)(struct device *d, struct network *net);

int parallel;

};

Code Fragment 1: Class structure

struct subClass {

char *name;

struct class *class;

int numInPoints;

int numOutPoints;

struct inPointTemplate *inProto;

struct outPointTemplate *outProto;

};

Code Fragment 2: Subclass structure
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struct device {

char *name;

struct subClass *subClass;

void *data;

struct inPoint *inPoints;

struct outPoint *outPoints;

};

Code Fragment 3: device structure

struct outPointTemplate {

char *name;

enum dataType type;

enum pointType pointType;

};

Code Fragment 4: outPointTemplate structure

Rationale

Memory efficiency was a primary motivation in the design of the simulator kernel

data structures. A device structure is created for every component in the network

model — whether link, router, traffic source or sink. It must be small. As far

as possible any data common to more than one device has been abstracted to a

higher level — the subclass most often. For instance, if a network contains a large

number of 100BaseT Ethernet links, there is no need for each device to store the

value of the bandwidth in its own state space, when a single copy can be stored

in the subclass parameter storage space.

Each device is 38 bytes at a minimum, an inpoint is 12 bytes, and outpoint 8

bytes. Therefore a device with three links will consume 98 bytes. A complex node

that needs to maintain state will require more memory. Nevertheless, this scheme

is extremely lightweight: one million device structures with three connections each

would need less than 100MB of memory.

4.3.2 Event List

Each processor in the simulation maintains its own time ordered event list. The

event list uses a splay tree [54] [90] to order the events. This is an efficient data
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struct outPoint {

struct inPoint *inPoint;

struct outPointTemplate *template;

};

Code Fragment 5: outPoint structure

struct inPointTemplate {

char *name;

enum dataType type;

int (*handler)(struct device *device, struct inPoint *in,

struct packet *p, double time, struct eventList *eList);

};

Code Fragment 6: inPointTemplate structure

structure for maintaining a pending event set. It is a self adjusting binary tree,

that applies a simple restructuring heuristic called splaying whenever the tree is

accessed. Insertion and deletion of events from the tree takes O(log N) time per

operation where N is the number of events in the list. However, for very large

numbers of events a calendar queue might have been more efficient. Section 4.8.1

discusses the performance of the splay tree as model size is increased. Each event

has associated with it a pointer to the device, if any, responsible for the event and

a pointer to the function that will process the event.

4.3.3 Communication between Network Devices

Devices communicate through the API provided by inpoints and outpoints. The

typical data type passed between two linked devices is a packet (Code Fragment

8). In keeping with the spirit of the rest of the kernel the packet structure is also

striped to the essentials. It has fields to record source, destination and packet size.

In addition since TCP/IP traffic is most common, it has fields for sequence and

request numbers and a control flag.
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struct inPoint {

struct device *device;

int count;

struct inPointTemplate *template;

};

Code Fragment 7: inPoint structure

struct packet {

int srcgid, dstgid;

TAILQ_ENTRY(packet) queue;

short seq ,req, size, ctl;

};

Code Fragment 8: packet structure

4.4 Loading and Configuring a Network

Prior to running a simulation, Psim must load a description of a network. We

decided to use XML (the eXtensible Markup Language) for the network config-

uration file. XML has a number of advantages over a handcrafted parser. It is

a standard for creating markup-based, structured, extensible documents. This is

advantageous for modularising the simulator. The Psim kernel understands and

parses top level constructs, but module specific configuration details are passed

to the module in question. The structured nature of XML greatly eases the sep-

aration of network level configuration from module level configuration while its

extensibility allows each module to define a rich configuration language for itself

without requiring modification to the network level configuration language.

The basic structure of a network description file, as understood by the simulator

kernel is shown in Code Fragment 9. A typical network would define several

subclasses of the main modules and have many devices attached together.

Normal devices are assigned to a single processor. If the proc attribute does

not match a processor’s MPI rank, then it ignores that device. Devices of the

mapreader and bridge class are initialised on all nodes, as they involve either

interprocessor communication or creation of other devices.

A number of tools exist to validate XML files against a Document Type Defi-

nition (DTD). By creating a DTD for our network markup language we can verify
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<?xml version="1.0"?>

<Network>

<Subclass class="module name" name="subclass name">

Parameters describing this subclass. Parsed by the class.

</Subclass>

<Device type="subclass name" name="device name"

proc="processor number">

Parameters describing this instantiation of the subclass.

Parsed by the subclass.

</Device>

<Attach>

<Node name="device name1"

inport="inpoint name" outport="outpoint name"></Node>

<Node name="device name2"

inport="inpoint name" outport="outpoint name"></Node>

</attach>

</Network>

Code Fragment 9: Network configuration example

the syntactic correctness of a configuration file prior to running a simulation.

We currently create network configuration files by hand. However, with the

structured design that XML facilitates, it would not be difficult to create networks

through a graphical interface.

Nevertheless, despite the structured design and extensibility of the configu-

ration language, creating a large network, with perhaps tens of subclasses and

thousands of devices, would be a tedious process — even with the aid of a graph-

ical interface. Much of this work can be automated using the mapreader module

described in Section 4.5.5.
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4.5 Network Modules

In this section we describe the commonly used network modules.

4.5.1 The Link Module

The link module simulates a point to point bidirectional data link. It buffers

packets, places them on the wire and sends them to their destination (after the

appropriate link delay).

4.5.2 The Router Module

The router module provides a device that implements algorithmic routing. This

device accepts packets on an input port, determines the next hop that the packet

needs to take and assigns the packet to the appropriate onward link. The device

performs no buffering — the link device does that.

Each processor in a parallel simulation must maintain a full routing tree or

trees, even though it does not simulate all nodes. This requires O(kN) memory

per processor where k is the number of routing trees maintained.

4.5.3 The Bridge Module

This module is the key component that enables parallel simulation in Psim. It rep-

resents a bidirectional point to point link. Two bridge devices replace the normal

link device whenever two connected hosts are simulated on separate processors.

To a packet it appears identical to the link device. Packets are buffered on entry

to the bridge and the service time of this buffer is the time it takes to load the

packet onto the wire: packet size divided by bandwidth. Packets arriving at a full

buffer are dropped. Once a packet is on the wire, it arrives (after a delay corre-

sponding to the type of link being modelled) at the remote host. This remote host

is simulated on a different processor to the source host.

A single duplex connection between two nodes is represented by two bridge

devices, one for each end of the connection.

Once a packet arrives at a bridge, the bridge must ensure that the remote

processor receives the packet at or before the time the packet is due to arrive at

the remote host. If the delay time is ∆ seconds, then two bridges must synchronise

at least every ∆ simulated seconds. All packets that arrive and are processed



4.5 Network Modules 123

from time t up to time t + ∆ are stored and at time t + ∆ are transferred to the

corresponding bridge on the remote processor. This processor holds the simulation

at time t + ∆ until the packets have been transferred, then allows the simulation

continue. Since the connection is bidirectional, the local processor may receive

packets from the remote processor. These packets will have arrival times at the

local host of between t + ∆ and t + 2∆. We will refer to packets that need to be

transferred from one processor to another as inter–processor packets

The above description outlines the basic operation of the bridge device but

optimisations are necessary to avoid undesirable behaviour. There are two prob-

lematic aspects of the scheme as described above: each cross processor link, repre-

sented by two bridge devices, introduces extra communication overhead; secondly,

the synchronisation introduces a rigid lockstep between processors.

The first issue is dealt with by collating data. Suppose a processor has several

hosts with links to hosts on another processor. If these links are of the same type,

with the same delay, then the packets to be transferred can be gathered into a

single large message and sent together. This reduces the number of interprocessor

communications needed and the associated overhead.

A conservative synchronisation scheme will inevitably introduce a lockstep

between processors. Let Pi(n) be the time it takes processor number i to simulate

the timeslice (n− 1)∆ to n∆ ( where total simulation time T = N∆). In general

the total run time will be at least max(
∑N

n=1 Pi(n)). In other words, we can at best

hope that the total time to run the simulation is the time taken by the processor

with the most total work. This discounts communication overhead. With a rigid

lockstep the situation may be worse: the total run time could be
∑N

n=1 max(Pi(n)),

again discounting communication overhead. This is particularly bad if there is

a large variation in Pi(n) on individual processors — even if the variation of∑N
n=1 Pi(n) is low.

Two measures were adopted to avoid the worst problems of conservative syn-

chronisation. MPI provides asynchronous (nonblocking) communication inter-

faces. These were used wherever possible. This allows a processor to communicate

with several other processors simultaneously. For example, suppose processor A

needs to transfer packets to processors B and C. Processor B has a lot of work to

do and takes longer to reach the synchronisation point. If synchronous (blocking)

communication is used then it is possible that processor A may have to wait until

processor B has received its packets before it can commence sending to proces-
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sor C. With asynchronous communication processor A can send the packets to

processor C even if processor B has not yet fully received its share.

In the basic synchronisation scheme described above, all processors exchange

inter–processor packets at times n∆, n ∈ [1 . . . N ]. At these times a processor

must collect all inter–processor packets, send them to connected processors, and

wait to receive packets from those processors. If one processor is slow to reach

the synchronisation point (perhaps due to a traffic surge in the portion of the

network it models), all connected processors must wait for it. Our second measure

to reduce overhead confronts this issue. It involves preemptive transmission of

inter–processor packets. Each synchronisation period ∆ is divided into s slots.

Processors now communicate every ∆/s simulated seconds. However the inter–

processor packets sent at simulated time (n + k
s
)∆, 0 ≤ k < s do not need to be

processed by the remote processor until (n + s−1+k
s

)∆.

The combination of asynchronous communications and preemptive transmis-

sion of inter–processor packets reduces the rigidity of synchronisation. If one pro-

cessor has a sudden spike of work, other processors can continue the simulation

to at least s−1
s

∆ simulated seconds beyond the slow processor. This relaxation

permits the parallel simulation to proceed more smoothly. However, increasing

the number of slots also increases communication overhead. A balance must be

found.

Experiments to explore the behaviour of the parallel simulation using the bridge

module are described in Section 4.7.

4.5.4 The TCP Module

The TCP module implements a TCP stack. It conforms largely to RFC 793

[50], and implements slow start and congestion avoidance [52]. However some

simplifications were made. In particular

• A TCP device is either a client or server, not both.

• Only one connection between a given client–server pair is allowed. This

removes the need to allocate port numbers to connections.

• All TCP initial sequence numbers are zero.

• Clients make connections to servers. The servers respond by sending a

stream of packets. The connection is then closed. Interconnection time
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and the amount of data sent can be specified.

• Clients can reorder packets that arrive out of sequence (due to a packet loss

for instance), but can only handle one gap in the packet sequence at a time.

A client can be instructed to connect to a random member of a specified server

subclass. In addition a client can be instructed to preferentially connect to a

nearby server, allowing some control of the distribution of traffic in the network.

TCP requires that timers be set in order to trigger retransmission of lost pack-

ets. A timer event could be maintained for each active TCP connection. However,

with large numbers of connections this proves expensive. Consequently a single

periodic timer causes a sweep of a number of connections checking for expired

timers. The frequency of such a timer, and the number of connections for which

it is responsible, can be tuned so as to tradeoff accuracy and performance in a

flexible manner.

4.5.5 The Mapreader Module

Creating a large network topology by hand is a slow, tedious process. The

mapreader module automates the task. A mapreader device is a virtual device

— it does not represent a part of the physical network or generate traffic for ex-

ample. Instead, it creates and connects routers, links and traffic sources. As its

name suggests, it reads a network map and generates the nodes and links present

in the map topology. For example, it could read a map generated by Inet [95].

Inet generates topologies resembling the inter–Autonomous System topology of

the Internet.

A mapreader device has several initialisation parameters, in addition to a map

filename, two of which are required: node type and link type. A node is created

for each vertex in the map graph and vertices connected in the graph have their

corresponding nodes connected by the specified link device.

The power of the mapreader device is that the node type can be a mapreader

device itself. To use the example above, the primary mapreader device might take

an Inet file as input to create an AS level topology. Each vertex in this topology

causes the creation of a node. If this node is a mapreader device which reads a map

of a typical AS topology, then we have very easily created a two level hierarchical

model of an Internet like network. The nodes of the second level mapreader device

might be routers, or might be yet another mapreader device to create a third level.
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Traffic sources or sinks can be connected to the nodes of a mapreader device.

In the example above TCP servers might be connected to the first level nodes

while TCP clients might be connected to the bottom level nodes.

Code Fragment 10 illustrates the syntax used to create an instance of the

mapreader device.

<Device type="map" name="Name of Network" proc="0">

<map filename="Filename of topology" type="itm"></map>

<node type="name of a router"></node>

<link type="name of a link to connect nodes"></link>

<traffic>

<source type="Name of a source or sink"></source>

<link type="Name of link that connects sources to nodes"></link>

<distrib name="Name of distribution to decide number of sources">

Parameters for distribution

</distrib>

</traffic>

</Device>

Code Fragment 10: mapreader configuration example

The simplified XML in Code Fragment 11 creates the network shown in Figure

4.2. It consists of a mapreader device that creates three connected nodes (using

the topology from the file triangle). These nodes are mapreader devices also, each

of which creates a tree of routers with one client and one server on each. A far

larger and more complex network could be created with equal ease.

A further feature of the mapreader device is automatic partitioning of a net-

work. When a device is created it is assigned to a processor. For example Code

Fragment 12 creates a router called ‘router012’ that is to be simulated on proces-

sor number three in a parallel simulation. However in a large network it would be

cumbersome to manually partition the nodes among processors, and then replace

an ordinary link with a bridge device wherever two connected nodes are simulated

on different processors.

The mapreader device can partition its map using the METIS graph partition-

ing library [55]. METIS attempts to create balanced partitions with minimum

edgecut. Once the map is partitioned, the nodes, links, bridges and traffic sources

are all created and assigned to the correct processor.

In addition, METIS can perform a weighted partitioning of a graph. This
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<Device type="map" name="smallnetwork" proc="0">

<map filename="triangle" type="itm"></map>

<node type="map">

<map filename="tree" type="itm"></map>

<node type="router"></node>

<link type="100baseT"></link>

<traffic>

<distrib name="constant"><value>1.0</value></distrib>

<source type="tcpclient"></source>

<link type="10baseT"></link>

</traffic>

<traffic>

<distrib name="constant"><value>1.0</value></distrib>

<source type="tcpserver" store="yes"></source>

<link type="100baseT"></link>

</traffic>

</node>

<link type="100baseT"></link>

</Device>

Code Fragment 11: A two level network, in which the highest level is created from
the file called triangle, and each node in this is expanded to a network with a
topology from the file tree.

<Device type="router" name="router012" proc="3"></Device>

Code Fragment 12: XML code to create a router device on processor 3.

feature allows us to perform offline load balancing for networks created using the

mapreader device. At the end of a trial run, the number of events that occur at

each of the nodes of a mapreader device are recorded. These are stored and used

as weights for partitioning in a future simulation. If different nodes have widely

differing numbers of packets to process, then a weighted partitioning of the map

may allow a more even distribution of work and hence a greater speedup in a

parallel simulation.
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Figure 4.2: The mapreader device a creates three connected nodes b, c and d.
These are also mapreader devices. They each create a tree topology of three
routers, two servers and two clients one of which is shown in the large circle.

4.6 Parallelisation Issues

This section discusses some problems that arise in parallel network simulation

but are not present in single processor simulation. The lack of full knowledge

of the network configuration leads to what is known as the namespace problem,

discussed in Section 4.6.1. Several different issues make exact repeatability of

simulation runs on varying numbers of processors difficult. These problems are

discussed in Section 4.6.2.

4.6.1 Global Namespace

Usually on a distributed memory parallel computer, each processor is responsible

for simulating a small section of the network. A processor has full knowledge of its

own part of the network, but little or no information about the rest. This makes

efficient use of memory and allows very large networks to be simulated. However

one problem does arise. Certain tasks require knowledge of the network outside

a processor’s own partition. For example, suppose a client node wishes to make

a request to a random server node. The processor simulating the client may only

simulate a small number of the servers present in the network, so will be unable

to select a server at random. One solution is store a copy of the entire network on

every processor. Though wasteful, this provides all necessary information to each

processor. The approach taken in Psim is more efficient. The name of a node may
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optionally be stored on all processors. For example, the names of routers do not

need to be accessible everywhere, so no extra action is taken. The existence of a

server does need to be known globally, so the name, though not other properties,

of a server is stored on all processors. This allows a client to randomly select a

server with which to communicate. The storage of names can be toggled on a

per-subclass basis.

4.6.2 Repeatability of Simulation Runs

Consider a serial network simulator. If a network is simulated twice, using the

same initial conditions, then its state should evolve identically. This is a desirable

property for a parallel simulator also.

Indeed, for a parallel simulation it is also desirable that two runs with the

same initial state, but different numbers of simulating processors should evolve

identically.

Unfortunately this behaviour is far harder to achieve in a parallel simulation.

Three factors cause problems: simultaneity, random seeds and routing. Let us

examine each in turn.

Simultaneity of Events in a Parallel Simulation

It is conceivable that two events might be scheduled for the same time. In most

cases this is not a problem, however in some instances the order in which these

events are processed does matter. For instance a server might remove a packet

from a full buffer and at the same instant a new packet might arrive. Depending

on the ordering of these simultaneous events the newly arrived packet could validly

be added to the buffer, or be dropped because the buffer is full.

In a serial simulation a simple rule, such as inserting events into the timeline

after all other simultaneous events, will guarantee reproducible results between

simulation runs. In a parallel simulation, and in particular using the parallelisation

scheme provided by the bridge device, it is no longer as easy to order simultaneous

events.

Reconsider the example above in a parallel context. As before a process and

deliver event are scheduled for the same time. In the serial case the packet is

delivered by a link device, in the parallel case it might be delivered by a bridge

device. In the bridge device packets are stored and transmitted at intervals. This
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affects the order in which events are scheduled. As the connections which are

represented by bridge devices change according to the partitioning of the network,

the order in which simultaneous events are processed also changes. It is important

to note that any ordering of the events is valid, but that the state space evolution

of two simulations may diverge.

In some situations this may just be an inconvenience, in others (such as code

verification) it is a problem. We found no completely satisfactory solution. One

approach is to give each event a creation time attribute in addition to its processing

time. Simultaneous events could then be processed in order of their creation time

(this is implicit in the ordering in the serial case). However there is nothing to

prevent two events having the same creation time. Another approach is to base

a secondary sorting on the lexical ordering of the nodes involved — for instance

if simultaneous events are scheduled for nodes p and q, then the event for p is

processed first.

However, since the performance of the event scheduling code is already of crit-

ical importance, we decided by default to add no extra code to order simultaneous

events. The rationale is that any ordering is logically valid, and that simultaneous

events that cause state space divergence are relatively rare.

Random Seeds

In a serial simulation it is sufficient to maintain a single random number generator

state and maintain reproducibility between runs. In a parallel simulation each

processor maintains at least one random number state. This has the consequence

that simulations using a different number of processors have a different sequence

of random numbers and a correspondingly different simulation evolution.

Our solution to this problem was to associate a random number generator state

with each device in the network. The state is seeded using an attribute (a device’s

name, for instance) that does not change. This makes the seeding independent of

the number of processors used in the simulation. However, since saving random

number generator state for each device can require considerable memory, it is a

compile time option.
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Algorithmic Routing in Parallel

Algorithmic routing constructs a tree using a subset of the connections present

in a graph. In a parallel simulation the router subclass on one processor gathers

topology information from all other processors, builds the tree, then redistributes

it back to the other processors. Unfortunately in building the global graph, the

order in which node connections are listed may change when the number of pro-

cessors changes. This can cause the resulting routing tree to vary depending on

the number of processors being used to run the simulation. One solution is to pre-

compute the routing trees, save them to file, and load them from this file rather

than computing them each time.

4.7 Small Network Experiments

In this section we begin by testing the performance of Psim on a medium size

network of over one hundred thousand nodes. Following this we consider the

impact of synchronisation and load balancing on the parallel performance. We

conclude with less detailed demonstrations of Psim’s scalability, using networks

from one million up to ten million nodes.

4.7.1 Terms and Definitions

In this section we introduce some terms and definitions that will be used in fol-

lowing sections to discuss the performance of the simulator.

Runtime is the time taken to execute a simulation. We exclude the time required

for model initialisation, as it is amortised over the time spent processing

events, and its significance decreases with longer runtimes.

A packet event is the creation, routing or reception of a packet. We will often

shorten packet event to just event. For example, suppose a packet is sent

from a source to a destination, traversing three links and two routers. One

creation, two routing and one reception events are processed for a total of

four events.

The Packet event rate of a simulator is the number of packet events that a

processor can execute per second of real time.
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Total packet event rate. If each processor Pi in an N processor parallel simu-

lation has a local packet event rate of Ri, then the total packet event rate is

the sum R =
∑

1≤i≤N Ri.

The event count on a single processor is the number of packet events processed

by that processor in a simulation.

The total event count is the sum of the N event counts in an N processor

parallel simulation.

Work ratio on an individual processor is defined to be the ratio of the time spent

processing events to the total simulation time. In a sequential simulation it is

unity, but in a parallel simulation, the time spent waiting at synchronisation

points decreases its value.

Work imbalance is defined as

max
j

pj

1
N

∑N
i=0 pi

where pi is the event count simulated on processor i, in a N processor parallel

simulation. The higher the work imbalance, the lower the speedup of a

parallel simulation.

Global traffic fraction is the fraction of network traffic that stays within the

subnetwork of the originating host.

Parallel speedup is an indication of the efficiency of the parallelisation. We

define the parallel speedup S(N) of a N processor simulation to be

S(N) =
Tseq

T (N)

where T (N) is the runtime of a N processor simulation and Tseq is the run-

time of a sequential simulation. For some large models it is not possible

to execute a simulation on a single processor. In this case we approximate

Tseq by Tseq = nT (n), where n is the smallest number of processors that can

simulate the model. Linear speedup, where S(N) = N , is used as a baseline

for many comparisons.
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4.7.2 Offline Load Balancing

In Section 4.5.5 we introduced the mapreader module and described its ability

to perform offline load balancing of the partitions it creates. To summarise, a

mapreader device can record the number of events that occurs in each of its nodes.

The next time the simulation is run, the mapreader device can pass this informa-

tion to the METIS graph partitioning library. METIS then attempts to partition

the nodes in such a way as to balance the work between processors and minimise

the interprocessor connections.

The degree to which the load balancing can improve simulation runtime de-

pends on the nature of the network. A regular network, in which the packet

events are evenly distributed between nodes, will already be well balanced by the

unweighted METIS partitioning. At the other extreme, if a very large propor-

tion of the total packet events is concentrated in a small area, there is little that

METIS can do to redress the balance. In addition, the greater the ratio of nodes

to processors the better the balance.

In order to test the efficacy of the load balancing, we simulated one hundred

different networks and compared the runtime with and without load balancing.

Each network consisted of a one thousand node mapreader device. Each node of

this device consisted of a subnetwork of ten routers. Attached to each router were

five servers, plus twenty more at the connection point to the higher level. Each

router also had a number of clients attached to it. This number was randomly

generated according to a pareto distribution (mean 101, shape parameter 1). This

distribution was chosen in accordance with research on Internet topology, showing

that outdegree distribution follows a power law [91] [30]. On average each network

had 121801 clients, or over ten per router. Each client made connections to a

server, with a 40% chance that the server was within its own subnetwork. The off

period was exponentially distributed with a mean of 0.5 seconds. A server sent an

average of 1001 packets to a connected client — this transfer size was also pareto

distributed.

Clients were connected to routers by a 10Mbps link. Servers were connected

by a 1000Mbps link. Routers within a subnetwork were connected by a 1000Mbps

link. Subnetworks were connected by OC-48 (2488 Mbps). The delay on the

OC-48 links was 4ms. To avoid variations in routing between runs, there were no

cycles in the network. Each simulation was run for ten seconds of simulated time.

The simulations were run on an eight processor cluster. There were four nodes
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in the cluster each with two Pentium 1.0GHz processors and 512MB of memory.

The nodes were linked with 100Mbps Ethernet. The cluster runs Linux kernel

2.4.18 SMP. GCC 2.96 was used to compile the code. The MPI implementation

used was Mpich 1.2.

Figures 4.3 and 4.4 show the reduction in runtime and the reduction in work

imbalance respectively. The average percentage reduction in runtime, 100 ×
Tbefore−Tafter

Tbefore
, is 12.1 ± 0.9%, though in some cases the reduction was up to 35%.

However in five of the one hundred trials the runtime actually increased by a small

fraction. We speculate that this increase occurred in trials where the initial net-

work was already well balanced and METIS was unable to improve the partition.

This might be aggravated by the assumption that all events take exactly the same

computational time to process. For instance, a packet creation may not take as

long as a packet routing event and hence two partitions with equal numbers of

events may have an unequal amount of real work.
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Figure 4.3: In 95 out of a hundred trials, using the event count on nodes to balance
the partition of nodes between processors resulted in a decrease in runtime.

Figure 4.4 shows that the unweighted partition has a work imbalance that

ranges from 1.2 to about 1.8. The values are evenly spread up to 1.4: values above

this point are less frequent. In almost all cases the work imbalance is reduced after

the weighted partitioning. The values are almost all clustered between 1.0 and 1.3

The average work imbalance with unweighted partitioning is 1.38± 0.01, with

weighted partitioning it is 1.13± 0.01.
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Figure 4.4: A low work imbalance reflects an even partitioning of work between
processors. Using the event count on a node in a weighted partitioning of the nodes
results in a better work imbalance. The trials have been sorted by unweighted work
imbalance for clarity.

It is clear that the offline load balancing performed by the mapreader modules

and METIS has a noticeable effect on the simulation runtime. The magnitude

of the improvement will depend on the regularity of the network in question, but

since the weighted partitioning improved the runtime in 95% of our trial networks,

it is clearly worth using.

4.7.3 Time Slots in the Bridge Module

As discussed in Section 4.5.3, the bridge module uses asynchronous communication

as one part of the effort to reduce the overhead of synchronisation. The second

measure involves splitting the synchronisation period (link delay time) into n

slots and transferring packets at the end of each slot, rather than just at the

end of each synchronisation period. Increasing the number of slots relaxes the

rigidity of synchronisation, but increases communication overhead. We conducted

an experiment to examine the impact that the number of slots has on the runtime.

The network has one thousand subnetworks, each of which has one hundred

routers. Each router has one client and one server. There are a further twenty

servers at the connection point between subnetworks. Servers and routers are

connected by 100Mbps links, clients by 10Mbps links, subnetworks by OC-48
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(2488 Mbps).

We modified two parameters of this network: global traffic fraction and slot

number. The global traffic fraction varies from 1.0 (destination nodes chosen

totally at random) down to 0.0 (destinations all within the same subnetwork as

the source). We incremented it from 0.0 to 1.0 in jumps of 0.2. For each of the

global traffic fractions we tested the network using one to five slots. Finally, each

of these configurations was run ten times. We ran the simulations on the cluster

used in Section 4.7.2 using all eight processors.

The results are summarised by Figure 4.5. Especially for a high global traffic

fraction, using two slots results in the lowest simulation runtime. Above two slots

and the runtime steadily increases, as the communication overhead rises.
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Figure 4.5: By communicating more often than is strictly necessary (one slot per
synchronisation period), a parallel simulation may avoid some blocking. Two slots
is optimal for most situations. However if there is little interprocessor traffic (0
to 20% global traffic) then extra slots just introduce overhead.

Using two slots appears to offer a small but noticeable advantage for high

global traffic simulations. Nevertheless, this may vary between networks.

4.7.4 Parallel Speedup

Using the same network as in Section 4.7.3 we conducted a series of measurements

to evaluate the efficiency of the parallelisation. For each traffic fraction (0.0 to
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1.0 in increments of 0.2), we ran the simulation on one to eight processors. Each

configuration was run ten times. The speedup graphs for each traffic fraction are

shown in Figures 4.6 and 4.7. A quick examination immediately shows that Psim

parallelises very well, at least up to eight processors.

However there are some initially strange features of the speedup graphs. All

six graphs have a ‘kink’ after the addition of the fifth processor. Also, the speedup

below five processors is actually superlinear; a simulation on n processors is more

than n times faster than a simulation on one processor. These anomalies require

explanation.

The kink at n = 5 is easily accounted for. When four or fewer processors were

used for the simulation, one processor on each of the four nodes was used. Each

node has two SMP processors. Now, a logical process in the Mpich implementation

of MPI creates two real processes. One process is the simulation code, the other

manages interprocessor communication. If one logical process is run on a two

processor SMP node, then the two processors can share the MPI processes, and

other system processes, between them. If there are two logical MPI processes on

a single SMP node, then the two processors have four real MPI processes as well

as the system processes.

With four or fewer processes, we ran one on each of the four SMP nodes.

However, when a fifth MPI process is added, one of the four SMP nodes must

then run two logical MPI processes. This accounts for the kink between n = 4

and n = 5.

The next anomaly is the super–linear speedup. This unexpected, but welcome,

behaviour is due to increased efficiency as the partitions grow smaller. In partic-

ular, the size of the pending event set has an effect on the speed of the event

handling code. As more processors are added, each processor has a smaller num-

ber of network devices in its partition, and correspondingly fewer events in its

future event list. As the time for insertion and deletion of events depends on the

number of events in the system, a small partition not only has fewer events to be

simulated, but each event can be simulated more quickly.

This behaviour is explored more fully in the large network experiment of Sec-

tion 4.8.
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Figure 4.6: Each point in the graphs represents the average of ten measurements.
The error bars are too small to display.
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Figure 4.7: Each point in the graphs represents the average of ten measurements.
The error bars are too small to display.
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4.8 Large Network Experiments

In this section we test the scalability and parallelism of Psim. To find the extremes

of its scalability we simulate networks with one million up to ten million nodes,

and varying levels of traffic. To test the efficiency of the parallelisation we run

these networks on one to sixty four processors.

The computer used for these experiments is again a cluster of dual Pentium

nodes. Each node has two 1.0GHz processors and 1.0GB of memory. They are

linked by Myrinet. The operating system is Linux kernel 2.4.18 SMP and the MPI

implementation is Mpich 1.2.

4.8.1 One Million Nodes

The first network we will examine is a one million node network. It is split into one

thousand subnetworks. These consist of one hundred routers, each with ten clients

and one server. The subnetworks are connected by OC-96 links (4976 Mbps),

routers and servers by 100Mbps Ethernet, and clients by 10Mbps Ethernet. This

topology is not realistic, but will suffice for a performance analysis. The link delay

on the OC-96 link is 2ms.

Clients make connections to servers. The server sends a file with pareto dis-

tributed size (average 1001 packets). When the client receives the file it sleeps for

a period (exponentially distributed, mean 1 second). The global traffic fraction is

0.1 — most traffic stays within the source subnetwork.

We ran as many simulations as possible using one to sixty four nodes of the

cluster. Each simulation was run for ten seconds of network time. The code

used was not the latest version and lacked some of the features later developed.

In particular, per processor rather than per device random number generators

were used. This resulted in a varying number of events when the model was run

on different numbers of processors. This complicates the performance analysis

somewhat as some scaling is needed.

Figures 4.8 to 4.17 graph various aspects of simulation performance. As in the

experiment of Section 4.7.4, we have achieved superlinear speedup, see Figure 4.8.

Again, this is somewhat surprising. Several factors impact on the runtime of the

parallel simulation. In particular the total number of events processed, the packet

event rate and the work imbalance all have an affect on the parallel speedup. We

will examine these in turn.
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Figure 4.8: Parallel speedup in the simulation of a network with one million TCP
clients, one hundred thousand servers and one hundred thousand routers.
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Figure 4.10: There is less correlation between event count and speedup — the
variation in event count is less than that of work imbalance.

Figure 4.9 plots the speedup against the number of processors, and on the

same graph plots the work imbalance. Some correlation between a relatively high

work imbalance and a relatively low speedup is visible. This accounts for some of

the local variations in speedup, but not for the overall trend.

The next graph, Figure 4.10 also plots the speedup but this time with the total

event count for the simulation. Again, some correlation can be seen.

However it is the packet event rate of an individual processor that has the clos-

est correlation with the superlinear speedup. Figure 4.11 shows the speedup and

the packet event rate of processor zero in an n processor simulation. Figure 4.12

shows the maximum, minimum and average packet event rate of each simulation.

The single processor event rate in the sixty four processor simulation is almost

double that of a one processor simulation. Figure 4.13 displays the total event

rate. As with the parallel speedup, this is superlinear. It shows that the code can

reach a total packet event rate of almost 16× 106 packet events per second.

This greater efficiency with many processors can be attributed to several fac-

tors. As the number of processors increases, the size of each partition falls. Hence

a larger proportion of the network state can be held in cache. Secondly the effi-

ciency of the splay tree structure used varies with the number of events in the tree.
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Figure 4.11: There is a close correlation in the general trend of the event rate on
the individual processors and the parallel speedup.
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Figure 4.13: The total event rate has a superlinear increase, as is expected if the
splay tree operates more efficiently with a lower number of events.

It takes O(log N) time to insert an event into a splay tree. Thus, a small partition,

with a small number of pending events, can be simulated more efficiently than a

larger partition. A calendar queue [14], or a variation thereof, might reduce this

effect. Calendar queues offer close to O(1) average performance, although some

distributions of event times produce suboptimal performance.

It would be preferable to view the performance of the simulator unbiased by the

above factors. To achieve this we scaled the speedup to account for the changes

in event rate and event count. The scaled speedup is the speedup that would

be achieved if each run processed exactly the same sequence of events and the

processing rate on an individual processor remained constant.

The scaled speedup is determined as follows. Let Cn be the total event count

in a simulation run on n processors. Let C = maxn Cn where 1 ≤ n ≤ 64. Let Rn

be the highest per processor packet event rate in a n processor simulation. Then

the scaled time taken on n processors is

Tn =
C

Rn

This scaled time can be used to calculate the scaled speedup and total event rate.

This is a crude approximation, but useful. It provides a worst case scenario



4.8 Large Network Experiments 145

 0

 10

 20

 30

 40

 50

 60

 70

 0  10  20  30  40  50  60  70

Sp
ee

du
p

Number of Processors

Scaled Speedup

Fitted Speedup
Linear Speedup
Scaled Speedup

Figure 4.14: The scaled speedup is sublinear. This speedup is obtained by calculat-
ing the time each simulation run would take if the event processing rates and total
event counts were identical.

for the efficiency of the parallelisation. The revised speedup graph is plotted in

Figure 4.14. The speedup is now sublinear — as might be expected. The initial

unscaled speedup is 1.310 ± 0.007, the scaled speedup is 0.70 ± 0.01. While the

speedup has dropped considerably, it is still respectable for a sixty four processor

cluster.

In order to investigate the effect of the splay tree event list we isolated the event

handling code from the network simulation code and performed several tests. The

first test added Ni events to an event list, then removed the first event and added

a new one. This insertion and removal step was repeated a million times in order

to calculate the average time taken to perform the action. Figure 4.15 plots the

average insertion and removal time for event lists with between ten and a million

events. This clearly demonstrates the drop in event handling efficiency of the splay

tree with large event lists.

In the second test, Figure 4.16 illustrates the performance of the splay tree

in a parallel situation. For event lists of three different sizes, the list was parti-

tioned between processors. The event rate on a single partition was measured by

performing a million event insertion and deletion actions and used to calculate a

total event rate. It can be clearly seen that the total event rate has a superlinear
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Figure 4.15: As the number of events in a splay tree event list is increased, its
efficiency drops.

increase for increasing numbers of processors. Moreover, it has similar behaviour

to the speedup in the full network simulation, Figure 4.13.

Figure 4.17 displays the work ratio. For each simulation run we have displayed

the maximum, minimum and average work ratio. The maximum work ratio re-

mains close to unity for all numbers of processors running a simulation. This

is reassuring as it shows that little time is wasted on communication overheads.

However the average work ratio drops almost linearly from unity, at one processor,

to approximately 0.6 at sixty four processors. This is expected; as the number

of processors is increased the work imbalance will increase and reduce the work

ratio.

4.8.2 Larger Network Demonstrations

In this section we demonstrate some large simulations. These simulations, with

up to ten million nodes and up to one hundred million flows, demand enormous

resources. Consequently it was not possible to perform experiments at the same

level of detail as in Section 4.8.1. We include these models to illustrate the extreme

scale with which it is possible to model a network using Psim.
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Figure 4.16: The total event processing rate when performed on n processors shows
a superlinear increase, since the efficiency of the splay tree increases as the number
of processors increases and the size of an individual list decreases.
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Figure 4.17: Processors with a large, or busy part of the network have a work ratio
near one. Those with a small or quiet portion have a lower work ratio.

One Million Nodes, Ten Million Flows

This network is identical to that of Section 4.8.1, except that each client can open

up to ten simultaneous connections. This increases the traffic load in the network.

The speedup and work ratio graphs are plotted in Figures 4.18 and 4.19. Since it

was not possible to simulate this network (and the two following networks) on a

single processor, the speedup was calculating using a value for a single processor

simulation runtime T (1) approximated by T (1) = nT (n), where n was the smallest

number of processors capable of simulating the network. This approximation does

not take account of the impact of the O(log N) cost of event list insertions and

deletions on runtime. Hence superlinear speedup is not as visible as in the smaller

simulations.

Ten Million Nodes, Ten Million Flows

This network is a larger version of that in Section 4.8.1. It has one million rather

than one hundred thousand routers. Each router is connected to ten clients and

one server. The simulation was run three times: on thirty two, forty eight and

sixty four processors. The speedup was calculated by estimating the runtime of a

single processor simulation from that of the thirty two processor simulation.
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Figure 4.18: The network simulated here is the same one million node network as
before. However the number of TCP connections has been increased by a factor of
ten. The speedup is lower, but this is partly because the single processor runtime
had to be estimated from the ten processor runtime.
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Figure 4.19: The work ratio is high for this heavy traffic network.
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Figure 4.20: This is the speedup graph for a network with over ten million nodes.

Figures 4.20 and 4.21 show the speedup and work ratios respectively. The

speedup is just superlinear. The work ratio also remains high. The maximum

work imbalance is 1.4, at sixty four processors. This is lower than that of the

smaller network. This is expected since it is easier to balance the partitioning in

a larger network.

Ten Million Nodes, One Hundred Million Flows

We could perform only one simulation run of this model. It has the same topology

as above, but each client can now open ten connections. On sixty four processors

it took just over five and a half hours to simulate 18 seconds of network time.

4.9 Summary

With the growth of the Internet, interest has arisen in its large scale behaviour.

As its size increases, and the range of applications using it diversifies, so too do

unforseen phenomena emerge. For instance, congestion storms, route flapping and

virus propagation all call for further study.

Simulation is one of the primary tools used in studying networks. However

the difficulties of simulating a network grow with its size. With the hardware
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Figure 4.21: This is the work ratio graph for a network with over ten million
nodes.

resources currently available it is not feasible to simulate Internet scale networks

using conventional techniques. The sheer size of the Internet prohibits its detailed

simulation by, for example, sequential discrete event simulation. The complexity

of its underlying protocols has hindered the development of analytic models.

The problem has been attacked on two fronts. One approach involves increas-

ing the computational power by harnessing many processors at once, typically

using the methods of parallel discrete event simulation. The other approach ad-

vocates increasing the abstraction of a model, accepting that some approximation

will be introduced into the model, but seeking to minimise its effect on behaviour

of interest.

Parallel discrete event simulation in network modelling has met with mixed suc-

cess. The overheads of the event handling system are high, and often the method

does not scale well to many processors. On the other hand, abstraction methods,

if applied too freely, can reduce the accuracy of a model and even eliminate the

behaviour under study.

We believe we have struck a balance in our implementation, Psim, of a network

simulator. Both abstraction and parallelisation techniques are used. In particu-

lar algorithmic routing is used to avoid the cost of per node routing tables. Our
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parallelisation scheme combines aspects of window based synchronisation and null

message based synchronisation. However it avoids the global minimisation need at

each step in window based synchronisation and generates fewer null communica-

tions than a pure null message approach. In addition the complexity of synchroni-

sation is removed from the performance critical event handling code and managed

directly by a bridge module representing a network link. This has the advantage

of confining interprocessor communication to just the area in which it is needed.

We have also implemented offline load balancing in the simulator. This anal-

yses prior simulation runs so as to enable a better division of labour between

processors in a future simulation.

The simulator models TCP traffic in high speed wired networks. We demon-

strate an unrivalled degree of scalability, both in terms of number of simulated

nodes, and in the number of simulating processors. A single processor is capable

of simulating over one hundred thousand nodes. With sixty four processors we

can simulate ten million nodes. This is an order of magnitude larger than previ-

ously recorded. Even with sixty four processors, and scaling the results to take

into account the worst case performance of the event handling code, the simulator

exhibits a half linear speedup.

The scalability of Psim offers new opportunities to study the behaviour of large

scale networks by combining the power of abstraction techniques and parallel com-

puting. Its modular design allows easy extensibility. Using Psim it is now possible

to study the behaviour of many types of large scale networks using simulation.



Chapter 5

Conclusions

5.1 The Importantance of Network Simulation

As the Internet continues to grow, it is necessary that we develop techniques to

simulate it in as large a scale as possible. Network simulation is important for

not only the testing of network designs and protocols, but also as a tool to aid

understanding of the dynamics of network behaviour. Since the modelling methods

used in the past either do not scale to the size required, or are unable to model the

complexities of today’s Internet, much research has been focused on developing

new techniques for large scale network simulation.

5.2 Aims of Thesis

Our work is presented in the previous two chapters. Let us now review the aims

set forth in Chapter 1, and consider to what extent they have been achieved. We

wished to model Internet like networks, characterised by:

• Large sizes - at least one hundred thousand nodes.

• Complex network protocols such as TCP.

• High speed, and high bandwidth links.

We have demonstrated in Chapter 4 that we can simulate TCP networks with

up to a million routers, ten million hosts, and heavy traffic. A network simulation

of this size requires the resources of a large parallel processing cluster. However,
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smaller networks with hundreds of thousands of hosts can be simulated on a single

processor.

What are the contributions that made this possible? Algorithmic Routing

(AR) is the principle technique that allowed the extreme scaling. Without the

memory efficiency of the method, the size of the routing tables would have pro-

hibited the simulation of the larger models. However in order to make AR viable,

we needed to introduce several techniques to enhance its performance and improve

the quality of routes generated.

Our contributions to AR are:

• A modification to the original method that represents the routing tree in a

different manner, reducing memory usage and increasing performance (direct

AR).

• A new fixed computational cost routing algorithm.

• A fast, efficient, method for improving routing tree quality.

• A routing scheme using multiple trees for generating shorter paths.

• A method for creating multiple trees to minimise route length and spread

link utilisation.

Our parallelisation scheme combines the best aspects of window based synchro-

nisation and null message based synchronisation. The complexity of synchronisa-

tion is removed from the performance critical event handling code and managed

directly by a bridge module representing a network link. In addition we use an

offline load balancing method to ensure the highest possible utilisation of CPU

time. In short, the simulator is characterised by:

• A high performance, memory efficient design.

• A parallelistion scheme tailored to network simulation.

• Simple, but effective load balancing.

This combination of lightweight parallel computing techniques and the abstrac-

tion method of AR has proved very successful in enabling large scale simulation.
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5.3 Future Work

We have enhanced AR considerably, increasing its performance and improving

the quality of routes generated. However, the range of its applicability could be

extended further still by using it in conjunction with another routing protocol, or

using it in a two layer hierarchy. For instance, as we have seen in Section 3.5, 55%

of Internet nodes are in tree–structured subnetworks. Single tree routing could

be used within these areas, while either full routing or multitree routing could be

employed for routing between ASs. This would increase the fidelity of the routing

while maintaining much of the efficiency of AR.

Although we have introduced a fixed cost algorithm for routing, a method using

a Least Common Ancestor (LCA) [11] algorithm offers one useful advantage: if

the LCA of two nodes can be calculated in fixed time, then the distance (in a

tree) between two nodes can also be calculated in fixed time. This allows for an

efficient choice of tree in multitree routing. Further, it would allow a packet to use

several trees in one path — choosing the most efficient tree at each node, rather

than making the choice once at the source node.



Appendix A

Hybrid Differential Traffic

Modelling

The core work presented in this thesis falls into two categories: algorithmic rout-

ing and simulation parallelisation. However, in the course of developing these

methods, other ideas were explored, and other avenues followed. This Appendix

discusses some of the work that did not find its way into the main body of the

thesis.

Our initial approach built on the analytical work of Garcia and Brun, et al. [16]

[36] [15]. This theory termed differential traffic modelling, studies the transient

and stationary states of network resources. Models for M/M/1/∞, M/M/1/N ,

M/D/1/N , Mk/Mk/1/∞ and M/G/1/∞ queues have been developed. This ana-

lytic method, which has similarities to fluid simulation techniques, was combined

with discrete event simulation to create a hybrid modelling method [37]. The

hybrid approach also lends itself to parallelisation. In the remainder of this Ap-

pendix, we outline the principal results of the differential traffic theory and discuss

its hybridisation and parallelisation. Finally, we note some of the issues that make

its application to TCP/IP networks problematic.

A.1 Differential Traffic Modelling

This Section introduces differential traffic modelling. We illustrate the theory of

differential modelling by deriving the differential equations for M/M/1/∞ and

M/M/1/N queues. The original papers [16] [36] [15] are more thorough and cover

several other queue types.
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A.1.1 Transient Model of an M/M/1/∞ Queue

Packets In

Queue Server

Packets Out

Figure A.1: M/M/1/∞ system. A single server queue with infinite buffer capacity.
Packets arrive at the server. If the server is free the packet is processed otherwise
it is queued until the server is free. Packet interarrival times follow a Poisson
process. Packet service times are exponentially distributed.

Among the simplest queueing systems is the M/M/1/∞ queue, Figure A.1.

It is an infinite capacity queue, in which packets arrive at a rate λ, according

to a Poisson distribution, and are processed by the server. The service time is

exponentially distributed with mean 1
µ
. Packets are processed according to the

FIFO principle.
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Figure A.2: The evolution of a sample M/M/1/∞ queue with ρ = 0.8, and the
average of 10,000 such queues.

Consider such a queue. Let x(t) be the number of packets in the system at

time t (including any in the server). The instantaneous arrival rate of packets at

the queue is I(t), the instantaneous output rate from the server is O(t). The aim

of differential traffic modelling is to derive the average occupancy of the queue,

X(t) = E[x(t)]. Now
dX(t)

dt
= I(t)−O(t).
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Figure A.3: The averaged evolution of 10,000 M/M/1/∞ systems and the evo-
lution calculated using differential traffic modelling. There is good agreement in
general, although for high ρ the differential model approaches the stationary value
more quickly.

Now x(t) ∈ {0, 1, 2 . . . }. Let Pi(t) be the probability that the system is in state

x(t) = i. Then

dX(t)

dt
=

d

dt

∞∑
i=0

iPit =
∞∑
i=0

iṖ (t) = λ− µ(1− P0(t)).

Let the utilisation factor ρ = λ
µ
. If ρ < 1 then the steady state value of X is given

by

X(∞) =
ρ

1− ρ
and Pi(∞) = ρi(1− ρ).

(See, for example, [12]).

However, the expression for P0(t) is complex:

Pk(t) = e−(λ+µ)t

[
ρ

k−i
2 Ik−i(at) + ρ

k−i−1
2 Ik+i+1(at) + (1− ρ)ρk

∞∑

j=k+i+2

ρ
−j
2 Ij(at)

]

where a = 2µ
√

(ρ) and Ik(x) =
∑∞

m=0

(x
2
)k+2m

(k+m)!m!
, k = −1 . . .∞ and i is the initial

number of packets, see [57] This expression is both analytically and numerically

intractable.

The approach advocated by Garcia et al. [36], is to approximate P0(t). Note
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Figure A.4: M/M/1/∞ with varying input levels. From t = 0 to t = 50 the load
ρ = λ

µ
= 0.4, at t = 50 the load is increased to ρ = 0.8, and at t = 150 it is reduced

back to ρ = 0.4 again.

that in the steady state

ρ = 1− P0(∞) =
X(∞)

1 + X(∞)
.

It is asserted that this relation can be extended to the transient state of the queue:

1− P0(t) =
X(t)

1 + X(t)
.

The expression for Ẋ(t) then reduces to:

Ẋ(t) ≈ λ− µ
X(t)

1 + X(t)

It is easy to show that this differential equation converges to the stationary value

X(∞) = ρ
1−ρ

. The trajectory of X(t) can be easily computed numerically, using

for example the Euler or Runge-Kutta methods. An advantage of the differential

modelling technique is that the trajectory of X(t) in the presence of varying ρ can

also be calculated.

Figure A.2 plots a single sample evolution of an M/M/1/∞ queue, alongside

the averaged evolution of many such queues. Figure A.3 plots the value of X(t)

using both the differential modelling method, and by direct simulation using the
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Figure A.5: The averaged evolution of 10,000 M/M/1/N systems and the evo-
lution calculated using differential traffic modelling. The capacity of the system,
N = 6.

average of 10,000 runs. Figure A.4 displays a trajectory of X(t) for a queue with

varying λ.

It can be seen that there is close agreement between the differential and simu-

lation trajectories. However the approximation error increases as λ approaches µ.

This manifests as a faster convergence to the stationary value for the differential

trajectory.

A.1.2 Transient Model of an M/M/1/N Queue

In most networks, queues for services have a finite capacity. The M/M/1/N

queue model describes a system with one server, one finite capacity buffer, Poisson

distributed packet arrivals and exponentially distributed service times. The total

capacity of the system is N packets. Packets are processed according to the FIFO

principle. Packets arriving at a full system are dropped.

The steady state probability distribution is:

Pk(∞) = ρkP0(∞) =

{
1−ρ

1−ρN+1 ρ
k if ρ 6= 1

1
N+1

if ρ = 1
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The corresponding queue occupancy is given by:

X(∞) =
N∑

k=1

kPk(∞) =

{
NρN+2−(N+1)ρN+1+ρ

1−ρ−ρN+1+ρN+2 if ρ 6= 1
N
2

if ρ = 1

The differential equation describing the transient average traffic for an M/M/1/N

queue is:

Ẋ(t) = λ(1− PN(t))− µ(1− P0(t)).

Using the same approximation as the M/M/1/∞ case we write

Ẋ(t) ≈ λ

(
1− ρN(t)

1− ρN+1(t)

)
− µρ

(
1− ρN(t)

1− ρN+1(t)

)
.

Now, X(t) and ρ(t) are related by

X(t) =
Nρ(t)N+2 − (N + 1)ρ(t)N+1 + ρ(t)

1− ρ(t)− ρ(t)N+1 + ρ(t)N+2

This cannot be directly solved for ρ(t). However the roots of the equation can be

easily found using numerical methods, for instance the Newton–Raphson method.

Figure A.5 displays the trajectory of X(t) in a finite capacity queue.

A.2 Hybrid Model

While differential models have been developed for many queue types by Garcia

et al., not all queues are amenable to analysis. A hybrid simulation model was

introduced in response to this problem[37]. In the hybrid model, complex nodes

are simulated using discrete event simulation, while the rest are modelled by dif-

ferential equations. If a network consists of many simple nodes and few complex

ones, then a hybrid model offers greater accuracy than a fully analytic model and

better performance than a full simulation.

A node modelled by a differential equation takes I(t) as an input. This is the

expectation value of the packet input rate. Using this, and the expectation value of

the occupancy X(t), the values of O(t+∆t) and X(t+∆t) can be calculated, where

O(t) is the output rate. The arrival and departure processes have an associated

distribution.

In contrast, a discrete event simulation deals with packets on an individual
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basis. Events are inserted into a timeline and mark the arrival and departure of

packets from the system.

In order to combine the two methods in one model, it is necessary to develop

an interface that converts the output produced by one type of node to the input

expected by the other. An analytic node expects the packet arrival time distribu-

tion. This can be generated by running a number of simulations (ensembles) of

the complex node and performing a statistical analysis of the packets it outputs.

Conversely, since the analytic node produces a distribution of output times for

packets, this can be sampled and packets injected into the complex node at the

corresponding times.

The input and output distributions are updated at intervals of ∆t. Using a

large value of ∆t has better performance, but less accuracy than using a small

value. A small value can better catch the transient behaviour of a network. How-

ever, with a small ∆t, more ensembles are needed in the simulated nodes to gen-

erate enough events for a good statistical analysis.

A.3 Parallel Hybrid Model

The hybrid model presented above is an attractive target for parallelisation. One

factor that creates difficulty in traditional parallel discrete event simulation is the

volume of information that must be communicated between processors. This is due

to the overhead of maintaining causality and the data associated with each packet

that crosses interprocessor boundaries. In the hybrid model only statistical data

need be communicated between different node types or between nodes on different

processors. It is far more efficient to transmit the parameters of a distribution than

to transmit each packet that the distribution describes.

A.4 Weaknesses of Hybrid Differential Model

Differential traffic modelling is fast. A large network of M/M/1/N nodes, with

varying traffic levels, can be modelled easily. Examples of such networks are

presented in [37]. However there are some circumstances in which it is difficult to

apply differential or hybrid modelling effectively:

• Unusual or difficult to characterise traffic patterns.



A.4 Weaknesses of Hybrid Differential Model 163

• Highly multiplexed traffic.

• Networks with complex flow control protocols.

A.4.1 Unusual Traffic Patterns

Differential modelling can describe queues with many types of service time distri-

butions. These include exponential, constant, gamma and general distributions.

However, it is not usually possible to model complex input distributions. As an

example consider two nodes, a and b, with constant service times. Node a feeds

node b. Node a has Poisson distributed input traffic. However, if the input rate

is sufficiently high, then the output distribution from a has a constant packet in-

terdeparture time. As there is no differential model for D/D/1 queues (constant

interarrival and constant service times), node b cannot be modelled by differential

traffic analysis, and simulation must be used. Alternatively, the output from node

a can be approximated as Poisson, but this introduces errors.

In addition, complex, simulated nodes in a model are likely to create complex,

non-Poisson output traffic. Thus, it easy to create a hybrid model with analytic

nodes feeding simulated nodes but the reverse is more difficult.

A.4.2 Highly Multiplexed Traffic

Consider a node with many inputs. Assume, for simplicity that each input has

Poisson distributed interarrival times. This implies that the aggregate traffic is

also Poisson, and so differential modelling can be used. However, if the input

consists of very many low volume flows, the cost of the differential analysis may

be as high as a full simulation. As long as the flow is active, the flow must be

tracked. In a simulation, if a packet from a particular flow is not in the queue, no

details about that flow need be stored.

A.4.3 Complex Network Protocols

The Internet is governed by the TCP/IP suite of protocols. These protocols

have feedback mechanisms built in, and traffic sources can interact in complex,

unexpected ways. There has been some success in analysing the behaviour of

TCP/IP flows, but typically for simplified situations [70] [21] [69]. In order to
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create a realistic analytic model of a Internet like network, this analysis of TCP/IP

flows would need to be extended and applied to differential traffic modelling.

A.5 Conclusions

In this Appendix we have introduced the ideas of differential traffic modelling

and its hybridisation with discrete event simulation. Although it holds great

promise, it is not suitable for all types of network simulation. Due to our desire to

model the Internet, detailed simulation of TCP/IP was essential, and hence highly

efficient parallel simulation was pursued in place of hybridisation with differential

modelling.



Appendix B

Module Definition API

B.1 class

The class struct, Code Fragment 13, for a network device is initiated at program

startup. Each class has its own initialisation function, usually named, for example

initXXXDevices. This function is responsible for allocating and initialising a new

class structure for this type of network equipment. The purpose of each entry,

and an indication of where they are set is given below.

name This is a text string containing the name of the network device class.

Examples are “router” or “link.”

printName This function merely prints out a short description of the class.

xmlDefineSubClass This points to a function that takes as input a pointer to

the class, and two pointers to XML configuration data provided to it by the

XML parser. Its responsibility is to interpret the class specific data in the

XML (using the libXML library) and to use it to build a subClass of the

class. For instance, a generic link device does not have bandwidth or latency

values. xmlDefineSubClass in this case would point to a function that would

read latency and bandwidth values describing a particular type of network

link, 10BaseT ethernet for example.

initDevice This points to a function that will create device structures that rep-

resent actual pieces of equipment in a network. A possible hierarchy is a

generic link class, several subClasses (100BaseT ethernet, 64bps ISDN etc),
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struct class {

char *name;

char *(*printName)(void);

struct subClass *(*xmlDefineSubClass)

(struct class *type, xmlDocPtr doc, xmlNodePtr params);

int (*initDevice) (struct device *node,

struct network *net, xmlNodePtr params, xmlDocPtr doc);

int (*delSubClass) (struct subClass *subClass);

int (*delReal) (struct device *d);

int (*finaliseReal) (struct device *d);

int (*firstEvent) (struct device *d,

struct eventList *eList, int state);

int (*postProcess)(struct device *d, struct network *net);

int (*classPostProcess)(struct network *net,

struct class *class);

int (*acceptPacket)(struct device *d,

struct inPoint *in, int size);

int (*groupConnect)(struct device *d,

char **realName, char **realInPoint, char **realOutPoint);

int (*getDestination)(struct device *d,

struct subClass *s);

LIST_ENTRY(class) list;

struct network *net;

int parallel;

int (*setParallelId)(struct device *d, int id);

int (*getParallelId)(struct device *d);

int n;

};

Code Fragment 13: Class structure
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and actual links such as ethernet link “link001” and ISDN link “link002,”

for example.

firstEvent This points to a function that inserts any initial events for this class

into the eventlist. For instance a traffic source amy have an event that tells

it to start sending traffic at a certain time.

delSubClass, finaliseReal, delReal These point to functions responsible for

tidying up memory use after the simulation is finished.

acceptPacket This points to a function specifying how a device of this type

should handle an incoming packet.

postProcess, classPostProcess These point to functions that perform any ini-

tialisation that must take place after the network has been created. For

instance, a AR router cannot create a routing tree until the network nodes

have been connected and the network topology is available. The first func-

tion performs device only initialisation, the second performs initialisation

common to all devices of the class.

groupConnect This points to a function that allows groups of nodes to be con-

nected. It is only used by the mapreader module.

getDestination This points to a function that will select a device of the given

subclass at random. It is commonly used by traffic source modules to select

a destination for a traffic flow.

list This is used by the module loading code to keep track of all loaded modules

(classs).

net A pointer to the global network structure

parallel A flag indicating whether or not this class performs interprocessor com-

munication.

setParallelId, getParallelId These point to functions that set and get a glob-

ally unique id for a device that perform parallel communication.
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struct subClass {

char *name;

struct class *class;

LIST_ENTRY(subClass) subClasses;

int numInPoints;

int numOutPoints;

int (*autoPoints)(struct device *d);

int (*incrAutoPoints)(struct device *d);

struct inPointTemplate *inProto;

struct outPointTemplate *outProto;

void *params;

int storeGids;

int *gids;

};

Code Fragment 14: Sublass structure

B.2 subclass

A network device, such as a link or router, can come in many forms. These can

often be grouped. For this reason, we use the concept of a subclass of a network

device class to gather together properties shared between many instances of one

class. For instance network links could be grouped into Ethernet links, IDSN links

and so forth, each with its own bandwidth and latency parameters. While these

could be stored in a structure representing a particular link instance, it is far more

memory efficient to group common parameters in one place — the subClass, Code

Fragment 14.

name A short name to identify the subClass.

class A pointer to the class of which this is a sub type.

subClasses Used by the module loading code to keep track of all the different

subclasses.

numInPoints, numOutPoints The number of connections into and out of a

device of this type.

inProto, outProto A pointer to a structures describing how to handle incoming

and outgoing connections, common to all devices of this subclass.
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autoPoints, incrAutoPoints Some modules, such as a traffic source have a

fixed number of inputs and outputs. Others, such as routers may have

varying numbers of inputs and outputs. These functions allow such modules

to dynamically grow the number of input and output ports they provide on

a per device level.

params A pointer that may be used by the module to store module specific data.

For instance, a link module would define its own structure for specifying

bandwidth and capacity and would use this pointer to access it.

storeGids A flag, set by the module loader, specifying whether to store all the

global ids of devices of this type on all processors. Typically only used by

traffic destinations.

gids A pointer to a list of all global ids of devices of this type (or void).

B.3 device

The device structure, Code Fragment 15, represents actual instances of network

objects. Structures of this type are connected together via inpoints and outpoints

to replicate the network topology. This structure was kept as small as possible as

one must be created for every network object.

struct device {

char *name;

int nid;

struct subClass *subClass;

void *data;

struct inPoint *inPoints;

struct outPoint *outPoints;

struct device *group;

short proc;

};

Code Fragment 15: device structure

name A short unique name for the device.

nid The local device id. The global id can be calculated from this.



B.4 Example Module 170

subClass A pointer to the type of subclass this device is.

data A pointer to device specific data for this device. For instance a buffer device

would store details of the packets stored in its buffer here.

inPoints, outPoints Pointers to structures describing the connections with the

device’s neighbours.

group A pointer to a device representing a group of devices (or void).

proc The processor responsible for this device.

B.4 Example Module

In this section we present the code for a very simple module. This module repre-

sents a network device that does nothing but count the packets it receives. The

code is shown in Code Fragments 16 to 30.

#include <device.h>

#include <data.h>

#include <lists.h>

#include <module.h>

#include <stdlib.h>

#include <stdio.h>

#include <counter.h>

#include <event.h>

#include <string.h>

#include <msgs.h>

#include <mpi.h>

Code Fragment 16: Header files required in this module.
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struct counterDevice {

int i;

};

struct counterData {

int recv;

};

Code Fragment 17: Structures used by the counter class.

void initCounterDevices(struct classList *list) {

struct class *class;

class->printName = counterPrintName;

class->firstEvent = counterFirstEvent;

class->xmlDefineSubClass = counterXmlDefineSubClass;

class->delSubClass = counterDelSubClass;

class->delReal = delCounter;

class->finaliseReal = NULL;

class->type = makeString("CounterClass");

class->initDevice = initCounter;

class->insertEvent = counterInsertEvent;

class->postProcess = NULL;

class->classPostProcess = counterClassPostProcess;

class->setParallelId = NULL;

class->getParallelId = NULL;

class->parallel = FALSE;

return;

}

Code Fragment 18: The class structure is initialised. This is called once from the
module loading code.
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struct subClass *counterXmlDefineSubClass

(struct class *type, xmlDocPtr doc, xmlNodePtr params) {

struct subClass *subClass;

struct counterDevice *a;

subClass =

(struct subClass *)malloc(sizeof(struct subClass));

memset(subClass, 0, sizeof(struct subClass));

subClass->class = type;

a = (struct counterDevice *)malloc(sizeof(struct counterDevice));

subClass->params = (void *)a;

subClass->numInPoints = 1;

subClass->numOutPoints = 1;

subClass->outProto = (struct outPointTemplate *)

malloc(sizeof(struct outPointTemplate) * subClass->numOutPoints);

subClass->inProto = (struct inPointTemplate *)

malloc(sizeof(struct inPointTemplate) * subClass->numInPoints);

{

char *s;

s=makeString("out");

subClass->outProto->name = s;

subClass->outProto->type = packetData;

subClass->outProto->pointType = staticPoint;

s=makeString("in");

subClass->inProto->name = s;

subClass->inProto->type = packetData;

subClass->inProto->handler = counterAddPacket;

}

return subClass;

}

Code Fragment 19: This code initialises a subclass of the counter type. However,
the class is so simple, there is not much room for customisation. It is called once
for each subclass.
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int initCounter(struct device *d,

struct network *net, xmlNodePtr params, xmlDocPtr doc) {

struct counterData *data;

d->data = (struct counterData *)malloc(sizeof(struct counterData));

data = (struct counterData *)d->data;

data->recv = 0;

return 0;

}

Code Fragment 20: This initialises a device of the counter class. It is called once
for each device.

char *counterPrintName(void) {

return makeString("Packet Counter");

}

Code Fragment 21: Prints a description.

int counterDelSubClass(struct subClass *subClass) {

struct class *class;

class = subClass->class;

free( subClass->name);

free( subClass->params);

return 0;

}

Code Fragment 22: Delete the subclass.
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int counterAddPacket(struct device *d, struct inPoint *in,

struct packet *p, double time, struct eventList *eList,

int stateNum) {

struct counterData *data;

data = (struct counterData *)d->data;

delPacket(p);

data->recv++;

return 0;

}

Code Fragment 23: Delete the class.

int delCounter(struct device *d) {

struct counterData *data;

data = (struct counterData *)d->data;

printf("%s Received %d packets\n", d->name, data->recv);

free(data);

return 0;

}

Code Fragment 24: Prints out the number of packets received and tidies up.

int counterInsertEvent(struct insertEvent *e, struct network *net) {

return 0;

}

Code Fragment 25: Not needed for the counter device.

int counterFirstEvent(struct device *d,

struct eventList *eList, int stateNum) {

return 0;

}

Code Fragment 26: Not needed for the counter device.



B.4 Example Module 175

int counterSetParallelId(struct device *d, int id) {

return 0;

}

Code Fragment 27: Not needed for the counter device.

int counterGetParallelId(struct device *d) {

return -1;

}

Code Fragment 28: Not needed for the counter device.

int counterClassPostProcess(struct network *net,

struct class *class) {

return 0;

}

Code Fragment 29: Not needed for the counter device.

int counterPostProcess(struct device *d, struct network *net) {

return 0;

}

Code Fragment 30: Not needed for the counter device.
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