
Analysing and Predicting the runtime of Social
Graphs

Rana Maher∗, David Malone†
Hamilton Institute

Maynooth University, Kildare, Ireland
Email: ∗rana.maher.2016@mumail.ie, †david.malone@nuim.ie

Abstract—The explosion of Social Network Analysis (SNA) in
many different areas and the growing need for powerful data
analysis has emphasized the importance of in-memory big data
processing in computer systems. Particularly, large-scale graphs
are gaining much more attention due to their wide range of
application. This rise, accompanied by a massive number of
vertices and edges, led computations to become increasingly
expensive and time consuming. That is why there is a move
towards distributed systems or Big Data cluster(s) to provide
the required computational power and memory to handle such
demand of huge graphs. Thus, figuring out whether a new
social graph dataset can be processed successfully on a personal
machine or there is a need for a distributed system or big-
memory machine is still a remaining open question. In this paper,
we try to address this question by providing a comparative
analysis for the performance of two of the most well known
SNA tools for performing commonly used graph algorithms
such as counting Triads, calculating Degree Distribution and
finding Clusters which can give an indication of the possibility
of carrying out the work on a personal machine. Based on these
measurements, we train different supervised machine learning
models for predicting the execution time of these algorithms. We
compare the accuracy of the different machine learning models
and provided the details of the most accurate model that can
be exploited by end users to better estimate the execution time
expected for processing new social graphs on a personal machine.

Index Terms—Social Graphs; Graph Analytics; Social Network
Analysis; Graph Algorithms; Performance; Predictive Modeling

I. INTRODUCTION

Social graphs are popular structures for modeling relation-
ships, interactions and communication between users, organi-
zations or even groups. They are the most commonly used way
of modeling the shared information and ideas over the Internet.
Facebook, Twitter and LinkedIn are the most popular social
networks nowadays. The way we deal with these networks
is through social graphs that demonstrate the nodes/people
and the edges/relationships in the social network. Network
analysis is a collection of techniques to calculate various
metrics for a social graph. These measurements can illustrate
the topology of the network, define how people are connected
to each other and who are the top influential people. They
also provide information about communities, roles and user
actions. In recent years, there has been an observed increase
in the number of large online social networks, many of them
have a massive number of users that can reach hundreds of

millions of users [1]. Analysing these social network databases
can provide rich information which can be beneficial for
a wide range of applications and areas but is sometimes
considered an expensive and time consuming. This is due to
the expected super-linear increase in the computational time
and therefore speed and scalability should be key challenges
of social network analysis.

In order to handle huge real-world network analysis prob-
lems, distributed clusters may be required to accommodate
“real-world” graph sizes. Alternatively, big-memory machines
that can do a highly interactive analysis that can have advan-
tages over distributed clusters [2]. A long computational time
may be needed to handle any graph analytics like community
detection, node ranking, computing shortest paths, number
of triads, degree distribution and connected components. The
need to have an efficient computational tool/model or even
a query language to use with this social graphs has been
addressed by many researchers e.g. [1], [3], [4].

What if we have an option to run our analytics on differ-
ent computational platforms? How could we predict which
platform is most suitable? this will be the goal of our work
in this paper, to be able to predict the execution time of
graph algorithms for unseen graphs using two of the most
commonly social network analysis tools, but to reach this
predictive execution time we will need first to know how
currently available tools perform on a personal machine. There
are many social network tools and libraries that can perform
a set of operations, features and various algorithms with
many functionalities for graph analysis of this rich data and
information within the graphs. For example, SNAP1, Gephi2,
NetwrokX3 and Gremlin4 are some of the most commonly
used tools in the community.

The main contribution of this paper is a performance
comparison study between social network analysis tools that
can enable the prediction of execution time for unseen social
graphs. We introduce an overview for the related work in
Section 2. Various features for SNA software based tools (e.g.,
SNAP) and Query based tools (e.g., Gremlin) are described in
Section 3. In Section 4, we show our comparative performance
analysis between SNAP and Gremlin by running a set of

1http://snap.stanford.edu/snap
2https://gephi.org
3https://networkx.github.io
4https://github.com/tinkerpop/gremlin/wiki

popular and commonly used algorithms on different real world
social network sizes. In Section 5, we show the results of
training and comparing various machine learning models with
detailing the out-performed model. Section 6 concludes the
paper and highlights some potential future work.

II. RELATED WORK

Perez et al. in [2] proposed Ringo, a big-memory graph
analytics tool, which supports interactive graph analytics of
millions of edges through merging big-memory machines that
can outperform all other distributed systems. The authors
showed that a single machine with big-memory can provide
an efficient platform for doing graph analytics. Distributed
graph systems like Pregel that support parallel graph algo-
rithms on multiple machines and support adoption of a Bulk
Synchronous Parallel (BSP) model was proposed by Malewicz
et al. in [5] and also GraphLab in [6], a distributed system
for data mining and machine learning. In [7] Kyrola et al.
presented the performance of GraphChi, a disk-based system
on a PC that supports evolving graphs overtime, GraphChi
has a low memory requirements which designed specially for
computation on big-scale graphs. The authors performed a
comparison between GraphChi and other distributed systems
like Spark [8], Hadoop [9], PowerGraph [10] and GraphLab,
it was found that PowerGraph can compute graph analytics
using large cluster much more faster than using GraphChi
on just a single machine. The comparison was performed on
PageRank, one of the most popular graph algorithms. It has
been shown that GraphChi can provide high performance for
different purposes.

Seo et al. in [11] claimed that the performance of Datalog, a
declarative logic programming language that is usually used as
a query language [12], is not competitive with other low-level
languages in the past. However, it allows the expression of
many graph algorithms and supports recursion and high-level
semantics which consequently allow optimization in time and
parallelization. A high level query language for graph analytics
named SociaLite was proposed by the authors as a Datalog
extensions for powerful analysis on graphs. The authors per-
formed a comparison for the execution times for running a
shortest path graph algorithm on different benchmarks like
Giraph [13] and Hadoop and then compared their execution
time with SociaLite concluding that the latter outperforms.
The authors presented a comparison for the execution time
in [1] between Datalog engines like Overlog [14], IRIS [15]
and LogicBlox [16] for running shortest path algorithm on
single machine, showing a better performance for LogicBox.
However when compared with SociaLite, the latter showed a
better performance than LogicBlox. Also, the authors proposed
a comparison of SociaLite with other implementations by java
almost around 50%.

From the above state of the art, we have found that tackling
the performance issue to predict an estimated time needed
for analysing graphs is a new area that can be fruitful for
detecting the execution time of evolving graphs. To the best
of our knowledge, this is the first comparative analysis that

aims to find an estimate prediction for the execution time of
graph analytics based on different benchmarks using a PC.

III. INVESTIGATED NETWORK ANALYSIS TOOLS

The increase of Social Network Analysis is driven by the
rise of online networks specially human networks [17]. This
rise has driven many researchers and developers to create
and develop different approaches, algorithms and tools to
easily apply graph mining and analytics. This led to having
a plentiful number of publicly available frameworks that have
many algorithms supporting the study and manipulation of
data for any type of network. Our main concern will be how
to select the right tool for the observed large-scale evolving
graphs and decide which tool can suit your system design,
graph size or even the algorithms that are to be used.

Our experiments will target a comparison between two
types graph analytics tools. We have chosen to conduct this
comparison between Query-Language-Based tools like Grem-
lin and Software-Based tools like SNAP. One of the reasons
for targeting a Query Language tool and comparing it with
a Software tool is that the query languages are usually for
generic purposes and can enable many users to do social
network queries in an easy and professional way without
having a software background [1]. While, the reason for
targeting SNAP in the comparison that it is C++ and python-
based, so it is supposed to have a better computational time
compared to other software tools that were mentioned above
[2]. We concisely summarize the features of both tools as
below:

A. Query Based Tools

We took Gremlin as our example of a query-based tool.
• Gremlin: A domain specific language for working with

graphs, a graph based programming language developed
for multi-relational graphs, named property graphs. The
following are the main features of Gremlin:
1) Supports complex graph traversals.
2) Works over different frameworks, graph databases
and graph processors.
3) Used within the Java language as a virtual machine
that has a direct access to Java based application.
4) Combines between query language, network analysis
and manipulation of graphs.
5) Enables a wide range of users who do not have a
software background to do efficient and easy queries.

B. Software Based Tools

We selected SNAP as a typical software-based tool.
• SNAP: A free general purpose network analysis and

graph mining based package tool with the following
features:
1) It is written in C++.
2) Provides a python interface (snap.py) [18] for use
with python and runs on windows, Mac OS and Linux.
3) Scales to huge networks with hundreds of million of
nodes and edges.

0	

2000	

4000	

6000	

8000	

10000	

12000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Nodes	

Edges	

Fig. 1: Subgraphing Facebook Dataset.

4) Calculates the graph’s structural properties, provide
standard graph algorithms and different network structure
measures.

IV. EXPERIMENTS AND PERFORMANCE EVALUATION

In this section, we start by outlining our testing setup and
environment. Then we give an overview about the dataset used
and our terminology in preparing and preprocessing the data
for the experiments. We provide a comparative analysis for the
results based on the SNAP and Gremlin tools and how their
computational times differ for the same graph metrics.

A. Experiment Setup

• Test Machine: Most of the experiments were done on an
Apple Mac Pro computer, 2.4 GHz Intel core 2 Duo, 3
MB cache size and 8 GB of main memory.

• Test Protocol: Each test is performed under the same
setup and configuration. In the tests, we used multiple
iterations and the mean execution time was reported.
The datasets were held in-memory for each test. All our
experiments were based on undirected graphs. It is worth
noticing that the computational timing measured for both
tools does not include the time taken to load the file into
memory or writing the results into a file.

B. Dataset

The dataset considered in this paper is a public available
Facebook dataset collected by Stanford University [19], a
freely available real world graph dataset. This dataset rep-
resents a list of friends from Facebook, it presents a politi-
cal affiliation social graph between members. The data was
anonymized be replacing the internal ids for each user by
new value. The circles consist of 4039 vertices and 88234
edges. Each vertex represents a user and an edge exists if
any two users have same political affiliations. To perform
our experiments, we divided this data into subgraphs to
compare the results on different sizes of graphs with growing
number of nodes and edges. We will explain the sub-graphing
methodology in “Section IV-D” below.

C. Graph Analytics

We tested the execution time of three popular graph analysis
algorithms for both tools:
• Triads Count: The aim of this algorithm is to count

all the triangles or in other words the cliques of size 3.
Counting the triads can be beneficial for many graph
algorithms because they can be used to view similarity
between structure of graphs [20] and can also be useful
in community detection [21]. For example, in community
detection algorithms, triads count is used to find the
degree of edge support [22]. Hence counting triads is
considered as a graph metric that is the basis of other
analysis algorithms.

• Degree Distribution: This is a simple measure to count
the number of edges for each node in the graph, it is
based on the concept of neighborhood to find the vertices
that have the most direct links to other vertices. It gives
important clues about the structure of the network.

• Detecting Clusters: The aim of this algorithm is to
find communities (clusters) or know how many unique
clusters and what is the distribution of vertices within
each cluster. This can be used in different community
detection algorithms [23].

D. Subgraphs Preparation

To test the performance of the tools on different sized
graphs, we extracted subgraphs of varying sizes from the com-
plete graph. We divided the Facebook dataset into subgraphs,
each subgraph was represented as a selected number of nodes
and all their associated edges or links between them in the
whole network. The selection of the nodes IDs is based on
their ID value in the graph. For instance, with a subgraph of
100 nodes, we select the nodes with ID values between 0 and
100. We extracted 10 subgraphs using GetSubGraph function
in snap.py library [18], this function takes the main graph
and specified nodes IDs in vector form as their parameters
and returns a subgraph induced by the nodes specified in
this vector and the edges between these nodes. We repeated
this process for having different subgraph sizes. The resulting
subgraphs are 10 times smaller in edge count and nearly 4
times smaller in node count of the whole graph. Our strategy
selected: 100, 200, 300, ...1000 nodes and their associate edges
so the network size varies from 100 to 1000 nodes and their
edges numbers varies from 275 to 9890 edges as shown in
Fig. 1. Hence, we evaluated the computational time on a graph
growing constantly. Given this is a Facebook graph, the graph
type is undirected with no multiple edges or self loops. These
subgraphs were represented as an edge list in different files
ready for analysis.

E. Performance Results

This subsection presents the performance results of the tools
discussed in the previous section. The comparison is based
on the execution time measured by both tools to calculate

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 200 400 600 800 1000
 0

 4

 8

 12

 16

S
N

A
P

 E
xe

cu
tio

n
 T

im
e
 [
se

co
n
d
s]

G
re

m
lin

 E
xe

cu
tio

n
 T

im
e
 [
se

co
n
d
s]

Network Size [nodes]

Counting Triads

SNAP
Gremlin

(a) Counting Triads.

 0

 2x10-5

 4x10-5

 6x10-5

 8x10-5

 0 200 400 600 800 1000
 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

S
N

A
P

 E
xe

cu
tio

n
 T

im
e
 [
se

co
n
d
s]

G
re

m
lin

 E
xe

cu
tio

n
 T

im
e
 [
se

co
n
d
s]

Network Size [nodes]

Degree Distribution

SNAP
Gremlin

(b) Degree Distribution.

 0

 0.002

 0.004

 0.006

 0.008

 0 200 400 600 800 1000
 0

 0.1

 0.2

 0.3

 0.4

 0.5

S
N

A
P

 E
xe

cu
tio

n
 T

im
e
 [
se

co
n
d
s]

G
re

m
lin

 E
xe

cu
tio

n
 T

im
e
 [
se

co
n
d
s]

Network Size [nodes]

Detecting Clusters

SNAP
Gremlin

(c) Detecting Clusters.

Fig. 2: Comparative Analysis between SNAP and Gremlin for the execution time on different scales to measure the three
metrics: Counting Triads, Degree Distribution and Detecting Clusters.

different metrics on different graph sizes. We expect that the
computational time will be affected by the structure and the
size of the graph. The elapsed time for running the algorithms
will differ based on wether these algorithms access the edge
list one or more times.

Referring to Fig. 2, we measured the execution time taken
by each tool to measure each of Triad Count, Degree Distri-
bution and Detecting Clusters on different sizes of subgraphs.
In the first test, for the Triads Count as shown in Fig. 2a, we
found a major difference in the performance of both tools.
SNAP performed much better than Gremlin, the execution
time taken by Gremlin was nearly 13 seconds to traverse
1000 nodes and 9800 edges while in SNAP it took nearly
around 0.025 seconds and this is because the query used in
Gremlin for counting the triads is likely touches and traverses
every vertex in the graph to check their connection with
their neighborhood and then check that their neighbors are
connected so this led to traversing many vertices more than
once. Counting triads of large-scale graphs usually require a
fast algorithm, specially for graphs having billions of nodes
and edges and it is preferable to be in a parallelized processes.
For the second test, the Degree Distribution as shown in Fig.
2b, both tools performed better compared to calculating the
triads. Unexpectedly, we observed that initially the execution
time of Gremlin was high for the small subgraphs then it
started to decrease when approaching a graph size of 500
nodes. It is worth emphasizing that we repeated the same
experiment multiple times but while the dip is within the
error bars, there does seem to be a trend. We do not have
a clear justification of this behavior. The Gremlin query here
traversed all the vertices to get their edge count. As for SNAP,
it performed normally and as expected with an observed linear
increase with the size of the network. In the last test for
Detecting Clusters as shown in Fig. 2c, we observed that
using SNAP took around 0.04 seconds for a graph with 1000
nodes while Gremlin took 0.4 seconds for the same graph so
it is clear that SNAP is 10 times faster than Gremlin. The
used Gremlin query in this test is based on the peer pressure
vertex program algorithm, where every vertex assigned what
is called by nominal value and if two vertices have same value

therefore they are in same cluster and acquire the same cluster
ID. Overall, SNAP performs much better than Gremlin in the
three experiments. For the sake of increasing the accuracy of
our reported results, we repeated each measurement for the
execution time 20 times. The reason for the variance indicated
by the error bars is seems to be due to runtime performance
variability of the software and hardware. We repeated these
tests with the same subgraph size by selecting different nodes
to build the subgraph and found the execution time was similar.
This indicates that the mean execution time is not affected
much by the nodes selected and that the variation arises from
runtime issues.

In the next section we apply machine learning techniques
to create a predictive model for the execution time needed for
each tool to process new unseen graphs.

V. PERFORMANCE PREDICTION MODELING

With the continuos growth of data in various social graphs,
learning how to take decision based on this data to improve
business or provide solutions is almost an important need
in different areas. Consequently learning a model for the
performance issues can be useful for making decisions on
where to run a graph analysis job. That is our main reason for
applying machine learning algorithms to learn how to quickly
perform graph analytics. We applied different regression ma-
chine learning models in order to select the best model that
will predict the execution time of unseen graph based on two
main features that are usually known in any social graph; nodes
and edges. Our target is to present an approximate model as a
computational technique that provides a relation between the
execution time and the structure of the network.

A. Prediction Models Overview

Regarding the regression models, we trained using the
results of the performance analysis on four popular regression
models: Support Vector Machine (SVM), Multivariate Adap-
tive Regression Splines (MARS), M5 and Boosting.
• SVM: The SVM model is considered for both regression

and classification problems based on detecting if data can
be categorized or not and also based on the value of the

linear combination of the input features. SVM is capable
to represent non-linear relationships in a linear fashion
using a kernel function, which is a method for using a
linear algorithm to solve non-linear problems [24].

• MARS: The MARS model usually uncovers important
data patterns effectively, it is more flexible than other
regression models and does not require any data prepara-
tion. The MARS model can be interpreted easily through
the existence of the hinge function which partitions the
input data automatically and works more appropriate
for numeric variables make them work efficiently for
numeric data. A pair of hinge function is usually written
as h(x− a) and h(a− x) [24].

• M5: The M5 is a model tree algorithm. Model trees are
used for the approximation and modeling complex non-
linear problems. It is a promising model for prediction
of numerical problems and it is popular by its robustness
and efficiency [24].

• Boosting: The Boosting model is known to be a powerful
predicting model. It is widely used in different applica-
tions. The algorithm of the boosting model gets initialized
at first with the best guess (e.g., the mean value) and then
the gradient is calculated, a model is then fit to minimize
what is called a loss function and the current model is
added to the previous one. This is repeated according to
the number of iterations specified by the user [24].

B. Application to Performance Prediction

For the sake of training the machine learning models and
achieving better accuracy, we extended our measurements
to 50 various sizes of the same dataset and calculated the
execution time for each of the three algorithms for both tools.
We split our dataset formed from the 50 samples to a training
dataset of 35 samples and 15 samples for the test dataset.
We used the training set for estimating the coefficients of
the different machine learning models whilst the test set was
used for evaluating their performance. We used R to apply the
machine learning models. The resulting performance profile
appeared to have an observable difference between the four
models in terms of Root Mean Square Error (RMSE).

C. Prediction Results

Referring to Fig. 3 and Fig. 4, the graphs represent the
RMSE for each model for predicting the execution time
for each of the Counting Triads, Degree Distribution and
Detecting Clusters using SNAP and Gremlin as shown in the
figures. It is clear that for both tools, the Boosting model had
the highest RMSE for all of the three metrics. On the other
hand, we found that the best model with the minimum RMSE
for both tools regarding the three graph metrics is MARS.
For SVM and M5, the first outperformed the latter for Triads
Count and Detecting Clusters while on the other side M5
outperformed for calculating the Degree Distribution for both
SNAP and Gremlin. Therefore, our proposed prediction will be
based on MARS model since it showed the best performance
for all metrics using both tools. Hence, we derived our MARS

a b c d e
ST -1.5*10−4 1.7*10−6 -1.5*10−6 -4.3*10−7 3.8
SD 2.9*10−4 -2.9*10−7 2.1*10−7 -7.5*10−8 2.7*10−8

SC 0.003 -0.0000004 0.0000002 0 0
GT -1.05 0.009 -0.012 -0.002 0.002
GD 2.7 -6.7 1.4 0 0
GC 0.05 -0.00009 0.0005 -0.0009 0.00008

TABLE I: Special Coefficients for the hinge function of the
MARS model for the execution time of ST, SD, SC and GT,
GD, GC for SNAP and Gremlin respectively.

h1(x) h2(x) h3(x) h4(x)
ST h(500-N) h(N-500) h(1522-E) h(E-1522)
SD h(420-N) h(N-420) h(1522-E) h(E-1522)
SC h(7153-E) h(E-7153) 0 0
GT h(500-N) h(N-740) h(1522-E) h(E-1522)
GD h(340-N) h(N-340) 0 0
GC h(340-N) h(N-340) h(N-820) h(E-8620)

TABLE II: Hinge function of the coefficients a, b, c, d and
e of the MARS model for the execution time of ST, SD, SC
and GT, GD, GC for SNAP and Gremlin respectively.

based model for predicting the execution time for measuring
each metric illustrated by Eq. 1 where the coefficients (a, b,
c, d, and e) along with the hinge functions (h1, h2, h3, and
h4) for each metric for both tools are defined in Table I and
Table II respectively. We denoted by ST, SD and SC as the
Counting Triads, Degree Distribution and Clusters respectively
for SNAP. Similarly, GT, GD and GC for same metrics but for
Gremlin.

Time = a+ b ∗ h1(x) + c ∗ h2(x) + d ∗ h3(x) + e ∗ h4(x)

where h1,2,3,4(x) =

{
x x > 0

0 x ≤ 0
(1)

VI. CONCLUSION AND FUTURE WORK

This paper proposed a performance comparative analysis be-
tween social network analysis tools using a personal machine.
Our results related to two different types of tools: Software
and Query based tools, the SNAP and Gremlin respectively.
The Gremlin tool showed lower performance than SNAP,
especially in calculating the number of triads in the graph. This
suggests that using Gremlin should be accompanied by having
a cluster to be able to parallelize many computations. On the
other hand, SNAP performed efficiently on a personal machine
and showed better results for different graph sizes for all the
metrics, so it can be useful for anyone who is comfortable with
python or C language. While SNAP can provide analytics on
massive graphs it may lack features related to compatibility
issues with graph databases and graph processors which are
supported by Gremlin.

Next, in order to provide the end user with a prediction
model for execution time, we trained different machine learn-
ing models to help take good decisions that facilitate timely
analysis of the graphs. We tested four different models: SVM,
MARS, M5 and Boosting on our test data which reports the

0.00E+00	

2.00E-‐05	

4.00E-‐05	

6.00E-‐05	

8.00E-‐05	

1.00E-‐04	

1.20E-‐04	

1.40E-‐04	

1.60E-‐04	

1.80E-‐04	

SVM	 MARS	 M5	 Boos5ng	

RMSE	

(a) Counting Triads.

0.00E+00	

1.00E-‐05	

2.00E-‐05	

3.00E-‐05	

4.00E-‐05	

5.00E-‐05	

6.00E-‐05	

SVM	 MARS	 M5	 Boos5ng	

RMSE	

(b) Degree Distribution.

0	

0.00005	

0.0001	

0.00015	

0.0002	

0.00025	

0.0003	

SVM	 MARS	 M5	 Boos0ng	

RMSE	

(c) Detecting Clusters.

Fig. 3: RMSE for predicting the execution time (in seconds) for the the three metrics using SNAP.

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

SVM	 MARS	 M5	 Boos5ng	

RMSE	

(a) Counting Triads.

0	

0.0002	

0.0004	

0.0006	

0.0008	

0.001	

0.0012	

SVM	 MARS	 M5	 Boos2ng	

RMSE	

(b) Degree Distribution.

0	

0.005	

0.01	

0.015	

0.02	

0.025	

0.03	

SVM	 MARS	 M5	 Boos0ng	

RMSE	

(c) Detecting Clusters.

Fig. 4: RMSE for predicting the execution time (in seconds) for the three metrics using Gremlin.

execution time for 50 subgraphs of different sizes for each of
the three graph metrics for SNAP and Gremlin. We concluded
from our experiments that MARS gives the best results and
outperformed other models for both tools. Hence, we provided
a mathematical formula based on MARS model for each graph
metric for both tools to estimate/predict the execution time
needed to analyze a given graph.

In the future, we will extend our work to account for
the variance of the hardware used, such as available CPU
resources and RAM size in big-memory machines (single
big-memory machines) that can achieve faster random ac-
cess required by graph algorithms and so are important in
graph processing. Part of our ongoing work is to explore
the execution time of distributed graph systems that are
based on memory approaches like Pregel and GraphLab. As
Gremlin showed a low performance on a personal machine
and given that one of its advantages that it can be integrated
with Hadoop (Gremlin/Hadoop) to allow parallel execution of
Gremlin scripts as map reduce jobs on a Hadoop infrastructure,
therefore we would like to evaluate it in a situation where
it should perform better. Also, studying the impact on the
computational time based on the structure of the network
whether it is real world network or random network seems
an interesting path to explore.

ACKNOWLEDGMENT

This publication emanated from research supported in part
by a grant from Science Foundation Ireland (SFI) and co-
funded under the European Regional Development Fund under
Grant Number 13/RC/2077.

REFERENCES

[1] J. Seo, S. Guo, and M. S. Lam, “Socialite: Datalog extensions for
efficient social network analysis,” in Data Engineering (ICDE), 2013
IEEE 29th International Conference on. IEEE, 2013, pp. 278–289.

[2] Y. Perez, R. Sosič, A. Banerjee, R. Puttagunta, M. Raison, P. Shah,
and J. Leskovec, “Ringo: Interactive graph analytics on big-memory
machines,” in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. ACM, 2015, pp. 1105–1110.

[3] S. Elnikety and Y. He, “System support for managing large graphs in
the cloud,” in Proceedings of the NSF Workshop on Social Networks
and Mobility in the Cloud. Citeseer, 2012.

[4] C. Yu, “Beyond simple parallelism: Challenges for scalable complex
analysis over social data,” in Proceedings of the NSF Workshop on Social
Networks and Mobility in the Cloud, 2012.

[5] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data. ACM, 2010, pp. 135–146.

[6] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein, “Distributed graphlab: a framework for machine learning
and data mining in the cloud,” Proceedings of the VLDB Endowment,
vol. 5, no. 8, pp. 716–727, 2012.

[7] A. Kyrola, G. Blelloch, and C. Guestrin, “Graphchi: Large-scale graph
computation on just a pc,” in Presented as part of the 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
12), 2012, pp. 31–46.

[8] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets.” HotCloud, vol. 10, pp.
10–10, 2010.

[9] “Hadoop: An open-source framework for distributed processing of large
datasets.” http://hadoop.apache.org/.

[10] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Pow-
ergraph: Distributed graph-parallel computation on natural graphs,” in
Presented as part of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12), 2012, pp. 17–30.

[11] J. Seo, J. Park, J. Shin, and M. S. Lam, “Distributed socialite: a datalog-
based language for large-scale graph analysis,” Proceedings of the VLDB
Endowment, vol. 6, no. 14, pp. 1906–1917, 2013.

[12] D. U. Jeffrey, “Principles of database and knowledge-base systems,”
1989.

[13] “Giraph.” http://giraph.apache.org/.
[14] T. Condie, D. Chu, J. M. Hellerstein, and P. Maniatis, “Evita raced:

metacompilation for declarative networks,” Proceedings of the VLDB
Endowment, vol. 1, no. 1, pp. 1153–1165, 2008.

[15] “Iris: An open-source datalog engine.” http://www.iris-reasoner.org/.
[16] “Logicblox.” http://www.logicboxsoftware.com/.
[17] S. Wasserman and K. Faust, Social network analysis: Methods and

applications. Cambridge university press, 1994, vol. 8.
[18] J. Leskovec and R. Sosič, “Snap.py: SNAP for Python, a gen-

eral purpose network analysis and graph mining tool in Python,”
http://snap.stanford.edu/snappy, Jun. 2014.

[19] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[20] J. W. Raymond, E. J. Gardiner, and P. Willett, “Rascal: Calculation
of graph similarity using maximum common edge subgraphs,” The
Computer Journal, vol. 45, no. 6, pp. 631–644, 2002.

[21] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering the overlap-
ping community structure of complex networks in nature and society,”
Nature, vol. 435, no. 7043, pp. 814–818, 2005.

[22] J. W. Berry, B. Hendrickson, R. A. LaViolette, and C. A. Phillips, “Tol-
erating the community detection resolution limit with edge weighting,”
Physical Review E, vol. 83, no. 5, p. 056119, 2011.

[23] J. Leskovec, K. J. Lang, and M. Mahoney, “Empirical comparison of
algorithms for network community detection,” in Proceedings of the
19th international conference on World wide web. ACM, 2010, pp.
631–640.

[24] M. Kuhn and K. Johnson, Applied predictive modeling. Springer, 2013.

