
The Root of the Matter: Hints or Slaves

David Malone <dwmalone@cnri.dit.ie>

October 21, 2003

Abstract

We consider the possibility of having a
name server act as a slave to the root
zone, rather than caching information
after it is requested. Tests, described
here, indicate that this technique seems
to be comparable to the traditional hints
mechanism for moderately busy name
servers and may offer other benefits such
as reducing the number of bogus requests
going to the root servers. With further
refinement the technique may be opera-
tionally useful, but the impact on root
servers would have to be assessed.

1 Introduction

The Domain Name System is a hierarchi-
cal distributed database that allows the
lookup of records like www.example.com,
where the dots separate the levels in
the hierarchy. To look up a record
you first ask a root name server for in-
formation about www.example.com, and
it will respond with a message point-
ing you at the name servers for .com,
then you send a message to one of these
name servers and they will point you
at the name servers for .example.com
and finally you ask one of these, who
provide you with information about
www.example.com. Caching is well pro-
vided for within DNS and you are told
how long to remember who the .com
and .example.com are in the responses,
reducing the load on the name servers
closer to the root of the tree. Negative
caching, ie. caching of records that are
found not to exist, is also provided for.
Typically negative responses are cached
for a short time.

DNS requires very little boot-strap in-

formation and should be able to resolve
any query by beginning with only a list
of root name servers. Traditionally, DNS
servers have been provided with a list of
addresses that are root name servers at
the time the DNS server software was
written. The DNS server then queries
these addresses requesting the current
list of root name servers, and once it gets
a response it is ready for operation.

To allow for redundancy within DNS,
multiple name servers are permitted
(and encouraged) for each point in the
hierarchy. For ease of management, the
DNS protocol defines a mechanism to
transfer all the data at a point in the hi-
erarchy from one name server to another.
This mechanism is called a zone transfer.
This means that the name servers for a
zone may be either masters, who have
first hand access to the data in the zone,
or slaves, who copy it from a master us-
ing a zone transfer. A serial number and
various lifetimes are included in the zone
so a slave knows how frequently the mas-
ter must be contacted to keep the zone
up to date.

Some of the root name servers allow
zone transfers of the root zone, meaning
it is possible to to configure any name
server as a slave for the root zone. Why
would one want to do this? A server that
has copy of a zone can respond to re-
quests with a positive or negative answer
immediately. In particular, this makes is
possible to ‘cache’ negative results un-
til the zone expires and a new copy of
the zone must be transfered. However,
it also means that you must transfer the
complete zone even if you will only use a
small proportion of it.

Our aim is to compare the traditional
hints method with the alternative of act-

1



ing as a slave for the root zone. There
are two groups who might benefit from
such a change. The first group is the
users of the name server who may see a
reduction in outgoing traffic and faster
response times. The second group is the
root name servers themselves, who might
be receive less queries. Evidence already
suggests that much of the traffic to the
root name servers is in some way bo-
gus and that if the bogus queries can be
stopped at the local name server, that
may be useful.

2 Setup

Our method is to monitor the traffic
from two name servers to the root name
servers over the period of two week. At
the end of the week we change the name
servers from the traditional hints method
to be slaves for the root zone.

The two DNS servers were both run-
ning FreeBSD 4 and the name server
software was BIND 9.2.1.

The first DNS server is used by a small
research group of 10–20 people. It serves
a quiet mail and web server and the
workstations of the research group. We
refer to this server as the quiet server.

The other DNS server is busy, acting
as a name server to an academic depart-
ment providing Unix services to 1000 un-
dergraduates, postgraduates and staff,
including a mail server, a web cache, a
web server and an anonymous ftp server.
These services will generate quite a high
DNS load because the web server and
TCP wrappers have been configured to
do forward and reverse lookups for most
connections. The name server also acts
as a primary or secondary server for
around 70 zones in each of two ‘views’.
This network also has IPv6 connectivity,
the mail and web server are IPv6 capa-
ble, though the web cache is not. We
refer to this server as the busy server.

The activity in the systems should be
relatively independent — they are in dif-
ferent Universities, but are connected to
the same ISP. The quiet system acts as
a tertiary mail exchanger for the busy
system.

#!/bin/sh
tcpdump -p -i fxp1 -n \

-w SERVER-‘date +%Y%m%d%H%M%S‘ \
’host SERVER_IP and \
port 53 and \
( host 198.41.0.4 \
or host 128.9.0.107 \
or host 192.33.4.12 \
or host 128.8.10.90 \
or host 192.203.230.10 \
or host 192.5.5.241 \
or host 192.112.36.4 \
or host 128.63.2.53 \
or host 192.36.148.17 \
or host 192.58.128.30 \
or host 193.0.14.129 \
or host 198.32.64.12 \
or host 202.12.27.33 )’

Figure 1: Tcpdump parameters used for
recording DNS traffic

zone "." {
type hint;
file "root.cache";

};

Figure 2: BIND 9 config for hinting root
zone

DNS traffic from both systems was col-
lected using tcpdump starting on Tues-
day 28 January 2003 and Tuesday 2
February 2003. Traffic from the quiet
system was collected by running tcp-
dump on that system. Traffic from the
busy system was collected by running
tcpdump on a router that sees all exter-
nal traffic. The tcpdump command line
is shown in Figure 1. The name server
on both hosts was restarted as measure-
ments began on both Tuesdays to en-
sure the nameserver’s cache was starting
empty.

For the first week, both servers used
the traditional hints mechanism config-
ured as shown in Figure 2. For the sec-
ond they both acted as slaves for the root
zone and used the configuration shown in
Figure 3, suggested by Doug Barton on
the FreeBSD-stable mailing list.

Note that the busy name server op-

2



zone "." {
type slave;
file "s/root";
masters {

128.9.0.107;
192.33.4.12;
192.5.5.241;

};
notify no;

};

Figure 3: BIND 9 config for slaving root
zone

erates two BIND views and so the root
zone must be configured in both views.
For the purposes of this experiment it
was configured to obtain two indepen-
dent zone transfers from the root name
servers for the two views and place them
in two different files. In operation it
would only be necessary to get one zone
transfer from the root name servers and
then the zone could be transfered to
other views locally.

At the time of writing, the root zone
is about 55KB on-disk.

3 Results and Analysis

Figure 4 and Figure 5 show a summary
of the traffic volume between the root
name servers and our quiet and busy
DNS servers respectively. Each graph
shows the 1 hour means for the byte or
packet rate for both the hint and slave
schemes over the duration of the experi-
ment. Calculating means over a shorter
time scale naturally produces noisier,
peakier results, but the general pattern
is similar.

Note that the graphs only show the
first 144 hours of the data; around hour
156 a network outage disconnected the
quiet server from the Internet at large.
This resulted in a huge peak in outgo-
ing DNS traffic as BIND repeatedly reis-
sued requests until the network was re-
connected.

Several interesting observations come
from examining the graphs. First, the
traffic for both configurations is quite

similar in volume — it is not obvious
from the graph which method caused
a smaller amount of traffic. Second,
the slave configuration shows peaks, that
correspond clearly to zone transfers for
the quiet server. For the busy server
there are additional peaks that are not
attributable to zone transfers. We might
expect no traffic to be sent to the root
name servers between zone transfers,
however we do see some chatter between
them.

Table 1 shows some summary statis-
tics for the experiment. We show the
packet and byte rates for all traffic, traf-
fic coming into our DNS server and traf-
fic emanating out from our DNS server.
For the slave cases we also show the ratio
of the slave method to the corresponding
rate in the hint method. The table indi-
cates that acting as a slave decreases the
number of packets and bytes tranmitted
in both the busy and quiet cases. For the
busy server it also results in a reduction
in the number of packets received.

To avoid the spike in the traffic men-
tioned above, the summary statistics
were calculated again over the first 6
days of the trace. The results are shown
in Table 2. We can see that the statistics
do not change significantly.

Further analysis of the (truncated)
trace was performed by parsing the out-
put of tcpdump. About 1% of the pack-
ets were truncated to an extent that it
was not possible to process them further.

TCP based queries are not parsed well
by tcpdump, because it does not do
TCP stream reassembly, but all the TCP
queries are zone transfers. Over the 144
hours of the truncated trace the quiet
server performed 13 zone transfers and
the busy server 26 zone transfers. The
difference is explained by the fact that
the busy server was performing a zone
transfer for each view. As noted above,
this is not necessary in a more refined
configuration. The quiet server averaged
2.5s transferring 81kB in 111 packets per
zone transfer. The busy server averaged
1.7s transferring 103KB in 134 packets.
Note, that the root zone did not actually
change 13 times during the experiment
but its serial number is regularly incre-

3



Figure 4: Quiet Server DNS Traffic

Direction Packets/s bytes/s Packets/s Bytes/s Packets Bytes
quiet hints quiet slave slave/hint

both 0.0215 3.2420 0.0156 5.1331 73% 158%
in 0.0059 2.1961 0.0079 4.6279 133% 211%
out 0.0157 1.0459 0.0078 0.5051 50% 48%

busy hints busy slave slave/hint
both 0.2151 46.8377 0.1753 47.4230 81% 101%
in 0.1075 39.2026 0.0878 41.0068 82% 105%
out 0.1076 7.6351 0.0875 6.4162 81% 84%

Table 1: Trace statistics, full trace

4



Figure 5: Busy Server DNS Traffic

Direction Packets/s bytes/s Packets/s Bytes/s Packets Bytes
quiet hints quiet slave slave/hint

both 0.0233 3.4348 0.0155 5.2111 67% 152%
in 0.0060 2.2772 0.0078 4.7125 130% 207%
out 0.0173 1.1576 0.0077 0.4986 45% 43%

busy hints busy slave slave/hint
both 0.2089 45.1614 0.1711 46.7172 82% 103%
in 0.1044 37.8130 0.0857 40.4514 82% 106%
out 0.1045 7.3484 0.0854 6.2658 82% 85%

Table 2: Trace statistics, truncated trace

5



mented to check that zone transfers to
the public root servers are working cor-
rectly.

A breakdown by type of the queries is
shown in Table 3. Note that in the table
we have counted certain classes of bo-
gus queries separately. In particular, re-
quests for records corresponding to dot-
ted quads or addresses enclosed in ’[]’
have been counted separately. This high-
lights a bug in a locally maintained MTA
running near the busy server, as it is
making requests for MX records for the
latter.

These tables show that the number of
queries made is significantly reduced in
the slave case, as we expect. It also
largely eliminates the obviously bogus
requests that we have counted separately
— this makes sense as the slave zone is
a complete cache enabling the server to
immediately determine that the top level
zones 1–255 and 1]–255] do not exist.

The other startling thing highlighted
by the table is the number of A6 queries
being made by BIND 9.2.1. BIND’s v6-
synthesis option is not enabled on either
server and to the best of our knowledge
no resolver served by either server uses
A6 records. The table also shows the
SOA queries we expect BIND to make
to ensure that its copy of the zone is up-
to-date.

The table also shows the number of
responses that resulted in an error re-
sponse. All errors were actually of type
NXDomain. We can see from the tables
that when acting as a slave to the root
zone, almost all NXDomain error are
eliminated, as expected. In fact, in the
busy server case, the reduction in NX-
Domain responses almost accounts for all
but 785 queries saved by acting as a slave
to the root zone.

Browsing the list of domains provok-
ing NXDomain responses in the non-
slave case shows domain names that
are not fully qualified, domain names
with typos (some obviously containing
HTML, suggesting they have come from
links in web pages, others seem likely to
be URLs mistyped into browsers), Unix
tty names and private names such as
localhost.localdomain or loopback.

In all cases, a significant number of the
NXDomain errors were associated with
queries containing an additional resource
record included in the query (denoted by
[1au] in the tcpdump output). It seems
these queries may be related to probing
for DNSsec support. These accounted
for 220 of the quiet-hint NXDomain, all
12 of quiet-slave NXDomain, 6531 of the
busy-hint NXDomain and all 22 of the
busy-slave NXDomain.

Finally, an attempt was made to de-
termine how long BIND spent waiting
for a response to queries. BIND will
usually focus queries on remote servers
with a low response time and probe
other servers periodically to update es-
timates of response time. However,
it is difficult to tell which queries are
probes and which queries are real. Thus
a wait time was calculated by sum-
ming min(response time, 5s) over all
UDP queries (zone transfers are dis-
cussed above). Queries outstanding at
the end of the trace are assumed to be
answered at the time the trace ended.

The results are shown in Table 4. The
quiet server shows a longer wait time
when slaving the root zone and the busy
server shows a shorter wait time.

4 Conclusion

The results seem to indicate that act-
ing as a slave to the root zone results
in a saving in the number of packets and
queries transfered between the root zone.
However, it is not as clear that it results
in a reduction in the byte volume of traf-
fic seems to be increased. It also involves
a number of TCP connections to the root
servers. As TCP connections are persis-
tent, this will cause extra overhead on
the root servers and it is unclear is the
reduction in the number of queries would
offset this load. Also TCP connections
are less suitable for any-cast, though the
short transfer times combined with the
fact the zone does not immediately be-
come invalid means this may not be a
serious problem. If this technique went
into wide use, the number of TCP con-
nections could be significantly reduced

6



Type Queries Queries NXDomain NXDomain
quiet hints quiet slave slave/hint quiet hints quiet slave

A 810 318 53
A.... 28 28
A6 7469 1647 25
A6.... 28 28
AAAA 147 73
AAAA.... 9 9
AXFR 13
MX 6
PTR 380 343 12
SOA 970
SRV 6 6
total 8883 3291 37% 222 12

busy hints busy slave slave/hint quiet hints quiet slave
A 11206 9158 1405 1
A.... 315 314
A6 31460 29418 33
A6.... 268 265
AAAA 720 157 555
AAAA.... 53 53
ANY 2 2
AXFR 26
MX 558 492 12
MX.... 115 13 115
MX[] 7899 7895
NS 5
PTR 660 647 7 9
SOA 1943
SRV 24 24
total 53285 41362 77% 11160 22

Types ending with ‘....’ are queries for IPv4 dotted quads. Queries ending with ‘[]’
are queries for addresses enclosed in brackets.

Table 3: Breakdown of query types and query errors

Wait time in seconds
quiet hints quiet slave

95.5 203.4
busy hints busy slave

3700.3 2043.1

Table 4: Wait times

7



by only changing the root zone’s serial
number when the zone changed, or by
incrementing the serial number less fre-
quently for maintenence purposes.

We have not considered here the pos-
sibility of taking a single transfer of the
root zone and then making your DNS
a master server root zone, using that
static data. This technique offers many
of the benefits of the slaving technique
described here; changes to the root zone
are very infrequent and so the data is
unlikely to become stale quickly. How-
ever when the root zone does change, this
technique requires manual intervention.

One incidental benefit of using TCP
based DNS is that TCP responses are
not limited in size as UDP responses
are and might simplify the addition of
AAAA glue to the root zone.

One area where slaving the root zone
seems particularly strong is in the reduc-
tion of bogus queries (dotted quads, [ad-
dress], typos, unqualified domains).

A large number of queries made seem
to be for A6 records. It is unclear
why BIND is making these queries, but
it may be attempting to obtain glue
records for some reason. The responses
to these queries will often obtain addi-
tional information records, meaning that
the request may not be wasted, but it
seems strange for BIND to direct these
queries at the root servers at all. If these
requests can are unnecessary and can be
eliminated, then the gains of slaving the
root zone would be larger.

Other minor issues identified include
BIND’s persistence when it does not
receive a response from a root server,
broken MX lookup code in a locally
maintained MTA and the fact tcpdump
should be run with the -s 0 flag if cir-
cumstances allow.

5 Acknowledgements

I would like to thank Doug Barton and
Niall Murphy for advice and feedback;
João Damas and Jim Reid for answering
my questions.

This work has been supported by Sci-
ence Foundation Ireland under the Na-

tional Development Plan.

8


