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Summary

This thesis has essentially two parts.

The first two chapters are an introduction to the related areas of Fourier analysis,

multiresolution analysis and wavelets. Dilation equations arise in the context of multires-

olution analysis. The mathematics of these two chapters is informal, and is intended to

provide a feeling for the general subject. This work is loosely based on two talks which

I gave, one during the 1997 Inter-varsity Mathematics competition and the other at the

1997 Dublin Institute for Advanced Studies Easter Symposium.

The second part, Chapters 3 and 4, contain original work. Chapter 3 provides a new

formal construction of the Fourier transform on Lp(Rn) (1 ≤ p ≤ 2) based on the ideas

introduced in Chapter 2.

The idea is to take some basic properties of the Fourier transform and show we can

construct a bounded operator on L2(R) with these properties. I do this by constructing

an operator on each level of the Haar multiresolution analysis, which I then show is well

enough behaved to be extended by a limiting process to all of L2(R).

Some of the important properties of the Fourier transform are also derived in terms of

this construction, and the generalisations to Lp(Rn) are explored.

Chapter 4 builds on the work of Chapters 3 and provides a uniqueness result for the

Fourier transform. While searching for this result I also establish a related result for

dilation equations (a subject also introduced in Chapter 2).

Here the exact set of properties which were used to define the Fourier transform are

varied in an effort to discover which are merely consistent with the Fourier transform

and which strong enough to define it. I end up examining sets of dilation equations and

determining when these will have a unique solution.
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Chapter 1

Introducing Fourier Analysis

1.1 Introduction

Fourier analysis has become an extremely useful subject in mathematics, science and en-

gineering. This section will explain the idea behind the Fourier transform and also show

how this idea leads to wavelet analysis. The emphasis here is on an intuitive understanding

and motivation for the steps taken, not a formal justification — which can be read in any

mathematical book on these subjects [15, 16]. The actual process of calculating and using

Fourier analysis is dealt with in most engineering mathematics books, for example [10].

The basic idea of Fourier analysis is: Suppose we have some function f , which we know

is a sum of terms something like an cos(nx), but we don’t know what the an are. Then

how do we find exactly what these terms are? For engineers this amounts to looking at

how much (an) of what basic frequencies (n) make up a given signal (f).

1.2 Fourier Series and Integrals

To keep the details simple we will start by looking at a ‘Fourier cosine series’. Suppose we

have some function f which we know is a sum∗ of the form:

f(x) =
∑
n=0

an cosnx,

∗We have deliberately left the upper limit of the sum out, as we do not want to look at the issue of
convergence yet.

1



Chapter 1. Introducing Fourier Analysis 2

cos(0x) cos(1x) cos(2x)

Average 1 Average 0 Average 0

Figure 1.1: Averages of cosnx

but we do not know what the exact values of the an are. How do we go about finding what

these an are? There are essentially three tricks to finding the an. First, f(x) must have

period which divides 2π, because all the cosnx repeat themselves after 2π. The second

trick involves looking at the average of cosnx on [0, 2π]. Looking at Figure 1.1 we see that

cosnx has average 0 whenever n is not 0. We can exploit this by averaging f .∫ 2π

0

f(x) dx =
∑
n=0

an

∫ 2π

0

cosnx dx = 2πa0

So now we have found a0. We would like to be able to use the same trick to pick out the

rest of the an. This is where the third trick comes in. We look at what happens when we

multiply cosnx by cosmx:

cosnx cosmx = 1/2 (cos(m+ n)x+ cos(m− n)x)

Averaging both sides (again over [0, 2π]) we see that we get a contribution of 1/2 ifm+n = 0

and another 1/2 if n−m = 0. If we get both contributions then n = m = 0, which we have

dealt with. Otherwise we need n = m to get a contribution (because we are only worried

about n ≥ 0 at the moment).

Using what we have just learned we try multiplying f by cosmx before averaging.∫ 2π

0

f(x) cosmxdx =
∑
n=0

an

∫ 2π

0

cosnx cosmxdx

= πam

So now, all formalities out of the way we have found a way to determine the an given the

function f .
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Further examination of the usual trigonometric identities lets us do some variations on

this theme. By using the formulas:

cosnx sinmx = 1/2 (sin(n+m)x− sin(n−m)x)

and

sinnx sinmx = 1/2 (cos(n−m)x− cos(n+m)x)

and also remembering that sinnx averages to zero (over [0, 2π]) regardless of the value of

n we may deal with a more general situation. This time suppose that f is expressible in

the following form:

f(x) =
∑
n=0

an cosnx+ bn sinnx.

By going through the process of multiplying by cosmx or sinmx and averaging we even-

tually get expressions for an and bn.

a0 =
1

2π

∫ 2π

0

f(x) dx

b0 = 0 (doesn’t matter)

an =
1

π

∫ 2π

0

f(x) cosmxdx

an =
1

π

∫ 2π

0

f(x) sinmxdx

Naturally we can make many variants of this. The an and bn could be objects in some real

vector space, we could work on [0, 1] instead of [0, 2π] or we could just use sin. The two

most important variations are replacing trigonometric functions with einx and replacing

sums with integrals.

Replacing sin x and cosx with eix is generally viewed as a simplification. We retain the

same degree of generality (we now work with a sum from −∞ to∞) but we only need one

formula. If we suppose that:

f(x) =
∞∑

n=−∞

cne
inx

and remember that einx has period dividing 2π, we might be tempted to average over [0, 2π]

again. The average of einx is zero over the range [0, 2π] — unless n is 0 when the average
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is 1. This combined with the fact:

einxeimx = ei(n+m)x,

means that f(x)e−imx has mean cm over [0, 2π]. So we get a simple expression for the cm:

cm =
1

2π

∫ 2π

0

f(x)e−imx dx.

Now we attempt to replace our sums with integrals. This requires a certain extra leap

of faith as regards convergence. If we believe that in some sense eiωx has average 0 for all

ω ∈ R \ {0} then we can hope that if:

f(x) =

∫ ∞
−∞

c(ω)eiωx dω,

then there is some chance that:

c(ω) =
1

2π

∫ ∞
−∞

f(x)e−iωx dx.

In this case c(ω) is called the Fourier transform of f . As we can see there is a certain

degree of symmetry in the expressions for f and c. For this reason people often move

around factors of 2π or
√

2π to try to make the situation even more symmetric.

The next two questions that arise are: what functions can we write in these forms,

and where don’t we have to worry about convergence problems? The answers to these

questions are related, and the relation is linked to the symmetry we have just noted.

1.3 Lp and Convergence

When looking at the convergence of something like:∫ ∞
−∞

f(x)e−iωx dx,

for various values of ω the first thing we can note is that |e−iωx| = 1, so all we really need

to worry about is: ∫ ∞
−∞

f(x) dx.
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However, we may as well just look at |f | because it might turn out that f was strictly

positive, or that multiplying f by e−iωx made it strictly positive. This leaves us looking at:∫ ∞
−∞
|f(x)| dx.

This is called the L1 norm of f and is usually written ‖f‖1. On the set of f where ‖f‖1 is

finite (this is called L1(R)), this ‖.‖1 is a norm in the usual normed vector space sense —

barring some complications regarding equivalence classes.

On this space, L1(R), we find the Fourier transform is quite well behaved. It is rea-

sonably easy to show that if f is in L1(R) then its Fourier transform is a continuous and

bounded function of ω. However this doesn’t really reflect the symmetry we noticed. We

started with L1(R), applied the Fourier transform and got continuous and bounded func-

tions. The symmetry would suggest that we search for a space which the Fourier transform

sends to itself. Here, perhaps, the Fourier transform might even be invertible.

A similar norm to ‖.‖1, but one closer to the traditional Euclidean norm would be:

‖f‖2 =

√∫ ∞
−∞
|f(x)|2 dx.

We call the space of functions where this new norm is finite L2(R). Again, ignoring some

complications with equivalence classes of functions, this is also a normed vector space. It

also turns out to be the ideal space for Fourier analysis. It can be shown (though it takes

some work) that the Fourier transform is a linear, continuous and invertible transform,

both to and from this normed vector space: L2(R).

When looking at Fourier series and other problems we can generalise our definition of

spaces of this sort. A few examples best illustrate the idea.

L1(R) =

{
f : R→ C|

∫ ∞
−∞
|f(x)| dx <∞

}
L2([0, 2π]) =

{
f : [0, 2π]→ C|

∫ 2π

0

|f(x)|2 dx <∞
}

L3(N) =

{
an ∈ C|n ∈ N,

∞∑
n=0

|an|3 <∞

}

The first example we have already seen. The second relates to the Fourier series for 2π

periodic functions. The last gives an example of other sorts of Lp type spaces which we
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can consider. In general for X a set† with a positive measure µ we could define Lp(X,µ)

to be the set: {
f : X → C|f measurable and

∫
X

|f |p dµ <∞
}

In this context our third example was no more than this general definition on N with the

counting measure. This family Lp(N, counting) is often just written lp, as they are rather

commonly encountered spaces.

1.4 Why bother with Fourier Analysis?

Fourier analysis (which is this process of writing things in terms of einx), has some good

reasons for being of interest. Naturally all these reasons are interlinked. We’ll start from

a mathematical reason and then work toward a practical reason.

One of the important topics which mathematicians deal with is the study of differential

equations. If we look at v(x) = eiωx, then we see that v is an eigenvector for differentiation.

That is:
d

dx
v =

d

dx

(
eiωx

)
= iωeiωx = iωv.

So differentiating v has a very simple effect on it (it gets multiplied by iω). If we are looking

for a solution of some differential equation and we know the solution may be expressed as

the sum (or integral) of terms like eiωx then, the differential equation should have a simple

form for each of these terms, which will hopefully be easy to solve. This means that Fourier

analysis is likely to be useful for solving physical problems, which often involve differential

equations.

An important differential equation which lends itself to this sort of Fourier analysis

perfectly is the wave equation.
∂2

∂x2
− 1

c2

∂2

∂t2
= 0

This equation describes many things, including the transmission of electromagnetic waves

(light) and sound. For this reason Fourier analysis is of great interest to engineers working

with light or sound signals. They think of the Fourier transform of a signal as showing

“how much” of each frequency is in a signal. Also, in this analogy, the ‖.‖2
2 corresponds to

the energy of the signal, making results easy to interpret.

An example may make this clearer. In Figure 1.2 we see a signal which we would expect

†More technically, we need a measure space rather than just a set.
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Figure 1.2: e−x
2

cos(7x) and its Fourier transform

to be mostly composed of a wave of angular frequency 7 (as it is mainly cos 7x). If we look

at its Fourier transform we see that there is a large peak near 7, as we would have hoped.

A more complicated example reveals both the strength and weakness of this sort of

analysis. Suppose we have a signal‡, which is someone playing a few notes. We could use

our Fourier analysis to look for peaks to find which notes have been played. For instance

a signal§ representing the following notes is shown in Figure 1.3, along with its Fourier

transform.

G2 � � � � �
In the Fourier transform we can quite clearly see the 5 peaks, one for each note, and see

that each peak is about the same size, and so corresponds to roughly the same total energy.

A problem arises when we try to get some indication about when each note was played.

The information must be there — as the Fourier transform is invertible — but it is not

‡The signal in the case of sound could be considered to be the change in pressure of the air in the ear
with respect to time.
§This set of notes shown could be represented by:

p(t) =



cos(100α7t) 0 ≤ t < 1
cos(100α9t) 1 ≤ t < 2
cos(100α5t) 2 ≤ t < 3
cos(100α−7t) 3 ≤ t < 4
cos(100α0t) 4 ≤ t < 5
0 otherwise

,

where α = 12
√

2 is the ratio of the frequencies of adjacent semitones in the modern tempered scale. A good
introduction to the physics and mathematics of music is [7].
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Figure 1.3: 5 notes and its Fourier transform

easily accessible. For all we know we could be looking at the Fourier transform of the

following instead¶.

G2 �����

1.5 The Windowed Fourier Transform

A step toward getting more localised information about the frequencies in a signal is to

examine the signal through a “window”. The idea is quite simple — if we want to know

what frequencies are present in some region of a signal, then we somehow cut out part

of the signal around the region of interest and look at the Fourier transform of this new

signal.

Some typical windows are shown in Figure 1.4. The way we use such a window is we

center it over the part of the signal we are interested in, and then multiply point by point.

Suppose our window is b(x) and our signal is f(x). Then we window our signal at position

x0 and get:

f(x)b(x− x0).

¶In this case the signal might be:

p(t) =

{
cos(100α7t) + cos(100α9t) + cos(100α5t) + cos(100α−7t) + cos(100α0t) 0 ≤ t < 1
0 otherwise

.
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e−x
2

χ[−1,1] (1 + cos x)χ[−π,π]

Figure 1.4: Possible windows for the WFT

Now we take the Fourier transform of this and, hopefully, get an idea of how much of what

frequencies (ω) are present near x0.

f̆(x0, ω) =

∫
f(x)b(x− x0)e−iωx dx.

We are now getting into an area less strictly defined than that of the Fourier transform. This

new “windowed Fourier transform” (WFT) clearly depends on our choice of the window b.

Also, we now have a function of two variables, which provides us with more information,

but is somehow more redundant. In fact there is also a way to get f back from its WFT

— again not letting formalities get in the way:

f(x) = C

∫ ∫
eiωxb(x− x0)f̆(x0, ω) dω dx0,

where C is inversely proportional to ‖b‖2
2 and z denotes complex conjugate of z.

This whole scheme is quite effective for frequency analysis. Going back to analysing

G2 � � � � �
we now perform a WFT of the signal. Figure 1.5 shows both the Fourier transform and 5

slices of the windowed‖ Fourier transform, centered at the time of the middle of each note

played. We can see clear peaks in each of the these slices corresponding to the pitch of the

note being played at that time. It would seem this method is a success, we can now tell

when each frequency is contributing to the signal.

There is one drawback to this method though, which is related to choosing the window.

The window is of fixed width, so we need to choose how wide to make it. This means

‖The window used was e−x
2
.
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Centered at 0.5 Centered at 1.5 Centered at 2.5

Centered at 3.5 Centered at 4.5

Figure 1.5: FT and WFT of 5 notes.
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we must either know the length of the “notes” of interest within the signal or we must

experiment until we find a good width. If we make the window too narrow we will be

unable to look at signals with a wavelength much longer than this width. If we make the

window too wide we blur adjacent notes together.

For Figure 1.5 the window chosen had a width on the same scale as the length of the

notes (we can actually see the adjacent notes as smaller peaks, so it may have been a little

too wide). Trying to remove this limitation of the WFT leads us to the continuous wavelet

transform.

1.6 The Continuous Wavelet Transform

The problem with the windowed Fourier transform is that the window is of fixed width.

The correct direction to move in would seem to involve varying the width of the window.

However if we just introduce a new parameter for window width, then we have a 3 parameter

transform (ω for frequency, x0 for position and say w for width), which some might view

as getting a wee bit out of hand.

Realising that the width of the window can be related to the frequency which we are

looking for is a useful trick. The shortest burst of some frequency that can be easily

identified as being of that frequency is about half a wavelength∗∗ of said frequency. So if

we choose a window width of about this length then we stand a good chance of picking up

on that frequency.

So what we do is choose a window (say e−x
2
) and a wave (say sinx), and glue them

together to get a wavelet.

ψ(x) = e−x
2

sin x

Now, in the same way as with the WFT, we center our wavelet over the signal.

ψ(x− x0) = e−(x−x0)2

sin(x− x0)

We also note that if we want to search for frequency ω we just scale the whole thing by ω,

as this produces a sinωx which will hopefully pick up on this frequence.

ψ (ω(x− x0)) = e−ω
2(x−x0)2

sinω(x− x0)

∗∗This can be made more formal, by Shannon’s sampling theorem, see Theorem 2.1.
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ψ F(ψ)

Figure 1.6: A wavelet and its Fourier Transform

This ψ is often called the “mother wavelet”, and the changes in scale and position are often

written as ψa,b where:

ψa,b(x) = |a|−
1
2ψ
(
a−1(x− b)

)
.

(note that a = ω−1, b = x0 and the factor |a|− 1
2 is to normalise the wavelets in L2(R)).

With this notation the continuous wavelet transform (CWT) of some function/signal f is

just:

F (a, b) =

∫
f(x)ψa,b(x) dx.

Again there are reconstruction formulas, conditions†† and even a “reciprocal” mother

wavelet based on our choice of original mother wavelet ψ. The nitty gritty of this is

spelt out in [8, 9].

All this freedom allowed by the choice of ψ explains much of the industry associated

with wavelets. People choose mother wavelets to suit their own projects, which provides

plenty of work for the numerical analysis of the following calculations. A lot of the buzz

phrases associated with wavelets, such as “localised in time and frequency” are no more

profound than can be seen in Figure 1.6 — where we note the wavelet is concentrated in

one area, as is its Fourier transform .

There are also discrete wavelet transforms, similar to Fourier series, whose aim is to

reduce the redundancy of this two parameter transform and give these wavelets useful

properties such as orthogonality. These discrete wavelet transforms are largely built around

††It is interesting that the main condition required for the CWT is called the “admissibility” condition.
Obviously someone used this phrase once and everyone else latched on to it. It should be recorded as one
of the more vacuous phrases in mathematics, along with “normal” and “regular”.
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a structure called multiresolution analysis (or multiscale analysis), a subject we will come

back to in Chapter 2.

1.7 Conclusion

Here we have seen a little of Fourier analysis, a subject of interest to those involved with

either pure or applied mathematics. We have dealt mostly with why it might be of interest

to someone from a practical point of view, and said only little about the theory.

The most important result that we have missed is to do with relating the Fourier

transform of a product of two functions to their individual Fourier transforms. This result

involves the convolution of two functions:

(f ∗ g)(x) =

∫
f(t)g(x− t) dt.

It states that the Fourier transform of a product is the convolution of the Fourier transforms

(up to factors of
√

2π). Varying degrees of detail about this can be found in [15, 16, 10, 8].

On the practical side of things, the next most important result is probably the “Fast

Fourier Transform”, or FFT for short. This is a way of numerically calculating a Fourier

transform from a set of sampled data far more quickly than just using numerical integration.

This caused quite a stir when it came to light in the numerical world, as it changed an N2

operation into a N log2 N operation. Two whole chapters on implementation and usage of

this can be found in [13].

On the theoretical side Fourier analysis has progressed in many directions. The defi-

nition of the Fourier transform can be extended to a large class of groups. Through this

Fourier analysis has links with group representations. Many of the essays in [2] provide

summaries of or introductions to these topics. There are also links with the theory of dis-

tributions and with the study of certain types of operators on spaces where we can use the

Fourier transform. The Hilbert transform is probably the best known of these operators.

We have also looked at some practical variants of the Fourier transform, which has led

us to the continuous wavelet transform. We will be moving on to look at how a stronger

structure can be placed on these wavelet ideas to produce the discrete wavelet transform.

These wavelet transforms have attracted similar attention to the attention received by the

FFT when it appeared.



Chapter 2

An Introduction to Multiresolution

Analysis

2.1 Introduction

In this section we will be introduced to some ideas relating to the discrete wavelet transform.

The most important idea is that of a multiresolution analysis. Multiresolution analyses lead

in a natural way to dilation equations — which feature strongly in many of the following

sections. Also dilation equations lead us through the construction of the discrete wavelet

transform.

2.2 What is MRA?

Multiresolution analysis could have several names applied to it, and indeed often does.

The names multiscale analysis and multiresolution approximation are pseudonyms which

provide further hints as to what it is all about. Maybe one of the more intuitive ways to

approach MRA is from the approximation side.

When we want to approximate something we usually take several steps.

1. First we choose some function with which we will approximate. Maybe a spline of

some sort, maybe something specially tailored for our approximation problem.

2. We translate our chosen function to various nodes, where each translated function

will do its approximation. Often these nodes might be the integers.

3. We multiply each translated function by some carefully chosen coefficients.

14
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Figure 2.1: The approximation process.

4. We sum these resultant functions.

Figure 2.1 tries to demonstrate this process. The first frame shows our interpolating

function, the second shows various translations of it, the third shows these translates scaled

by a set of coefficients and the last shows the sum of these. The function which we are

trying to approximate might be a polynomial which passes through the points: (−2, 0.5),

(−1,−1.3), (0, 1.1), (1, 0.3) and (2,−0.2).

One problem is that our approximation may not be very good. A possible way of

improving our approximation is to give ourselves more nodes∗. One obvious way of giving

ourselves more nodes is to put a new node half way between each of the old nodes. When

we’ve done this we’ll probably want to squash up our approximating function too, to stop

them overlapping too much.

∗Using more nodes doesn’t alway work the way we might think. Sometimes it makes things worse! The
classic example in this case seems to be due to Runge, and involves approximating 1

1+x2 on [−5, 5] with
Lagrange polynomials. In this case the approximation oscillates violently for values of |x| which are bigger
than about 3.5 — more details can be found in [19].



Chapter 2. An Introduction to Multiresolution Analysis 16

Essentially this is all there is to multiresolution analysis. Giving ourselves new nodes

is a change of resolution and squashing our functions is a change of scale. Multiresolution

analysis studies what happens when we vary this scale.

Now for the formal definition of multiresolution analysis.

Definition 2.1. A multiresolution analysis of L2(R) is a collection of subsets {Vj}j∈Z of

L2(R) such that:

1. ∃ g ∈ L2(R) so that V0 consists of all (finite) linear combinations of {g(x−k) : k ∈ Z},

2. the g(x− k) are an orthonormal † series in V0,

3. f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1
‡,

4.
+∞⋃
j=−∞

Vj is dense in L2(R),

5.
+∞⋂
j=−∞

Vj = {0},

6. Vj ⊂ Vj+1.

We may think of g as our chosen approximating function. V0 contains all the functions

we can make by adding up translations of g to the integers. When we give ourselves twice

as many nodes and squash our generating function we move from Vj to Vj+1. Condition 4

means we can approximate any L2(R) function as closely as we choose. Condition 6 ensures

that our approximation is improving all the time: it would be a bit unfortunate if we got

to V10 and had the exact function we wanted only to find it wasn’t in V11.

Some authors leave out the orthogonality requirement (condition 2). They then refer

to a multiresolution analysis with this extra property as an orthogonal multiresolution

analysis. This would be somewhat clearer, and leave the definition usable on spaces where

we do not have the idea of things being orthogonal (for example in Lp(R) for most p).

However the majority of authors do include condition 2.

†We say 2 functions f and g are orthogonal if
∫
f(x)g(x) dx = 0. This parallels two vectors ~x, ~y being

orthogonal if
∑
xiyi = 0. We say a series is orthonormal if the members are pairwise orthogonal and

‖f‖2 = 1 for each f in the sequence.
‡This notation is bad — what we really mean is: f(.) ∈ Vj ⇐⇒ f(2.) ∈ Vj+1. We will, however, stick

with the bad notation, as it seems more natural.
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One obvious way to construct an MRA is to pick a g and to produce V0 using rule 1.

Then form Vj using rule 3 and applying rule 4 we, hopefully, get all of L2(R). We do

then have to check that the g which we chose will be orthogonal to its translates, that the

intersection of the Vj contains only zero and that Vj ⊂ Vj+1.

We can easily extend this definition to L2(Rn) for any n. We just replace L2(R) with

L2(Rn) throughout the definition and substitute {g(x−k) : k ∈ Z} with {g(x−k) : k ∈ Zn}
in condition 1.

2.3 Three Examples

We’ll take a look at a few examples which demonstrate a few of the forms a multiresolution

analysis can take, and also some possible applications. The first example is the classical

example of the Haar multiresolution analysis. This is more or less the canonical multires-

olution analysis, and can be kept in mind when dealing with almost any property of a

multiresolution analysis.

The second example deals with functions whose Fourier transform is zero outside a

given range. It is an interesting MRA because it is easy to describe without defining it

in terms of its generating function. Functions whose Fourier transforms are zero outside a

given interval are often called band-limited.

The last example is generated by one of Daubechies’ generating functions. This example

is of interest because it leads to “compactly supported smooth orthogonal wavelets”, which

are one of the most touted achievements of the theory of wavelets.

The first two examples are discussed in significant brevity at the beginning of the second

chapter of [12], and in [9] in the “Wavelets and Multiresolution Analysis” chapter. Perhaps

one of the best references for the third example is the often cited original paper [3], but

most introductions [17, 8] to the topic of wavelets will at least mention it.

2.3.1 The Haar MRA

To form the Haar MRA we begin by taking g to be:

g(x) =

1 x ∈ [0, 1)

0 otherwise
.
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Figure 2.2: g(x) for the Haar MRA.

This is commonly known as the indicator or characteristic function of the set [0, 1), and

is usually written χ[0,1)(x). In this case the translates of g are the characteristic functions

of the intervals [n, n+ 1) for each of the integers n, which are quite clearly orthogonal (as

their supports§ do not even overlap).

We now make V0 the set of finite linear combinations of these characteristic functions,

so V0 will just contain functions which are piecewise constant on each interval [n, n + 1)

and have compact support.

We look at what V1 is going to be. Using f(x) ∈ V0 ⇐⇒ f(2x) ∈ V1, we find ourselves

looking at g(2x), which turns out to be the same as χ[0, 1
2

)(x). Following from this we find

V1 will contain functions which are constant on [n/2, n/2 + 1/2) where n ∈ Z. If we repeat

this process we find:

Vj =

{
f : f has compact support and piecewise constant on

[
n

2j
,
n+ 1

2j

)
∀n ∈ Z

}
.

As any function which is constant on
[
n
2j
, n+1

2j

)
is certainly constant on

[
2n

2j+1 ,
2n+1
2j+1

)
,

these spaces are nested.

How do we show the union of these Vj is dense in L2(R)? Well, this union contains

step functions whose steps change height at n2−j for n, j ∈ Z. These functions are dense

in the set of all step functions, which in turn are dense in L2(R).

The intersection of all these Vj will contain functions which are constant on intervals

of the form [n2−j, (n+ 1)2−j), and which are in L2(R). In particular by looking at n = 0

§The support of a function is the closure of the set where is nonzero.
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and n = 1 we see the functions are constant on [0, 2−j) and [−2−j, 0) for any j ∈ Z. This

means that these functions are constant on [0,∞) and (−∞, 0). But the only function in

L2(R) which is constant on all such large intervals is the constant zero function.

This multiresolution analysis might be said to consist of functions which are constant

on dyadic intervals. A dyadic number is one of the form n2−j with n, j ∈ Z. Dyadic

intervals are intervals with these numbers as end points.

In L2(R2) we could use a similar construction, this time starting with g to be the char-

acteristic function of the unit square [0, 1)× [0, 1). In this case we’ll get a multiresolution

analysis of functions constant on dyadic squares. This naturally generalises to L2(Rn).

Figure 2.3 shows an example of how approximations converge to an function on R2. As

this example suggests multiresolution has been applied to various sorts of image analysis.

Indeed “mip-mapping” used in image rendering is very similar in structure to this MRA

([22] page 141 and plate 4).

2.3.2 Band-Limited MRA

In this example we start by defining the sets Vj.

Vj =
{
f ∈ L2(R) : f̂ is supported on [−2jπ, 2jπ].

}
Here f̂ is the Fourier transform of f , which we’ll take with the normalisation:

f̂(ω) =

∫ ∞
−∞

e−iωxf(x) dx.

We will also use the notation F(f) for the Fourier transform of f .

One thing is clear, that as j gets bigger so does Vj, and Vj ⊂ Vj+1. Also the fact

that the union of these sets is dense in L2(R) and that the intersection only contains the

constant zero function is reasonably clear from the definition of Vj and the fact that F is

both invertible and linear.

To verify that f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1, we need to look at how F(f(x)) compares

to F(f(2x)). We do the calculation, and use the change of variable x′ = 2x half way

through.

F(f(2x))(ω) =

∫ ∞
−∞

e−iωxf(2x) dx =
1

2

∫ ∞
−∞

e−i
ωx′
2 f(x′) dx′ =

1

2
F(f(x))(ω/2)
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Approximation in V0 Approximation in V1 Approximation in V2

Approximation in V3 Approximation in V4 Approximation in V5

Approximation in V6 Approximation in V7 Approximation in V8

Figure 2.3: Improving Approximations.
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Figure 2.4: g(x) = sinπx
πx

.

From this we can see that if F(f(x)) is supported on [a, b] then F(f(2x)) is supported on

[2a, 2b]. This is exactly what we need to show f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1.

Finding a suitable g requires a similar sort of trickery, and is only a little more subtle.

This time we need to find out what happens to the Fourier transform as we move from

g(x) to g(x− n).

F(g(x− n))(ω) =

∫ ∞
−∞

e−iωxg(x− n) dx =

∫ ∞
−∞

e−iω(x′+n)g(x′) dx

= e−iωn
∫ ∞
−∞

e−iωx
′
g(x′) dx = e−iωnF(g(x))(ω)

This time using the change of variable x′ = x− n.

We need¶ linear combinations of these e−iωnĝ(ω) to span F(V0), which contains all the

functions supported on [−π, π]. Now, by considering F(V0) as L2([−π, π]) and using what

we already know about Fourier analysis we can get these functions by taking sums of einω

with n ∈ Z. So we just have to multiply by χ[−π,π] to kill off anything outside this interval.

But this option is open to us! Suppose g has a Fourier transform which is a constant

multiple of χ[−π,π]. Then, from the change of variable formula above, we know the Fourier

transform of g(x − n) is just going to be that constant times e−iωn on [−π, π] and zero

elsewhere.

It turns out that g(x) = sinπx
πx

is a g with this property, and what we have been

¶What we really want is translations of g to span V0, however the invertibility and linearity of F make
this the same as e−iωnĝ(ω) spanning F(V0)
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considering is a special version of Shannon’s Sampling Theorem, which says the following.

Theorem 2.1. Let f be a band-limited function, with its Fourier transform supported on

[Ω/2,Ω/2]. If ∆ is chosen so that:

∆ ≤ π

Ω
,

then f may be reconstructed exactly from the samples fn = f(n∆) (for n ∈ Z) by:

f(x) =
∞∑

n=−∞

fn
sin π(∆−1x− n)

π(∆−1x− n)
.

Proof. One proof, not too far from the way we arrived at g ourselves, is found as Theo-

rem 5.1 of [8], however Kaiser’s definition of the Fourier transform is slightly different to

ours. �

Let us review the situation. We have been checking this multi-resolution analysis

against Definition 2.1. We decided that conditions 6, 5 and 4 were quite believable after

examining the definition of Vj. Looking at the relationship between F(f(x)) and F(f(2x))

provided us with what we needed to check condition 3, and Shannon’s theorem provided

us with a g for condition 1.

This leaves us with only condition 2 to check. It would be reasonable to tackle this

problem head on and check:∫
g(x)g(x−m) dx =

∫
sin πx

πx

sin π(x−m)

π(x−m)
dx = 0,

when m 6= 0. However, using another important result from Fourier analysis we can get

the result in a simpler manner.

Theorem 2.2. For f, g ∈ L2(R):∫
f(x)g(x) dx = 2π

∫
f̂(ω)ĝ(ω) dω.

Proof. Almost any book on Fourier analysis will have a proof of this, again [8] provides a

discussion of this in section 1.4, but a more theoretical (and terse) discussion can be found

in [16] chapter 1, section 2. �

This result is know as Plancherel’s theorem (as are several of its variants). It transforms



Chapter 2. An Introduction to Multiresolution Analysis 23

Figure 2.5: g(x) for one of Daubechies’ MRAs.

our orthogonality problem into checking:∫ π

−π
eiωm = 0,

when m 6= 0, which is easy.

In summary, from this example, we have learned a little more about Fourier analysis,

and have seen a little of how the structure of a multiresolution analysis interacts with

Fourier analysis. It might also make us wonder at all the strange shapes and sizes a

multiresolution analysis could take.

2.3.3 Daubechies’ generating function

Figure 2.5 shows a rather strange looking function. This function was engineered by

Daubechies to have certain properties. It is compactly supported (on [0, 3]), bounded and

generates an MRA which — in some ways — is a near relation of the Haar MRA. Most

interestingly both f(x) = 1 and f(x) = x can be expressed as a sum of this function’s

translates — in much the same way as constant functions can be expressed as a sum of

the Haar generating function. Consequently this MRA is suitable for the approximation

of piecewise linear functions.

Daubechies actually produced a whole family of these generating functions, each smoother

than the previous, each supported on a larger interval [0, 2N − 1] and able to approximate

1, x, . . . , xN−1. The key to producing these generating functions was the dilation equation.

These dilation equations in turn lead to a formula for wavelets for the discrete wavelet
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transform.

2.4 Dilation Equations

While searching for generating functions for a multiresolution analysis it is natural to ask

if there are some conditions imposed on the generating function by the structure of the

multiresolution analysis. One of the most interesting conditions comes from considering

part 6 of the MRA definition — it says V0 ⊂ V1, which means:

g ∈ V0 ⊂ V1 = span {g(2x− n) : n ∈ Z} .

From this we can conclude that:

g(x) =
∑
n∈Z

cng(2x− n).

This type of equation, where g is expressed in terms of dilated versions of itself, has been

called a dilation equation, a two scale difference equation or even a multiscale difference

equation. Solutions to this type of equation are often called scaling functions and so the

generating function of an MRA is sometimes referred to as the scaling function.

It turns out a lot can be learned about g by examining these coefficients cn. Conversely

by choosing the coefficients carefully we may be able to find a g with certain desirable

properties. We will now have a look at how some properties relate to the coefficients.

2.4.1 Integrability

If we suppose that g is integrable (ie. that is in L1(R)) we can integrate over both sides of

the dilation equation: ∫
R

g(x) dx =

∫
R

∑
n∈Z

cng(2x− n) dx

=
∑
n∈Z

cn

∫
R

g(2x− n) dx

=
∑
n∈Z

cn
1

2

∫
R

g(x) dx.
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Now, providing g(x) does not have mean zero, we may divide by
∫
g(x) dx to get:

2 =
∑
n∈Z

cn.

Note that if
∫
g(x) dx diverges we do not get this condition on the cn.

2.4.2 Orthonormality

All these conditions use similar tricks — this time we begin with the requirement that g(x)

and g(x− n) be orthonormal, and then we fill
∑
cng(2x− n) in for g(x).

δ0m =

∫
R

g(x)g(x−m) dx

=

∫
R

(∑
k∈Z

ckg(2x− k)

)(∑
l∈Z

clg(2x− l)

)
dx

=
∑
k∈Z

∑
l∈Z

ckcl

∫
R

g(2x− k)g(2x− l) dx

=
∑
k∈Z

∑
l∈Z

ckcl
1

2

∫
R

g(x)g(x+ k − l + 2m) dx

=
1

2

∑
k∈Z

∑
l∈Z

ckclδ0 k−l+2m

=
1

2

∑
k∈Z

ckck+2m

This condition, like the integrability condition, is necessary but may not be sufficient.

2.4.3 Ability to Approximate

Strang, in Appendix 2 of [18], lists the following condition:∑
k∈Z

ck(−1)kkm = 0 for m = 0, 1, . . . , p− 1.

It has the following following amazing consequences:

1. The polynomials 1, x, . . . , xp−1 are linear combinations of g(x− n).

2. Smooth functions can be approximated with error of O(2−pj‖f (p)‖) in Vj.
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3. The wavelets we will construct will be orthogonal to 1, x, . . . , xp−1. That is:∫
xmw(x) dx = 0 for m = 0, 1, . . . , p− 1.

This integral is sometimes called the mth moment of w.

Proof of these consequences is related to a general theory of approximation by translates

developed for the finite element method. The “Strang-Fix” condition relates the goodness

of approximation to the degree of the zeros of the Fourier transform of g. This Strang-Fix

condition, when applied to the Fourier transform of our dilation equation, produces the

condition on the cn above.

This condition is also mentioned in [5] as being important for the convergence of various

schemes for calculating g.

Daubechies’ generating function is the unique integrable function which satisfies the

Integrability, the Orthonormality and the first 2 approximation conditions (with m = 0, 1).

2.5 Discrete Wavelets

Having dealt with dilation equations we are now in a position to build ourselves a discrete

wavelet basis for L2(R). Suppose we are working in some multiresolution analysis, and we

are trying to approximate f ∈ L2(R). Say that fj is the best approximation to f in Vj.

As we move from Vj to Vj+1 our approximation must improve — or at worst stay the

same. We can think of this as:

fj+1 = fj(x) + dj(x),

where dj is the extra detail needed to bring our approximation up to the standard in Vj+1.

Looking at this in a more general context, we might think that:

Vj+1 = Vj ⊕Wj,

where the space Wj contains all the details necessary to improve Vj, but is also orthogonal

to Vj. Then:

V0 ⊕W1 ⊕W2 ⊕W3 ⊕ · · ·
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will be dense in L2(R). In fact, in L2(R):

∞⊕
j=−∞

Wj

is dense.

Now, the neatness of this scheme becomes apparent when we remember that: f(x) ∈
Vj ⇐⇒ f(2x) ∈ Vj+1. This allows us to form the same relationship between the Wj as

we have between the Vj. If we could also produce a generating function w for W0 as we

produced a g for V0 then family Wj would have a very neat form indeed.

As luck would have it,

w(x) =
∑
k∈Z

(−1)kc1−kg(2x− k)

is just such a function! We can certainly see that this w is in V1, as it is the sum of

translates of g(2x). We can also check it is not in V0 by showing that it is orthogonal to

all translates of g(x).

∫
R

g(x− n)w(x) dx =

∫
R

(∑
l∈R

clg(2x− l − 2n)

)(∑
k∈Z

(−1)kc1−kg(2x− k)

)
dx

=
∑
k∈Z

∑
l∈R

(−1)kc1−kcl

∫
R

g(2x− l − 2n)g(2x− k) dx

=
∑
k∈Z

∑
l∈R

(−1)kc1−kclδk l+2n as translates are orthonormal

=
∑
k∈Z

(−1)kc1−kck−2n

=
∑
k∈Z

c1−2kc2k−2n −
∑
k∈Z

c−2kc2k−2n+1 separating even and odd

=
∑
k∈Z

c1−2kc2k−2n −
∑
l∈Z

c2l−2nc1−2l

= 0

The last step is performed by changing dummy variable to l so that 2k − 2n+ 1 = 1− 2l.

So we know that w(x) is in V1 and orthogonal to all of V0, so it seems very likely that

w is the required function. For the full proof see [12] Chapter 3 Theorem 1 or the chapter
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of [9] entitled “Discrete Wavelets and Multiresolution analysis” Theorem 5.1‖.

This w(x) is our “mother wavelet” which has been produced so that:

{
w(2jx− n) : n ∈ Z

}
is an orthogonal basis∗∗ for Wj. Adjusting these so they are an orthonormal basis, and

remembering that
⊕

Wj is dense in L2(R) we get the following orthonormal basis:{
wj n(x) = 2

j
2w(2jx− n) : j, n ∈ Z

}
.

We can now say what the discrete wavelet transform is. We have just established that

we can write all the functions in L2(R) in the form:

f =
∑
j,n

aj nwj n,

where we can determine the aj n using the orthogonality of the wj n as follows:

aj n =

∫
f(x)wj n(x) dx.

This aj n is the discrete wavelet transform of f . We can think of 2−j being the frequency

and n2−j as being the position, in much the same way as a was the frequency and b was

the position in the continuous wavelet transform of Section 1.6.

This discrete transform has quite a lot of advantages. It it less redundant than its con-

tinuous relative and it is easier to work with numerically, as all of the practical calculations

can be performed with the cn without ever calculating w(x)! Also, the theory is in some

way less ad hoc than that for the CWT.

2.6 Back to the examples

Since we have three examples, we should have a look and see what the related dilation

equation and wavelet looks like in each case. To find the dilation equation we try to write

‖Beware the second author uses a slightly different definition of an MRA!
∗∗We have not actually checked this here, but the condition which it produces on the coefficients is the

same as that required for the translates of g to be orthonormal in section 2.4.2.
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Figure 2.6: w(x) for the Haar MRA.

g(x) in terms of translates of g(2x). To find the wavelet we just use our wavelet formula:

w(x) =
∑
k∈Z

(−1)kc1−kg(2x− k).

2.6.1 Haar Wavelets

In the Haar case we took g(x) = χ[0,1)(x), and we worked out that g(2x) = χ[0, 1
2

). In this

case it is reasonably clear that:

g(x) = χ[0,1)(x) = χ[0, 1
2

)(x) + χ[ 1
2
,1)(x) = g(2x) + g(2x− 1).

So writing this in the form:

g(x) =
∑
n∈Z

cng(2x− n)

We get c0 = 1, c1 = 1 and all the other cn = 0. So using the formula we get:

w(x) =
∑
k∈Z

(−1)kc1−kg(2x− k) = g(2x)− g(2x− 1).

A picture of this Haar wavelet is shown in Figure 2.6.

2.6.2 Shannon Wavelets

In the band-limited MRA we are trying to write sinπx
πx

in terms of translates of sin 2πx
2πx

. This

is going to be a little more complicated than the Haar case. However with the help of
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Figure 2.7: w(x) for the Band-Limited MRA.

Theorem 2.1 with ∆ = 1
2

we can write:

sin πx

πx
=
∑
n

cn
sin π(2x− n)

π(2x− n)
,

which is exactly what we require. In this case the cn are the values of g at n/2.

cn =
sin π n

2

π n
2

=



1 n = 0

0 n 6= 0 is even

2
πn

n = 1 mod 4

− 2
πn

n = 3 mod 4

.

We could calculate the wavelet using this sequence, but we can form another suitable

wavelet more easily. Remember that F(g)(ω) was χ[−π,π)(ω), and that F(g(2x))(ω) was

χ[−2π,2π)(ω). Combining this with Theorem 2.2 we can see that g(2x)− g(x) is orthogonal

to g(x), and has all the necessary properties for a wavelet. Figure 2.7 shows a graph of

this wavelet.

This wavelet is sometimes called the “Shannon wavelet”, because of its close relationship

with Shannon’s sampling Theorem (Theorem 2.1). It also raises two interesting points.

First, sometimes we may have a dilation equation with an infinite number of coefficients.

Second, the wavelet is not unique — in this case the formula provides a translated version

of the wavelet we derived by hand.
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Figure 2.8: w(x) for one of Daubechies MRA’s.

2.6.3 Daubechies’ Wavelets

As commented earlier: Daubechies generating function was calculated so the coefficients

of its dilation equation satisfy all of the following equations.

1. c0 + c1 + c2 + c3 = 2,

2. c0c2 + c1c3 = 0,

3. c0 − c1 + c2 − c3 = 0,

4. 0c0 − 1c1 + 2c2 − 3c4 = 0.

The values which solve these equations are c0 = 1
4
(1+
√

3), c1 = 1
4
(3+
√

3), c2 = 1
4
(3−
√

3),

c3 = 1
4
(1−

√
3). Using these coefficients and g we can calculate w (Figure 2.8). In [3] she

includes a table of cn for progressively smoother generating functions (and so wavelets).

However the smoother the wavelet the wider its support.

2.7 How to draw these beasties

Until now we have carefully tiptoed around the question of how to draw Daubechies’

generating function. The problem is that we are presented with the coefficients for a

dilation equation, and left to find the solution ourselves.

Here we will examine an algorithm for drawing solutions to these equations. It makes

some rather bold assumptions, but these are justified in the literature [4].
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We begin with a set of coefficients c0, . . . cN , whose sum is 2. We are attempting to

sketch a solution g to the dilation equation:

g(x) =
N∑
n=0

cng(2x− n).

We will assume that g(x) is zero outside [0, N ]. Now we examine the value of g at each of

the integers 0, 1, . . . , N using the dilation equation. We arrive at the following relations.

g(0) = c0g(0)

g(1) = c2g(0) + c1g(1) + c0g(2)

g(2) = c4g(0) + c3g(1) + c2g(2) + c1g(3) + c0g(4)

g(3) = c6g(0) + c5g(1) + c4g(2) + c3g(3) + c2g(1) + . . .
...

g(N − 1) = cNg(N − 2) + cN−1g(N − 1) + cN−2g(N)

g(N) = cNg(N)

This is just an equation of the form:

~g = M~g,

where ~g = (g(0), g(1), . . . , g(N)) and M is a matrix with the cn and zeros as entries.

This, however, is just an eigenvector problem, which can be solved either by hand, or

by any of a host of computer programs. This provides us with the vector ~g and so the

value of g at the integers.

Now that we have found the values at the integers, we can find the values of g at m/2

for m ∈ Z using the dilation equation:

g
(m

2

)
=

N∑
n=0

cng(m− n),

as m − n is an integer. Once we have g at half integers we can get g at quarter integers,

eighthes of integers and so on. To draw the graph we just join the dots!

Figure 2.9 contains a piece of C code which shows how simple this scheme is, for the

example of Daubechies generating function. The vector ~g was calculated and found to
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#define STEP 0.0002

double c[] = { 0.68301, 1.18301, 0.31699 , −0.18301};

double g(double x)

{

double tot;

int i;

if( x < 0.0 || x > 3.0 ) return 0.0;

if( fabs(x−0.0) < STEP/2 ) return 0.0;

if( fabs(x−1.0) < STEP/2 ) return 0.96593;

if( fabs(x−2.0) < STEP/2 ) return −0.25882;

if( fabs(x−3.0) < STEP/2 ) return 0.0;

tot = 0.0;

for( i = 0 ; i < 4 ; i++ ) tot += c[i] ∗ g(2.0 ∗ x − i);

return tot;

}

Figure 2.9: C code for estimating g

be (0.0, 0.96593,−0.25882, 0.0). This piece of code was used to produce Figure 2.5 and

indirectly Figure 2.8.

2.8 Conclusion

We have only scratched the surface of the huge body of material recently produced about

the discrete wavelet transform. The same goes for the two auxiliary subjects of multires-

olution analysis and dilation equations. A feeling for the volume and variety of work can

be got from [6].

Through the examples we have got some idea of the shapes that a multiresolution
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analysis can come in, and saw that Fourier analysis does seem to have some link to mul-

tiresolution analysis. We will see more of this relationship in the following chapters.

One aspect of multiresolution analysis we did not touch on is what Meyer calls the

regularity of the MRA. This is a condition on the decay of g and its derivatives. [12]

provides great detail on not just this topic, but all of the theory mentioned here.

People have tried to extend wavelet and MRA theory into areas where Fourier analysis

has already been used. As long as we stay near Rn things are very successful: wavelets

have provided bases for whole hosts of spaces. Moving to other groups seems to have been

more troublesome. In [11] a definition of a multiresolution analysis on a locally compact

Abelian group is given, and wavelets are constructed on the Cantor dyadic group — but

this sort of work seems to be in the minority.

We have not said much about applications. It has been hinted that discrete wavelets and

multiresolution analysis are of use in audio and video signal processing. This is where much

of the excitement about wavelets is being generated. Wavelets have been used for both

video and audio compression in situations ranging from compressing the FBI’s fingerprint

collection to transmitting new generation TV signals.

Wavelets have also been put to statistical use for cleaning up data [20], and there is a

fast wavelet transform which is even faster than the fast Fourier transform. Some of these

many applications can be read about in Appendix 1 and 2 of [18], or in [17], [9] and [6].

Finally, we have said only a little about solving dilation equations. Much of what is

known is laid out in [4] and deals with only L1(Rn) solutions. In this case the solution

is usually unique. An application of dilation equations themselves is proposed in [1].

They examine a signal compression scheme in which the coefficients of a dilation equation,

which the signal satisfies, are transmitted in place of the signal. Unfortunately they make

incorrect assumptions about the uniqueness of L2(R) solutions, but the idea still stands.



Chapter 3

A New Construction for the Fourier

Transform

3.1 Introduction

Often complicated functions are not defined explicitly, but are rather defined in terms of

properties which we know they have. A common example might be the determinant of a

matrix. It can be defined either in terms of how to calculate it, or by properties such as

what happens when we multiply a row by a constant, or add two rows together. In fact, a

determinant can be defined by:

1. det : Rn×n → R

2. det(λ1~a1, λ2~a2, . . . , λn~an) = (λ1λ2 . . . λn) det(~a1,~a2, . . . ,~an)

where λi ∈ R and ~ai ∈ Rn for i = 1 . . . n.

3. det(. . . ,~ai, . . . ,~aj, . . .) = det(. . . ,~ai + ~aj, . . . ,~aj, . . .)

4. det(~e1, ~e2, . . . , ~en) = 1 where {~ej}j=1..n is the usual basis for Rn.

What we will do is give an example of how this may be done for the Fourier transform

of functions in L2(R). The structure on which the determinant is built is the vector space.

The framework which we will use for building the Fourier transform is the multiresolution

analysis of L2(R) we introduced in Chapter 2. In this case we’re going to take the χ[0,1) as

g and consequently will end up working with the Haar MRA (Section 2.3.1).

35
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The idea for this type of construction came from Chapter 2 of [12], where Meyer often

calculates the Fourier transform of a function from its multiresolution expansion. What

we do here is show that this calculation may actually be recast as a construction.

There is often debate about factors of
√

2π when defining Fourier transforms, so to

begin with the Fourier transform for which we will give a new construction will be the

same as that given by:

F(f)(ω) =

∫ ∞
−∞

e−iωxf(x) dx.

(This is the same as that used in Chapter 2.)

This means that the corresponding inverse transform will have a factor of 1/2π outside

the integral. While we have this formula is in front of us we will do one calculation: the

traditional Fourier transform of χ[0,1)

F(χ[0,1))(ω) =

∫ ∞
−∞

e−iωxχ[0,1) dx =

∫ 1

0

e−iωx dx =
1− e−iω

iω

3.2 Defining F on our MRA

First we define F on D =
+∞⋃
j=−∞

Vj, (with the Vj generated by taking g as χ[0,1)) in the

following way:

1. F : D → L2(R) is linear,

2. F(f ◦ tn)(ω) = eiωnF(f)(ω) where tn(x) = x+ n,

3. F(f ◦ dλ)(ω) = 1
|λ|F(f)(ω

λ
) where dλ(x) = λx and λ = 2n, n ∈ Z,

4. F(χ[0,1))(ω) = 1−e−iω
iω

.

The linearity, translation and dilation rules are all basic properties of the Fourier trans-

form. The final rule pins down the Fourier transform, hopefully in a way we can extend

to all of L2(R). (We should really check that the translation rule and dilation rule are

consistent, that is: F(f ◦ tn ◦ tm) = F(f ◦ tn+m), F(f ◦ dλ ◦ dµ) = F(f ◦ dλµ) and

F(f ◦ tm ◦ dλ) = F(f ◦ dλ ◦ tm
λ

).)

Theorem 3.1. Defining F using the above rules leads to a well defined function D →
L2(R).
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Proof. The rules clearly fix F on all ofD, in fact we can provide a formula. If f ∈ D =
⋃
Vj,

then we can write f as the finite sum:

f(x) =
N∑

k=−N

akχ[0,1)(2
Jx− k),

where f ∈ VJ . We can then apply our rules.

F(f)(ω) =
N∑

k=−N

akF(χ[0,1) ◦ t−k ◦ d2J )(ω)

=
N∑

k=−N

ak
1

2J
F(χ[0,1) ◦ t−k)(

ω

2J
)

=
N∑

k=−N

ak
e−ik

ω

2J

2J
F(χ[0,1))(

ω

2J
)

=
N∑

k=−N

ak
e−ik

ω

2J

2J
1− e−i

ω

2J

i ω
2J

=
1− e−i

ω

2J

iω

N∑
k=−N

ake
−ik ω

2J .

We are, however, left with some questions.

• Is 1−e−iω
iω

in L2(R)? Once we know this we know that F(D) ⊂ L2(R) as L2(R) is

closed under translation, dilation, scaling, addition and multiplication by bounded

functions.

• Is F well defined? Some functions may have more than one expansion as sums

of translations and dilations of our basic function χ[0,1)(x). For example χ[0,1) =

χ[0, 1
2

) + χ[ 1
2
,1).

• Does F actually satisfy parts 2 and 3 of its definition on all of D? It is reasonably

obvious that F is linear.

These points are dealt with in the following lemmas. �

Lemma 3.2. ∥∥∥∥1− e−iω

iω

∥∥∥∥2

2

= 2π
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Proof. For Theorem 3.1 all we need to show is that the L2 norm of 1−e−iω
iω

is finite, but we

can do the calculation exactly using a mixture of brute force and contour integration:

∥∥∥∥1− e−iω

iω

∥∥∥∥2

2

=

∫ ∞
−∞

∣∣∣∣1− e−iωiω

∣∣∣∣2 dω
=

∫ ∞
−∞

(1− e−iω)(1− eiω)

ω2
dω

=

∫ ∞
−∞

1− e−iω − eiω + 1

ω2
dω

=

∫ ∞
−∞

2(1− cosω)

ω2
dω

= Re

(∫ ∞
−∞

2(1− eiω)

ω2
dω

)
We can now integrate this on a contour which goes to infinity in the upper half plane,

and goes around zero on the lower: -��-��The total for this is (2πi)(−2i) = 4π. The

contribution of the bit in the upper half plane goes to zero, and the bit around zero

contributes 2π as the contour is brought in, so the contribution along the real axis must

be 2π. So the total contribution is 2π as required.

�

Lemma 3.3. F as defined by the above rule is well defined.

Proof. First we verify this for the example: χ[0,1) = χ[0, 1
2

) + χ[ 1
2
,1).

χ[0,1)(x) = χ[0, 1
2

)(x) + χ[ 1
2
,1)(x)

= χ[0,1)(2x) + χ[1,2)(2x)

= χ[0,1)(2x) + χ[0,1)(2x− 1)

= χ[0,1) ◦ d2(x) + χ[0,1) ◦ t−1 ◦ d2(x)

We already know that: F(χ[0,1))(ω) = 1−e−iω
iω

, so we now need to work out the Fourier

transform of the other two terms:
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F(χ[0,1) ◦ d2)(ω) =
1

2
F(χ[0,1))

(ω
2

)
=

1

2

1− e−iω2
iω

2

=
1− e−iω2

iω
;

F(χ[0,1) ◦ t−1 ◦ d2)(ω) =
1

2
F(χ[0,1) ◦ t−1)

(ω
2

)
=

1

2
e−i

ω
2F(χ[0,1))

(ω
2

)
=

1

2
e−i

ω
2

1− e−iω2
iω

2

=
e−i

ω
2 − e−iω

iω
.

So we get the required identity as follows:

F(χ[0, 1
2

) + χ[ 1
2
,1))(ω) =

1− e−iω2
iω

+
e−i

ω
2 − e−iω

iω
=

1− e−iω

iω
= F(χ[0,1))(ω)

Now showing that F is well defined is much easier, as using this we can break and join

adjacent steps. Indeed suppose f ∈ D, then as the Vj are increasing there is a smallest∗ j

for which f ∈ Vj. Then any expansion of f must have the same Fourier transform as the

one given by steps of size 2−j, by joining smaller steps. �

Lemma 3.4. F has the following desired properties on all of D:

F(f ◦ tn)(ω) = eiωnF(f)(ω) for n ∈ Z,

F(f ◦ d2n)(ω) =
1

2n
F(f)(

ω

2n
) for n ∈ Z.

Proof. We simply resort to writing:

f(x) =
N∑

k=−N

akχ[0,1)(2
Jx− k),

∗If f ∈ Vj∀j then f = 0, which can be checked easily by hand.
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and then using:

F(f)(ω) =
1− e−i

ω

2J

iω

N∑
k=−N

ake
−ik ω

2J .

As they say “simple algebraic manipulation yields”:

f ◦ tn(x) = f(x+ n)

=
N∑

k=−N

akχ[0,1)(2
J(x+ n)− k)

=
N∑

l=−N

al+n2Jχ[0,1)(2
Jx− l)

⇒ F(f ◦ tn)(ω) =
1− e−i

ω

2J

iω

N∑
l=−N

al+n2Je
−il ω

2J

=
1− e−i

ω

2J

iω

N∑
k=−N

ake
−i(k−n2J ) ω

2J

= einω
1− e−i

ω

2J

iω

N∑
k=−N

ake
−ik ω

2J

= einωF(f)(ω),

and:

f ◦ d2n(x) = f(2nx)

=
N∑

k=−N

akχ[0,1)(2
J(2nx)− k)

=
N∑

k=−N

akχ[0,1)(2
J+nx− k)

⇒ F(f ◦ d2n)(ω) =
1− e−i

ω

2J+n

iω

N∑
k=−N

ake
−ik ω

2J+n

=
1

2n
F(f)(

ω

2n
).

�

So now we are at the stage where we have used our rules to define a linear transform

F : D → L2(R). We have shown that is it well defined, now it would be nice to extend it



Chapter 3. A New Construction for the Fourier Transform 41

to all of L2(R).

3.3 Extending F to L2(R)

We know that D ⊂ L2(R), and that D = L2(R). We wish to show that F : D → L2(R)

can be extended, by taking limits to F : L2(R)→ L2(R). That is: since for all f ∈ L2(R)

we may choose a sequence fn in D so that fn → f in L2(R), we could then define F(f) as

limF(fn).

If we can show that F : D → L2(R) is continuous then we can use the following lemma.

Lemma 3.5. Let N and S be Banach spaces. Let M be a dense subset of N . If we have

a continuous linear function φ : M → S, then we can extend φ to a function f on N by

taking limits, so that f is continuous and linear.

So extending F from D to all of L2(R) comes down to showing that F : D → L2(R) is

continuous with the L2 norm on the domain and range.

Lemma 3.6. F : D → L2(R) is continuous with the L2(R) norm on D. In fact:

‖F(f)‖2 =
√

2π‖f‖2

Proof. Since F is linear showing it is bounded, is equivalent to showing it is continuous.

Take any f ∈ D, we must show:

‖F(f)‖ ≤ C‖f‖

where C doesn’t depend on f . Using our formulation from Theorem 3.1:

f(x) =
N∑

k=−N

akχ[0,1)(2
Jx− k).

Clearly this gives us ‖f‖2
2 =

∑N
k=−N |ak|2/2J . Then using the same calculation as in

Theorem 3.1 we find F(f) to be:

1− e−i
ω

2J

iω

N∑
k=−N

ake
−ik ω

2J .

We complete the calculation of ‖F(f)‖2
2 by brute force, contour integration and Lemma 3.2.
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‖F(f)‖2
2

=

∫ ∞
−∞

∣∣∣∣∣1− e−i
ω

2J

iω

∣∣∣∣∣
2( N∑

k=−N

ake
−ik ω

2J

)(
N∑

l=−N

ale
il ω

2J

)
dω

=

∫ ∞
−∞

2(1− cos ω
2J

)

ω2

[(
N∑

k=−N

|ak|2
)

+

(∑
k 6=l

akale
−i(k−l) ω

2J

)]
dω

=
2π

2J

N∑
k=−N

|ak|2 +
∑
k 6=l

akal

∫ ∞
−∞

2(1− cos ω
2J

)

ω2
e−i(k−l)

ω

2J dω.

We want the integral on the right to be zero. By a change of variable, we reduce the

problem to showing that: ∫ ∞
−∞

2(1− cosω)

ω2
eirω dω = 0,

when r ∈ Z, r 6= 0. The imaginary part has to be zero, as 2(1−cosω)
ω2 is even and sin rω is

odd. So now we’re down to:

∫ ∞
−∞

2(1− cosω)

ω2
cos rω dω

=

∫ ∞
−∞

2 cos rω − 2 cosω cos rω

ω2
dω

=

∫ ∞
−∞

2 cos rω − cos((r + 1)ω)− cos((r − 1)ω)

ω2
dω

= Re

(∫ ∞
−∞

2eirω − ei(r+1)ω − ei(r−1)ω

ω2
dω

)
.

Now, it’s easy to check that 2eirω − ei(r+1)ω − ei(r−1)ω has a double zero at ω = 0, and

so the integrand is analytic at zero. If r ≤ −1 or r ≥ 1 then we can integrate around a

loop in the lower or upper half plane respectively, so that the contribution for this part

of the loop goes to zero. But as the function is analytic everywhere, the integral around

the whole loop must be zero, and contribution from integrating along the real line must

be zero.

This means that as ‖f‖2
2 =

∑N
k=−N |ak|2/2J we simply get ‖F(f)‖2

2 = 2π‖f‖2
2. So we

see F is bounded with norm
√

2π. �



Chapter 3. A New Construction for the Fourier Transform 43

Now we can extend F as was desired, by combining the previous results.

Theorem 3.7. F : D → L2(R) can be extended continuously to F : L2(R) → L2(R) in a

unique way. Also this extension satisfies ‖F(f)‖2 =
√

2π‖f‖2 for f ∈ L2(R).

Proof. Use Lemma 3.6 to show F is bounded and then use Lemma 3.5 extend F . The fact

that the norm is just scaled comes from Lemma 3.6, and the fact D is dense in L2(R). �

We only needed ‖F(f)‖2
2 ≤ 2π‖f‖2

2 and so this stronger result is really just Plancherel’s

Theorem.

Corollary 3.8 (Plancherel’s Theorem). For f, g ∈ L2(R):

(f, g) = 2π(F(f),F(g))

where (·, ·) is the usual inner product on L2(R).

Proof. The fact that the norm is just scaled means we can apply the polarisation identity,

in the usual way, to show that the inner product is preserved in this Hilbert space. �

3.4 Back to the traditional

We are now in a position to get the traditional Fourier transform, from our new definition.

This is a rather useful thing, as it allows us to check that no gremlins have crept in and

made our new transform different to the old.

Theorem 3.9. If f ∈ L2(R) and ∫ ∞
−∞

f(x)e−iωx dx

converges for almost every value of ω then it agrees with F(f) almost everywhere.

Proof. We’ll do this in 3 stages, first for functions in D, then for compactly supported

functions in L2(R), and finally for the general case in the statement.

For f ∈ D: Suppose f ∈ VJ is supported on [−R,R]. Then we can write f(x) as:

f(x) =
R2J−1∑
k=−R2J

akχ[0,1)(2
Jx− k)
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Now f ∈ Vj,∀j ≥ J , so by noting that the coefficient of χ[0,1)(2
jx − k) will just be

f( k
2j

), we may also write f as:

f(x) =
R2j−1∑
k=−R2j

f(
k

2j
)χ[0,1)(2

jx− k)

We take the Fourier transform of this, which we can write out using the calculation

in Theorem 3.1.

F(f)(ω) =
1− e−i

ω

2j

iω

R2j−1∑
k=−R2j

f(
k

2j
)e−ik

ω

2j

=

(
1− e−i

ω

2j

i ω
2j

) 1

2j

R2j−1∑
k=−R2j

f(
k

2j
)e−ik

ω

2j


Fixing ω we look at what happens as j →∞. The first term goes to 1. Remembering

that f is a step function, and so Riemann integrable, the second term becomes a

Riemann sum, leaving us with:

F(f)(ω) =

∫ R

−R
f(x)e−iωx dx.

For g ∈ L2(R) with compact support: From here it is easy to extend this to g ∈ L2(R)

with g supported on [−R,R]. First note that if we define

FR(f) =

∫ R

−R
f(x)e−iωx dx,

then FR(·)(ω) is continuous on L2(R), because:

FR(f)(ω) = (f(x), eixwχ[−R,R))

⇒ |FR(f)(ω)| ≤ ‖f‖2

∥∥eixwχ[−R,R)

∥∥
2

= ‖f‖2

√
2R.

This means if a sequence of functions gn converges in L2(R) then the sequence of

functions FR(gn) has a pointwise limit.

We can choose gn ∈ D supported on [−R,R] so that gn → g in L2(R) as n→∞ and
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we now know that FR(gn) has a pointwise limit. Looking in L2(R):

lim
n→∞

FR(gn) = lim
n→∞

F(gn) = F(g),

where all the limits are in L2(R). Lemma 3.10 tells us that the pointwise limit must

agree with F(g) almost everywhere. That is:∫ R

−R
g(x)e−iωx dx = F(g)(ω) a.e. ω

So this Fourier transform agrees with the traditional one on functions in L2(R) with

compact support. As g is supported on [−R,R] we can just write this as:

F(g)(ω) =

∫ ∞
−∞

g(x)e−iωx dx a.e. ω ∈ R.

What if the formula looks OK? If f is any function in L2(R) then the simple sequence

fn = fχ[−n,n) converges to f . What we would like to do is apply the formula to these

to get an indication of the Fourier transform of f . This leads us in the direction of

the improper integral we want.

F(fn)(ω) =

∫ ∞
−∞

fn(x)e−iωx dx a.e. ω

=

∫ ∞
−∞

χ[−n,n)(x)f(x)e−iωx dx

=

∫ n

−n
f(x)e−iωx dx

We want to take a limit of this as n → ∞. If we keep away from the points where

this isn’t true for some n (which is a countable union of sets of zero measure, and so

of zero measure), then we get:

lim
n→∞

F(fn)(ω) =

∫ ∞
−∞

f(x)e−iωx dx a.e. ω

The integral on the right is an improper integral, but that isn’t the problem. This is

a pointwise limit, and we need an L2(R) limit.

All is not lost however. We again use Lemma 3.10 as we have an L2(R) limit (the

Fourier transform) and a pointwise limit of the same sequence of functions and con-
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clude these are be the same almost everywhere. That is: we know F(fn) → F(f)

in L2(R) and this means that if our improper integral converges to some function

almost everywhere, then it is the Fourier transform of f .

�

Lemma 3.10. Suppose fn → f in L2(R) and fn(x)→ g(x) pointwise for x ∈ R \N where

N has measure zero. Then f(x) = g(x) a.e. x ∈ R.

Proof. First note that ∀δ > 0, h ∈ L2(R):

‖h‖2
2 ≥

∫
{x:|h(x)|>δ}

δ2 dx = δ2 |{x : |h(x)| > δ}| .

This means that:

|{x : |fn(x)− f(x)| > δ}| ≤ ‖fn − f‖
2
2

δ2
.

As fn → f in L2(R) we may choose an increasing sequence nj such that:∣∣∣∣{x : |fn(x)− f(x)| > 1

2j

}∣∣∣∣ ≤ 22j‖fn − f‖2
2 ≤

1

2j
,

when n > nj, by making ‖fn − f‖2
2 ≤ 2−3j. Set:

Mj =
⋃
k>j

{
x : |fnk(x)− f(x)| > 1

2k

}
,

then |Mj| ≤ 1
2j

. Now off this set Mj we know that:

|fnk(x)− f(x)| ≤ 1

2k

if k > j. Thus fnk(x)→ f(x) pointwise off Mj, but remember that fnk(x) must also go to

g(x) off N , so we conclude f(x) = g(x) off Mj ∪N .

Finally let M = {x : g(x) 6= f(x)}, then M ⊂ Mj ∪ N for all j ∈ N. Thus |M | ≤
|Mj|+ |N | ≤ 1

2j
+ 0 for all j ∈ N, so |M | = 0 as required. �

Now we have the advantage that if we want to use a traditional proof we can, as we

have the integral formula for just about all the cases we could hope for!
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3.5 Can we do better than that?

We defined the Fourier transform from the following 4 rules.

1. F : D → L2(R) is linear,

2. F(f ◦ tn)(ω) = eiωnF(f)(ω) where tn(x) = x+ n,

3. F(f ◦ dλ)(ω) = 1
|λ|F(f)(ω

λ
) where dλ(x) = λx and λ = 2n, n ∈ Z,

4. F(χ[0,1))(ω) = 1−e−iω
iω

.

Surprisingly the fourth rule, which seems to kick start this definition of F , may be made

weaker. This is because we had to check that F was well defined in Lemma 3.3, which

may be turned around and made into deductions about what F(χ[0,1)) could possibly be.

Theorem 3.11. Using the first three rules above and the following:

• F(χ[0,1))(ω) is continuous at 0 and F(χ[0,1))(0) = 1

we may derive the fourth rule.

Proof. When we checked that F was well defined we made sure this rule was consistent

with χ[0,1) = χ[0, 1
2

) + χ[ 1
2
,1). For this to be true we required:

F(χ[0,1))(ω) =
1

2
F(χ[0,1))

(ω
2

)
+

1

2
e−i

ω
2F(χ[0,1))

(ω
2

)
So letting f = F(χ[0,1)):

f(ω) =
1

2

(
1 + e−i

ω
2

)
f(
ω

2
)

=
1

22

(
1 + e−i

ω
2

) (
1 + e−i

ω
22

)
f(
ω

22
)

=

(
1

2n

n∏
k=1

(
1 + e−i

ω

2k

))
f(
ω

2n
)

=

(
1

2n

2n∑
r=1

e−i
ω
2n
r

)
f(
ω

2n
)

=
1

2n
e−iω − 1

e−i
ω
2n − 1

f(
ω

2n
).
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Our new rule supposes f(ω) is continuous at zero, then (for fixed ω) we take the limit

of this expression as n→∞.

f(ω) =
1− e−iω

iω
f(0)

We also assumed that f(0) = 1, so:

F(χ[0,1))(ω) = f(ω) =
1− e−iω

iω

So we have derived the old fourth rule as required.

�

This new rule could be motivated by the fact that χ[0,1) is an L1(R) function, and if we

are aiming for the traditional Fourier transform we want L1 functions to go to bounded

continuous functions.

We can’t do any better that this without changing the first 3 rules. Clearly we need

something to determine F up to constant multiples; something like F(χ[0,1))(0) = 1 or

‖F(χ[0,1))‖2
2 = 2π. If we also drop the continuity at 0 condition we leave open options such

as:

sign(ω)
1− e−iω

iω
where sign(x) =


+1 x > 0

0 x = 0

−1 x < 0

for F(χ[0,1)). It is easy to see that this will be consistent with the first 3 properties, because

they do not relate F(χ[0,1)) at negative ω with values at positive ω.

If we change the third rule to allow all λ 6= 0, then we may stand a better chance, as it

will relate F(χ[0,1))(ω) for negative and irrational ω to F(χ[0,1)) on positive dyadic rational

ω. This is pursued further in Chapter 4.

3.6 Extending properties of F

In Section 3.2 we defined F to have certain properties on D which we checked in Lemma 3.4.

We said what effect translation and dilation had on F when we dilated by two or translated

by an integer. We will extend these properties in two ways. First we will allow transla-

tion and dilation by any real number (except dilation by 0). Second we will show these

properties hold on all on L2(R) and not just on D. We will also establish another related

property of the Fourier transform.
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Using Theorem 3.9 we easily can extend our translation and dilation rules to all trans-

lations tα with α ∈ R and dilations dλ with λ ∈ R\{0}. This just involves a simple change

of variable in the integral formula.

In a similar manner we can also examine the effect of translation on the Fourier trans-

form of a function. If f ∈ D, then f has compact support, and so we know:

F(f)(ω) =

∫ ∞
−∞

f(x)e−iωx dx

This lets us deduce that:

F(f)(ω + α) =

∫ ∞
−∞

f(x)e−i(ω+α)x dx a.e. ω

=

∫ ∞
−∞

f(x)e−iαxe−iωx dx a.e. ω

= F(f(x)e−iαx)(ω) a.e. ω

So F(f) ◦ tα = F(f(x)e−iαx) when f ∈ D.

To express all this clearly, we’ll define 3 operators. These are translation T, dilation

D and rotation R. Our reason for defining these operators is that the properties of F
can be expressed in terms of how F commutes with them. This notation is clearer than

the “f ◦ tα” notation above, and as all these operators are continuous it makes it easy to

extend a property of F on D to a property of F on L2(R).

• For all α ∈ R we define Tα : L2(R) → L2(R) by (Tαf)(x) = f(x + α). This is a

continuous linear operator with norm 1 on L2(R).

• For all λ ∈ R \ {0} we define Dλ : L2(R) → L2(R) by (Dλf)(x) = f(λx). This is a

continuous linear operator with norm |λ|− 1
2 .

• For all α ∈ R we define Rα : L2(R) → L2(R) by (Rαf)(x) = eiαxf(x). This is also

continuous linear operator with norm 1.

Let us now rephrase F ’s properties in terms of these operators. For all f ∈ D, α ∈ R
and λ ∈ R \ {0}:

1. FTαf = RαFf ,

2. FDλf = 1
|λ|D 1

λ
Ff ,
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3. FRαf = T−αFf .

So all the properties can be given in terms of relations of the form FA = BF . This

gives us a simple way to extend all these properties to L2(R) in one fell swoop. Suppose f

is in L2(R), and A,B are bounded linear operators on L2(R), such that FA = BF on D.

We can just take {fn} ⊂ D so fn → f as fn →∞, giving:

FAf = FA lim
n→∞

fn = lim
n→∞

FAfn = lim
n→∞

BFfn = B lim
n→∞

Ffn = BFf

3.7 The inverse Fourier transform

In exactly the same manner as we did for F we may define another transform G. We want

this to be an inverse for the Fourier transform so this time we define it with the following

rules:

1. G : D → L2(R) is linear,

2. G(f ◦ tn)(ω) = e−iωnG(f)(ω) where tn(x) = x+ n,

3. G(f ◦ dλ)(ω) = 1
|λ|G(f)(ω

λ
) where dλ(x) = λx and λ = 2n, n ∈ Z,

4. G(χ[0,1))(ω) is continuous at 0 and G(χ[0,1))(0) = 1
2π

.

These are the translation and dilation properties we would expect the inverse of the Fourier

transform to have (compare to those on page 36). It is easily guessed that G is very similar

to F , but with norm 1√
2π

on L2(R) and slightly different properties. We would hope that

this turns out to be the inverse of the Fourier transform.

As we did for F , we write the properties of this new extended transform in terms of

the operators Tα, Dλ and Rα. For all f ∈ D, α ∈ R and λ ∈ R \ {0}:

1. GTαf = R−αGf ,

2. GDλf = 1
|λ|D 1

λ
Gf ,

3. GRαf = TαGf .

Compare these to the properties of F above — the dilation rule is the same, and the minus

sign has moved from the rotation rule to the translation rule.
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Theorem 3.12. The Fourier transform F : L2(R) → L2(R) is invertible, with inverse G
defined as above.

Proof. We do already know that F is injective from Lemma 3.6. However, rather than

show it is surjective by hand, it is easier to show that G is the inverse of F on L2(R).

We examine I = FG. From the fact that F and G are continuous we see that I is

a continuous linear operator in L2(R) with norm 1 (the fact F scales the norm by
√

2π,

and G scales it by 1/
√

2π, means that I preserves the norm). Examining the effect of

translation and dilation:

ITnf = FGTnf = FR−nGf = TnFGf = TnIf

IDλf = FGDλf =
1

|λ|
FD 1

λ
Gf =

|λ|
|λ|
DλFGf = DλIf

So both translation and dilation commute with I. This, combined with the fact that I
preserves the norm, is a pretty strong indication that it may be the identity. If we can

show that our generating function χ[0,1) is sent to itself by I we know it is the identity.

By using the equivalent of Theorem 3.9 for G we try to calculate G(1−e−iω
iω

). As an

L2(R) function 1−e−iω
iω

must have an image under G, and if the integral below converges to

an L2(R) function, then this must be the image of 1−e−iω
iω

.

∫ ∞
−∞

1− e−iω

iω
eiωx dω

=

∫ ∞
−∞

eiωx − eiω(x−1)

iω
dω

=

∫ ∞
−∞

sinωx− sinω(x− 1)

ω
dω

=

∫ ∞
−∞

sinωx

ω
dω −

∫ ∞
−∞

sinω(x+ 1)

ω
dω

= sign(x)

∫ ∞
−∞

sinω

ω
dω − sign(x− 1)

∫ ∞
−∞

sinω

ω
dω

= (sign(x)− sign(x− 1))π

= 2πχ[0,1) a.e. ω

When we put in the 1
2π

factor for G we get exactly what we wanted. Similarly we

can check I ′ = GF is also the identity and so we conclude that G = F−1 and so F is
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invertible. �

From now on we will use F−1 for G when talking about the inverse of the Fourier

transform on L2(R).

3.8 Higher dimensions

This definition works quite well in n dimensions too. There are really only two differences.

First the dilation equation becomes more complicated — instead of 2 terms we have 2n

terms. The second difference is that for each dimension we get a factor of

1− e−iω

iω

in the Fourier transform of the function generating the MRA. This is actually quite fortu-

nate, because it means all the integration we have to do splits into independent 1 dimen-

sional integrals.

We begin by defining the translation, dilation and rotation operators for Rn.

• For all ~α ∈ Rn we define T~α : L2(Rn) → L2(Rn) by (T~αf)(~x) = f(~x + ~α). This is a

continuous linear operator with norm 1 on L2(Rn).

• For all λ ∈ R \ {0} we define Dλ : L2(Rn)→ L2(Rn) by (Dλf)(~x) = f(λ~x). This is a

continuous linear operator with norm |λ|−n2 .

• For all ~α ∈ Rn we define R~α : L2(Rn) → L2(Rn) by (R~αf)(~x) = ei~α·~xf(~x). This is

also continuous linear operator with norm 1.

We now define the Fourier transform, more or less as before. Let Q be the unit cube

[0, 1)n, and Dn be all the functions in the MRA of L2(Rn) generated by χQ. Now let F be

defined by:

1. F : Dn → L2(Rn) is linear,

2. FT~n = R~nF where ~n ∈ Zn,

3. FDλ = 1
|λ|nFD 1

λ
where λ = 2n, n ∈ Z,

4. F(χQ)(~ω) is continuous at ~0 and F(χQ)(~0) = 1.
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Our first task will be to derive F(χQ)(~ω), as we did for the 1 dimensional case in

Theorem 3.11. The proof is basically the same, but involves some work with a more

complicated dilation equation.

Theorem 3.13. If F is defined by the above rules then:

F(χQ)(~ω) =
n∏
k=1

1− e−iωk
iωk

where ~ω = (ω1, ω2, . . . , ωn).

Proof. Our proof of Theorem 3.11 involved looking at a dilation equation that χ[0,1) satis-

fied. We have to find the equivalent equation for χQ. Examining the 1, 2 and 3 dimensional

cases it becomes apparent that the equation we are looking for is:

χQ =
∑

~r∈{0,1}n
D2T~rχQ

That is: the unit cube is the union of the cubes of side 1/2, which have had their origins

translated to each of the corners of a cube of side 1/2 at the origin.

Now we take the transform of this and apply our dilation and translation rules to get:

F(χQ) =
∑

~r∈{0,1}n

1

2n
D 1

2
R~rF(χQ)

Rewriting this with f for F(χQ) and looking at a point ~ω we find:

f(~ω) =
1

2n
f

(
~ω

2

) ∑
~r∈{0,1}n

e−i
~r·~ω
2

Concentrating on the sum for the moment, we pluck off each component of ~ω. If ~x =

(x1, x2, . . . xn) we denote (x2, . . . xn) by ~x′.∑
~r∈{0,1}n

e−i
~r·~ω
2 =

∑
~r∈{0,1}n−1

(
e−i

0·ω1
2 + e−i

1·ω1
2

)
e−i

~r·~ω′
2

=
(

1 + e−i
ω1
2

)(
1 + e−i

ω2
2

) ∑
~r∈{0,1}n−2

e−i
~r·~ω′′

2

=
n∏
k=1

(
1 + e−i

ωk
2

)
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We can now substitute this expression back into our equation for f(~ω):

f(~ω) =
1

2n
f

(
~ω

2

) n∏
k=1

(
1 + e−i

ωk
2

)
=

1

2nM
f

(
~ω

2M

) M∏
m=1

n∏
k=1

(
1 + e−i

ωk
2m

)
repeating M times

=
1

2nM
f

(
~ω

2M

) n∏
k=1

M∏
m=1

(
1 + e−i

ωk
2m

)
=

1

2nM
f

(
~ω

2M

) n∏
k=1

2M∑
r=1

e−i
ωk
wM

r

= f

(
~ω

2M

) n∏
k=1

1

2M
e−iωk − 1

e−i
ωK
2M − 1

Letting M →∞, and remembering we assumed f was continuous at zero,

f(~ω) = f(~0)
n∏
k=1

1− e−iωk
iωk

Finally using f(~0) = 1 gives the required result. �

The remainder of the work to show everything is well defined, continuous, extendible,

and invertible is the same as that for the one dimensional case, except for the fact that we

have multidimensional integrals, which split nicely into n one dimensional integrals. To

give the idea we will prove one of the results, the counterpart of Lemma 3.6.

Lemma 3.14. If f ∈ Dn then ‖f‖2
2 = C‖Ff‖2

2, where C = (2π)n.

Proof. Keeping a close eye on Lemma 3.6 we first write f in the form:

f(~x) =
∑
~r

a~rχQ(2J~x− ~r)

where the sum is over some finite subset of Zn and J ∈ N. As in Lemma 3.6 we note that

‖f‖2
2 =

∑
|a~r|2/2Jn. Taking the Fourier transform we see:

F(f)(~ω) =

(
n∏
k=1

1− e−i
ωk
2J

iωk

)∑
~r

a~re
−i~r·~ω

2j
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Rearranging so that all the ωk terms are within the product:

F(f)(~ω) =
∑
~r

a~r

(
n∏
k=1

1− e−i
ωk
2J

iωk
e−i

rkωk
2j

)

Now we can work out the norm, by splitting the multiple integral, and using our original

calculation in Lemma 3.6:

‖Ff‖2
2

=

∫
Rn

∑
~r

a~r
∑
~s

a~s

n∏
k=1

∣∣∣∣∣1− e−i
ωk
2J

iωk

∣∣∣∣∣
2

e−i
rkωk

2j ei
skωk

2j d~ω

=
∑
~r

∑
~s

a~ra~s

n∏
k=1

∫
R

∣∣∣∣∣1− e−i
ωk
2J

iωk

∣∣∣∣∣
2

e−i
rkωk

2j ei
skωk

2j dωk

=
∑
~r

∑
~s

a~ra~s

n∏
k=1

2π

2J
δrksk

=
∑
~r

|a~r|2
(

2π

2J

)n
= (2π)n‖f‖2

2

as required. �

3.9 Lp(Rn) for other p.

Extending F to L2(Rn) is only one direction in which we can expand — we can also make

extensions in other directions. The traditional definition of the Fourier transform provides

us with a definition for F on Lp(Rn) when 1 ≤ p ≤ 2. We can use our definition on all

these spaces too. In general F : Lp(Rn)→ Lq(Rn) with 1 ≤ p ≤ 2 and 1
p

+ 1
q

= 1. However

there are no inversion results, Plancherel’s Theorem or the like to look for when p 6= 2.

This means all we are left to do is prove that F is bounded from and to the correct spaces

(the equivalent of Lemma 3.6).

We have already dealt with the case p = 2, and first deal with the other extreme: the

case where p = 1. In this case F : L1(Rn)→ L∞(Rn), and we wish to show it is bounded.

For the sake of simplicity we will look at R instead of Rn.

Lemma 3.15. If we take our definition of F on D and examine F : D → L∞(R) we see

F is a bounded operator when D is given the norm it inherits as a subset of L1(R).
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Proof. As in Lemma 3.6 we begin by writing f as:

f(x) =
N∑

k=−N

akχ[0,1)(2
Jx− k).

We note that ‖f‖1 =
∑N
k=−N |ak|

2J
. Again, exactly as in Lemma 3.6, we calculate the Fourier

transform:

(Ff)(ω) =
1− e−i

ω

2J

iω

N∑
k=−N

ake
−ik ω

2J .

Estimating the L∞(R) norm of this is now a simple matter.

‖Ff‖∞ ≤ sup
ω∈R

∣∣∣∣∣1− e−i
ω

2J

iω

N∑
k=−N

ake
−ik ω

2J

∣∣∣∣∣
≤ sup

ω∈R

N∑
k=−N

|ak|

∣∣∣∣∣1− e−i
ω

2J

iω
e−ik

ω

2J

∣∣∣∣∣
=

N∑
k=−N

|ak| sup
ω∈R

∣∣∣∣∣1− e−i
ω

2J

iω

∣∣∣∣∣
=

N∑
k=−N

|ak|
1

2J

= ‖f‖1

The second last step may be verified by basic calculus and graph sketching (see Figure 3.1

for the idea). �

So we can now extend F to all of L1(R), in the same was as we extended F from D to

L2(R) earlier.

Theorem 3.16. We may extend F : D → L∞(R) continuously to a bounded operator

F1 : L1(R)→ L∞(R) with norm 1 (again D is taken with ‖.‖1).

Proof. We can use Lemma 3.5 to extend F now that we have proved Lemma 3.15. Showing

that the norm is less than or equal to one also comes from Lemma 3.15. Showing it cannot

be less than 1 comes from looking at the Fourier transform of χ[0,1). �

Note that we have called this new transform F1, because at the moment we do not know

how closely related to F it is. They must agree on D, because they are both extensions of
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Figure 3.1:
∣∣∣1−e−iωiω

∣∣∣
the same function on D. It would be nice to know if they agree on all of L1(R) ∩ L2(R).

Fortunately they do. Before we show this we will get an integral formula for F1.

Theorem 3.17. If f ∈ L1(R) then ∫ ∞
−∞

f(x)e−iωx dx

agrees with F1(f) almost everywhere.

Proof. Compare the this to the statement of Theorem 3.9 for the L2(R) case. The only

change is that we no longer need to assume the integral converges almost everywhere, as

f ∈ L1(R) ensures this for us.

We note that the formula above defines a continuous linear operator from L1(R) to

L∞(R). Using the first part of the proof of Theorem 3.9 we see that this same formula

gives us F when f ∈ D. Thus, as F1 is the unique extension of F , and the integral formula

is another extension of F they must be the same. As the image of f is in L∞(R), this

means
∫
e−iωx dx and F1(f)(w) agree for almost every ω. �

Theorem 3.18. F : L2(R)→ L2(R) and F1 : L1(R)→ L∞(R) agree on L1(R) ∩ L2(R).

Proof. By comparing Theorem 3.9 and Theorem 3.17 we see that all we need to show

agreement is the convergence of the integral in Theorem 3.9. However the fact the f ∈
L1(R) ensures this for us.

Using the integral formulas here might be considered “unsporting”. It is possible to

prove this directly, though the route is some what more bumpy.



Chapter 3. A New Construction for the Fourier Transform 58

1. If f ∈ L1(R) ∩ L2(R) has compact support then it is possible to choose fn in D so

that fn → f in L1(R) and fn → f in L2(R).

2. The definitions say Ff = limFfn in L2(R) , and F1f = limFfn in L∞(R).

3. Now we examine Ff and F1f in L2(R) and L∞(R) respectively. It can be shown

that these are the same almost everywhere.

4. Now we know F and F1 agree on compactly supported functions in L1(R) ∩ L2(R).

5. Now let g be any function in L1(R) ∩ L2(R). It is easy to show that gn = gχ[−n,n)

converges to g in both L1(R) and L2(R).

6. Again by the definitions Fg = limFgn in L2(R) and F1g = limF1gn in L∞(R).

7. Again we can show Fg = F1g because we now know Fgn = F1gn.

�

So, after some ado we have shown that we can define F on L1(R) and L2(R), and that

F agrees on the intersection. This is a large part of the hard work involved with defining

F on any Lp(R) (with 1 ≤ p ≤ 2) completed, due to the following lemma.

Lemma 3.19. Let f be in Lp(R) with 1 ≤ p ≤ 2. Then we can find f1 ∈ L1(R) and

f2 ∈ L2(R) so that f(x) = f1(x) + f2(x).

Proof. Define f1 as follows and set f2 = f − f1.

f1(x) =

f(x) |f(x)| ≥ 1

0 otherwise
.

Then using p ≥ 1 and |y| ≥ 1 implies |y| ≤ |y|p we see that:

‖f1‖1 =

∫
|f(x)|≥1

|f(x)| dx ≤
∫

|f(x)|≥1

|f(x)|p dx ≤ ‖f‖pp,

so f1 ∈ L1(R). Similarly for f2 we note that p < 2 and |y| ≤ 1 implies |y|2 ≤ |y|p and so:

‖f2‖2
2 =

∫
|f(x)|>1

|f(x)|2 dx ≤
∫

|f(x)|>1

|f(x)|p dx ≤ ‖f‖pp, .
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Thus f2 ∈ L2(R) as required. �

Our final extension can now be performed in a straight forward manner.

Theorem 3.20. For each 1 ≤ p ≤ 2 we can extend F : D → (L2(R) ∩ L∞(R)) to

F : Lp(R)→ (L2(R) + L∞(R)) in a well defined manner.

Proof. For each f ∈ Lp(R) we write f = f1 + f2 where f1 ∈ L1(R) and f2 ∈ L2(R). Then

we define:

Ff = F1f1 + Ff2.

This definition is independent of the choice of f1 and f2, for suppose f = g1 + g2 with

g1 ∈ L1(R) and g2 ∈ L2(R) then:

f1 − g1 = f2 − g2.

So f1 − g1 is in both L1(R) and L2(R) so Theorem 3.18 tells us F1(f1 − g1) = F(f2 − g2).

Rearranging gives F1(f1) + F(f2) = F1(g1) + F(g2) as required. �

We have not said if F defined in this manner is bounded, and what norm we should

use on the range. It seems that these calculations with the new construction are no easier

than with the original construction. For this reason it would seem acceptable to use some

general piece of operator interpolation theory which would tell us F : Lp(R)→ Lq(R) in a

bounded manner when 1
p

+ 1
q

= 1. Chapter 5 of [16] deals with this sort of interpolation in

detail.

3.10 Conclusions

This seems to be a new way of constructing the Fourier transform on L2(Rn). It is quite

straight forward, and doesn’t need many other complicated results (the main one might

be similar to Lusin’s theorem, which would be used to show the dyadic step functions are

dense in Lp(Rn)).

Traditional constructions of the Fourier transform (on L2(Rn)) usually begin with defin-

ing the Fourier transform on some dense subset, such as L2(Rn) ∩ L1(Rn) or the Schwartz

class S of C∞ functions which decay rapidly†. These spaces are chosen because the Fourier

†Rapidly here means that:

sup
∣∣∣∣xα ∂|β|∂xβ

f(x)
∣∣∣∣ <∞
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transform will be well behaved there, for instance the integral formula is well defined on

L2(Rn)∩L1(Rn), and the Fourier transform is invertible on S and very well behaved there.

The approach we have used is similar in that we began by defining F on a dense subspace

— the dyadic step functions D.

The definition used on these subspaces is usually the integral formula. In our MRA

based construction we have used a set of desired properties to define Fourier transform, so

this is one place where this new construction differs.

Once the definition has been made, the extension to all of L2(Rn) is carried out in the

obvious way — by proving that the transform is bounded on the chosen dense subspace

and then extending it continuously. Here the MRA based method is, in spirit, the same

(we also extend F continuously) however the proof that F is bounded is quite different.

The usual demonstration that F is bounded uses the convolution result: F(f ∗ g) =

F(f)F(g) for the Fourier transform. This is applied to f and g(x) = f(−x) to get a h with

the property ĥ = |f̂ |2 and after some convergence, invertibility and continuity arguments

h(0) is examined to discover:∫
|f̂ |2 =

∫
ĥ = h(0) =

∫
f(x)g(0− x) dx =

∫
ff =

∫
|f |2

The convergence issues surrounding this are usually tricky and involve some actual calcu-

lation of integrals. Even the slick treatment of this subject in Chapter 1 of [16] involves

some messy integration. In comparison the MRA method seems a relatively straight for-

ward piece of contour integration.

The other main result, the invertibility of F on L2(Rn), is usually obtained by noting

that it is invertible on the dense subspace and then extending continuously. Showing that

the transform is invertible on your dense subspace is not straight forward, but has usually

been dealt with on the way to showing that F is bounded. Here the MRA construction

involves a relatively simple piece of integration to show that a constructed operator is

actually the inverse of F .

The L1(Rn) case, in the MRA construction, is very similar to the case L2(Rn). Tradi-

tional constructions on L1(Rn) are more or less trivial, as the integral formula is as well

behaved as is needed on L1(Rn). The MRA construction does not seem to shed any light

on the Lp(R) case and so we resort to traditional techniques to form the Fourier transform

here.

for all non-negative n-tuples α, β.
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There are disadvantages to the MRA based method — it doesn’t provide a nice link to

the Fourier transform of tempered distributions‡, as the dyadic step functions aren’t really

suitable as test functions. Neither does it easily provide access to the convolution results.

The reason no convolution result is easily forthcoming seems to be because the convolution

of two step functions is not a step function.

A possible way around these problems might be to use a different generating function.

Something like e−x
2

might be quite suitable, first because it is a suitable test function

for distributions, and second because it is almost its own Fourier transform. The other

possible way around would be to use the integral formula, which we may as well use if the

proof using it is more straight forward.

In comparison the translation, dilation and rotation properties we used to define the

Fourier transform are easily derived from the integral formula, and so are not difficult to

obtain in any of the traditional constructions.

It should also be possible to use wavelets instead of MRA for the basis of these con-

structions. This would have advantages, as we should have fewer problems with checking

if things are well defined (this is as wavelets form a basis, and we will have uniqueness

of representation). On the other hand higher dimensional wavelets can be more irregular

than higher dimensional MRAs, so there could be a down side too.

A final note would be that it should be possible to do similar studies of other transforms

(Hilbert, Laplace?), and on other spaces (Heisenberg group?). I have looked at some

of these, but found that the integration is not as straight forward, and so reduces the

usefulness of the method. This, naturally, is not to say that such a study is impossible or

uninteresting.

‡The construction on S provides a strong link.



Chapter 4

A Uniqueness Result for the Fourier

Transform

4.1 Introduction

What we now aim to find out is: are dilation, translation and rotation conditions enough

to pin down the Fourier transform exactly? From the previous section it is apparent that

given rules about how a linear transform behaves when composed with translation and

dilation, we can make deductions about the image of functions satisfying certain dilation

equations.

If we consider a linear transform A : L2(R)→ L2(R) with:

ATnf = RnAf ∀n ∈ Z

ADλf =
1

|λ|
D 1

λ
Af ∀λ = 2n, n ∈ Z,

then by looking at the composition F−1A we would get an identity-like transform. More

specifically, the solution space of any dilation equation of the form:

f(x) =
∑
n

cnf(2x− n)

would be sent to itself under F−1A, because F−1 “undoes” the intertwining that A does.

For instance: we know χ[0,1) satisfies:

f(x) = f(2x) + f(2x− 1)

62
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so F−1Aχ[0,1) also satisfies it. We can conclude that Aχ[0,1) = Ff , where f is a solution of

the above dilation equation. Now, if we know the image of some function (in this example

Aχ[0,1)) we could proceed as we did for F in Chapter 3 to try to determine this transform

on all of L2(R).

So looking for solutions of dilation equations, can be related to looking for transforms

A which have certain translation and dilation properties.

It would be more accurate to write the above dilation equations in the form:

f =
∑
n

cnD2Tnf

because we will be looking for L2(R) solutions, which may fail to satisfy the dilation

equation on some set of measure zero. We look for L2(R) solutions because we will want

the Fourier like transforms to be linear maps on L2(R).

We could look for solutions in other spaces of functions. The case where the Fourier

transform of the solution is continuous has been examined in some detail by those inter-

ested in wavelets. Here people are looking for compactly supported functions in Lp(R)

— Daubechies and Lagarias deal with L1(R) solutions of general dilation equations in [4].

When p ≥ 1 the compactly supported Lp(R) case is less general than the L1(R) case.

Others have dealt with this, for example [21].

4.2 A simple start

One beginning would be to solve dilation equations that hold everywhere. In looking for

solutions in L2(R) we will not have this option, but this search gives us a foothold.

We observe that by chopping χ[0,1) at α ∈ (0, 1) we get a two pieces χ[0,α) and χ[α,1) —

this means χ[0,1) satisfies the dilation equation:

χ[0,1)(x) = χ[0,1)

(x
α

)
+ χ[0,1)

(
x− α
1− α

)
for any α ∈ (0, 1).

Theorem 4.1. Let g : R→ R be such that:

g(x) = g
(x
α

)
+ g

(
x− α
1− α

)
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∀α ∈ (0, 1). Then g is a constant multiple of χ[0,1) except at 0 and 1.

Proof. We prove this by varying the parameter α. Setting x = 0:

g(0) = g(0) + g

(
−α

1− α

)
0 = g

(
−α

1− α

)
As α ranges over (0, 1), −α

1−α ranges over (−∞, 0), thus g is supported on [0,∞). Setting

x = 1 leads to a similar cancelation giving:

0 = g

(
1

α

)
and as α ranges over (0, 1), 1/α goes from 1 to ∞. So now we know g is supported on

[0, 1]. Now to get the values in the middle we set x = 1/2:

g

(
1

2

)
= g

(
1

2α

)
+ g

(
1− 2α

2(1− α)

)
Now when α ∈ (0, 1

2
), 1/2α > 1 and (1 − 2α)/2(1 − α) ranges over (0, 1

2
). Similarly if

α ∈ (1
2
, 1), (1 − 2α)/2(1 − α) < 0 and 1/2α ranges over (1

2
, 1). Filling in to the above we

find that g(x) = g(1/2) for x ∈ (0, 1).

We also observe that by putting x = α = 1/2 gives that g(0) + g(1) = g(1/2).

�

Remark 4.1. It is worth noting that we have used a lot of dilation equations in the proof

of this theorem, one for each α ∈ (0, 1) — an uncountable number. This is the theorem’s

undoing in L2(R).

4.3 A useful counterexample

The unlikely looking function,

log

∣∣∣∣1− 1

x

∣∣∣∣ ,
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Figure 4.1: φ(x)

is actually closely related to χ[0,1). It is the Hilbert transform∗ of χ[0,1), and so has Fourier

transform:

−i sign(ω)
1− e−iω

iω
.

While trying to weaken the definition of the Fourier transform in Section 3.5 we came

up with this type of function as a possible contender for the image of χ[0,1). To rule it out

we introduced the continuity at 0 clause. Another reason that this function is interesting

is because it only narrowly misses being in L1(R).

Lemma 4.2. Let φ(x) be given by:

φ(x) = log

∣∣∣∣1− 1

x

∣∣∣∣ .
Then φ ∈ Lp(R) for 1 < p <∞.

Proof. A sketch of φ (Figure 4.1), shows we have two things to worry about. The tails of

the function, and the two points where it blows up. It does also show that the function is

symmetric (under reflection in (1/2, 0)), so at least we only have to do one tail and either

of the bad points.

∗The Hilbert transform H of a function f is usually given to be

(Hf)(x) =
1
π

∫
f(t)
x− t

dt.

This corresponds to multiplying the Fourier transform by −i sign(ω). The Hilbert transform is mentioned
in most books dealing with the theory of Fourier transforms, for example [16].
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The tails are easy to deal with. Looking at

dφ

dx
=

1

x2 − x

we see that φ(x) behaves like − 1
x

in the limit as |x| → ∞. To make this precise we compare

− 1
x

with φ(x) on (2,∞). Since the limit of both is zero we can write (for a ≥ 2):

φ(a) +
1

a
=

∫ a

∞

d

dx

(
φ(x) +

1

x

)
dx

=

∫ a

∞

1

x2 − x
− 1

x2
dx

=

∫ a

∞

1

x2(x− 1)
dx∣∣∣∣φ(a) +

1

a

∣∣∣∣ =

∫ ∞
a

1

x2(x− 1)
dx

≤
∫ ∞
a

1

(x− 1)3
dx

=
1

2(a− 1)2

If we look at this when x is large (say |x| > 2) we see the tails of 1
a

and 1
2(a−1)2 are in Lp(R)

when p > 1, so the tails of φ are also in Lp(R).

Now we turn to the singularity at 0. We try to see how bad it is in the same way we

might examine a pole, by calculating:

lim
x→0

xnφ(x)

for n > 0. We will have to use L’Hôpital’s rule here.

lim
x→0

log
∣∣1− 1

x

∣∣
x−n

= lim
x→0

1
x2−x

−nx−(n+1)

= lim
x→0

xn+1

−n(x2 − x)

= lim
x→0

xn

−n(x− 1)
= 0.
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We may choose n so that np < 1, as p < ∞. So ∀ε > 0 ∃ δ > 0 so that when |x| < δ we

know: ∣∣∣∣xn log

∣∣∣∣1− 1

x

∣∣∣∣∣∣∣∣ < ε∣∣∣∣log

∣∣∣∣1− 1

x

∣∣∣∣∣∣∣∣ <
ε

|x|n∫ δ

−δ

∣∣∣∣log

∣∣∣∣1− 1

x

∣∣∣∣∣∣∣∣p dx <

∫ δ

−δ

εp

|x|np
dx

< ∞.

So now we know the tails and singularities contribute only a finite amount to the Lp(R)

norm, and the remaining bits are bounded and have compact support, so φ has finite Lp(R)

norm as required.

�

This example leads in to three useful pieces of information.

Remark 4.2. Examining its dilation properties we find φ satisfies all the criteria of Theo-

rem 4.1, except when φ is evaluated at 0 and 1. At x 6= 0, α, 1:

φ
(x
α

)
+ φ

(
x− α
1− α

)
= log

∣∣∣1− α

x

∣∣∣+ log

∣∣∣∣1− 1− α
x− α

∣∣∣∣
= log

∣∣∣∣(x− αx
)(

x− α− 1 + α

x− α

)∣∣∣∣
= log

∣∣∣∣1− 1

x

∣∣∣∣ = φ(x)

The fact that the set over which α ranges has non-zero measure causes a problem. When

we consider all the equations together, the set where at least one of the dilation equations

fails to hold is: ⋃
α∈(0,1)

{0, α, 1} = [0, 1],

which has non-zero measure. This is why we cannot try to use Theorem 4.1 when we want

solutions which hold almost everywhere.

Remark 4.3. The symmetries of φ are slightly different to those of χ[0,1). About the line

x = 1/2, φ is odd but χ[0,1) is even. Properties like odd and even can be expressed as
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dilation type equations with negative scale factors. In this case:

χ[0,1)(x) = χ[0,1)(−x+ 1)

φ(x) = −φ(−x+ 1)

Remark 4.4. The fact that Fφ is Fχ[0,1) multiplied by some relatively uncomplicated

function is quite interesting. It will turn out to be profitable to look at the ratio of the

Fourier transforms of solutions to a given dilation equation.

4.4 How many solutions?

So we have found that χ[0,1) and φ both satisfy the simple dilation equation:

f(x) = f(2x) + f(2x− 1)

We might well suspect that the solution space of this equation is two dimensional, as it

has two terms, a dilation factor of two and its coefficients sum to two. If this were the case

all we would need to pin down the Fourier transform would be:

ATnf = RnAf ∀n ∈ Z

ADλf =
1

|λ|
D 1

λ
Af ∀λ = ±2n, n ∈ Z

because using the negative scales we could rule out φ by looking at the transformed versions

of the dilation equations in Remark 4.3.

Unfortunately, the solution space is not 2 dimensional, it is quite a lot bigger. To find

some more solutions we must go back to the way we found φ in the first place — by looking

at conditions on its transform.

Lemma 4.3. Let A : L2(R)→ L2(R) be a linear transform which satisfies:

ATnf = RnAf ∀n ∈ Z

ADλf =
1

|λ|
D 1

λ
Af ∀λ = ±2n, n ∈ Z
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If we denote Aχ[0,1) by ψ, then ψ satisfies:

ψ(x) = e−ixψ(−x)

and:

ψ(x) =
1

2

1− e−ix

1− e−ix2

ψ
(x

2

)
for almost all x ∈ R.

Proof. To get the first condition we rearrange the dilation equation:

χ[0,1)(x) = χ[0,1)(−x+ 1)

χ[0,1) = D−1T1χ[0,1)

Aχ[0,1) = AD−1T1χ[0,1)

= D−1AT1χ[0,1)

= D−1R1Aχ[0,1)

ψ(x) = D−1R1ψ(x) a.e. x ∈ R

ψ(x) = D−1e
ixψ(x) a.e. x ∈ R

ψ(x) = e−ixψ(−x) a.e. x ∈ R

To get the second we rearrange the dilation equation:

χ[0,1)(x) = χ[0,1)(2x) + χ[0,1)(2x− 1)

χ[0,1) = D2χ[0,1) +D2T−1χ[0,1)

Aχ[0,1) = AD2χ[0,1) +AD2T−1χ[0,1)

ψ =
1

2
D 1

2
ψ +

1

2
D 1

2
AT−1χ[0,1)

ψ =
1

2
D 1

2
ψ +

1

2
D 1

2
R−1ψ

ψ(x) =
1

2
ψ
(x

2

)
+

1

2
e−i

x
2ψ
(x

2

)
a.e. x ∈ R

ψ(x) =
1

2

(
1 + e−i

x
2

)
ψ
(x

2

)
a.e. x ∈ R

ψ(x) =
1

2

1− e−ix

1− e−ix2
ψ
(x

2

)
a.e. x ∈ R

�
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Now to some extent we can see where we are going. Having a rule for dilation by 2n

tells us the relation between ψ(x) and ψ(2nx). Having a rule for dilation by −1 gives us a

relation between ψ(x) and ψ(−x).

It would even seem that these are the only constraints. We can use this to get some

results about solving general dilation equations. Indeed suppose that we have some solution

f0 to a dilation equation. When we take the Fourier† transform of this dilation equation

suppose we get:

f̂(x) = P (x)f̂
(x

2

)
Naturally we know f̂0 satisfies this. If we pick some function g so that g(x) = g(2x) for all

x ∈ R, then g(x)f̂0(x) will also satisfy this transformed dilation equation. If this g(x)f̂0(x)

is in L2(R) then we can take the inverse transform and we have a new solution to the

dilation equation.

This tells us that there are lots of solutions of our dilation equations. Daubechies and

Lagarias do write about this type of solution in [4], but the fact that they are looking for

f ∈ L1(R) means f̂ is continuous. For this reason they reject these solutions in many cases

(the idea is that they only accept these solutions where either g is constant, or f̂0(x)→ 0

as x→ 0 and f̂0 and g are continuous).

They construct suitable g by choosing two period 1 functions g+ and g− and then define

g by:

g(x) =


g+ (log2 |x|) x > 0

g− (log2 |x|) x < 0

0 x = 0

.

The following lemma just makes a concrete case for our dilation equation:

f(x) = f(2x) + f(2x− 1).

Lemma 4.4. Let f0 = χ[0,1) and let E be a measurable subset of (1, 2). Define g on (1, 2)

so that g = χE, and extend g uniquely so that g(x) = g(−x) and g(x) = g(2x). Then:

f(x) = F−1 (gFf0) (x)

is a solution to f(x) = f(2x) + f(2x− 1).

†F would be a suitable A in Lemma 4.3
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Proof. Since f0 is in L2(R), Ff0 ∈ L2(R). Let F =
⋃
n∈Z
±2nE then:

∫
R

|gFf0|2 dx =

∫
F

|Ff0|2 dx

≤
∫
R

|Ff0|2 dx

< ∞

So gFf0 is in L2(R), so we can find F−1 of it.

Verifying it is a solution of the dilation equation is just a matter of working through

the algebra. �

This more or less puts the last nail in the coffin of any attempt to try to uniquely

determine the Fourier transform using dilations by only powers of 2. Even with dilations

by negative factors we will still have a huge amount of freedom. Our only hope of success

is to introduce dilations by more scales.

4.5 Some more dilation equations

While proving Theorem 4.1 we used the fact that χ[0,1) was a solution of

f(x) = f
(x
α

)
+ f

(
x− α
1− α

)
for all α in (0, 1). Let’s see what happens if we have a transform A for which the dilation

property held for powers of both α and 1− α.

f = D 1
α
f + T−αD 1

1−α
f

Note that we are going to need to use translation by many α now, and not just integers.

Af = AD 1
α
f +AT−αD 1

1−α
f

Af = αDαAf +R−αAD 1
1−α

f

Af = αDαAf + (1− α)R−αD1−αAf

(Af)(x) = α(Af)(αx) + (1− α)e−iαx(Af)((1− α)x) a.e. x ∈ R
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The first problem with this equation is that it is a three scale equation: 1, α and 1−α — this

means the equation can not easily be iterated. The equation that gave us the relationship

between x and 2x was a two scale equation, and this made it ideal for iteration. The second

problem is that we don’t have a good set to choose α from — if we take all the α ∈ (0, 1)

then we have a problem where we take the union of too many sets of measure 0, and end

up with a set of positive measure. We could try α ∈ Q∩ (0, 1) — but in Theorem 4.1 that

wouldn’t be good enough without an improved argument.

So we want a new set of dilation equations with the following properties:

• Each one should only contain 2 scales.

• There should be at most a countable number of them.

• They should be simple/regular enough that we can apply our translation and dilation

rules and see what happens.

Fortunately the next most obvious way of chopping up χ[0,1) provides us with exactly what

we need. All we do is chop χ[0,1) into n equal parts (n ∈ N).

χ[0,1)(x) = χ[0, 1
n

)(x) + χ[ 1
n
, 2
n

)(x) + · · ·+ χ[n−1
n
,1)(x)

= χ[0,1)(nx) + χ[0,1)(nx− 1) + · · ·+ χ[0,1)(nx− n+ 1)

Now we can prove a slightly more general version of Lemma 4.3.

Lemma 4.5. Suppose f satisfies:

f(x) =
n−1∑
r=0

f(nx− r)

for some n ∈ N and A is a linear transform with

ATmf = RmAf ∀m ∈ Z

ADλf =
1

|λ|
D 1

λ
Af ∀λ = ±nm, m ∈ Z

then Af denoted by f̃ satisfies:

f̃(x) =
1

n

1− e−ix

1− e−i xn
f̃
(x
n

)
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for almost all x ∈ R.

Proof. The proof is completely analogous to that of Lemma 4.3. �

We can now see what effect having a rule for dilation by n has — it relates f̃(x) to

f̃(x/n). The next lemma shows that in Lp(R) the fact that this relation is true only almost

everywhere is not so important because we can redefine the function on a set of measure

zero so the relation between f̃(x) and f̃(x/n) is true everywhere.

Lemma 4.6. If f ∈ Lp(R) satisfies a finite non-zero dilation equation of scale α > 1, and

A : Lp(R) → Lq(R) has the dilation property for scale α and the translation property for

integers, then knowing f̃ = Af on [αn, αn+1) determines f̃ in Lq(R+).

Proof. We have supposed that f satisfies a dilation equation:

f =
∑
n

cnDαT−nf

Applying A and using the translation and dilation rules:

f̃ =

(
1

α

∑
n

cne
−ixn

α

)
D 1

α
f̃ .

Or:

f̃(x) = P (x)f̃
(x
α

)
a.e. x ∈ R.

P (x) is just a trigonometric polynomial and so is analytic, which means either P is iden-

tically 0 or P has a countable number of zeros. As the cn are not all zero P can not be 0,

so we conclude P (x) has a countable number of zeros.

If all things were well behaved we could iterate our relation to get (for n in N):

f̃
( x
αn

)
=

f̃(x)
n−1∏
r=0

P
(
x
αr

)
f̃ (xαn) =

n−1∏
r=0

P (xαr) f̃(x).

Thus providing P (αnx) is nonzero and the original relation holds for αnx then given f̃(x)

we may find f̃(αnx)∀n ∈ Z. So if we know f̃ on [αn, αn+1) and we want to know f̃ at
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x ∈ R+ we simply multiply x by some power of α until it lies in our interval [αn, αn+1) —

providing we avoid the bad points.

However, we can show that the set of these bad points is of measure zero. Let N be

the set of points where our original relation does not hold. Then the set of all bad points

is:

M =
{
x ∈ R+ : P (αnx) = 0 or αnx ∈ N for some n ∈ Z

}
= {αnx : P (x) = 0 and n ∈ Z} ∪ {αnx : x ∈ N and n ∈ Z}

=
⋃
n∈Z

{αnx : P (x) = 0} ∪
⋃
n∈Z

{αnx : x ∈ N} .

But this is the union of two countable unions of sets of measure zero, and so has measure

zero. Thus we can set f̃ to be 0 on M without changing anything in Lq(R), and the relation

will then hold everywhere (as the relation will always hold if both f̃(x) and f̃(x/α) are

zero). �

Remark 4.5. We should note that [0, ε] always contains an interval of the form [αn, αn+1)

for any ε > 0. This means knowing f̃ on [0, ε] is enough to determine f̃ on the whole

positive side.

Remark 4.6. We proved the lemma for α > 1, but the situation is essentially the same for

scales 0 < α < 1. Also, having a negative scale and related non-zero dilation equation lets

us determine f̃ on R− from f̃ on R+.

We can now see having a dilation rule and equation of scale n has more or less the same

effect as knowing one of scale 2. We know that allowing the scale to be 2 is not enough,

so for the moment let’s go to the other extreme and allow all n ∈ Z.

4.6 Pinning it down

We are now ready to present a way of pinning the Fourier transform down. To prove this

theorem we will need the following result:

Lemma 4.7. If g ∈ L1(R), and if

f(x) =

∫ x

−∞
g(t) dt x ∈ (−∞,∞)
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then f is continuous and
d

dx
f(x) = g(x) a.e. x ∈ R

Proof. This result is proved in [14], Theorem 8.17 page 176. �

Theorem 4.8. Let A : L2(R)→ L2(R) be a bounded linear transform which satisfies:

ATnf = RnAf ∀n ∈ Z,

ADλf =
1

|λ|
D 1

λ
Af ∀λ ∈ Z \ {0}.

If we denote Aχ[0,1) by f̃ , then f̃ is a constant multiple of Fχ[0,1) almost everywhere.

Proof. First let f̃0 be Fχ[0,1), then from Lemma 4.5 we know f̃ and f̃0 satisfy:

f̃ =
1

n

1− e−ix

1− e−i xn
D 1

n
f̃

for n in Z \ {0}. Or writing 1
n

1−e−ix
1−e−i

x
n

as Pn(x):

f̃ = Pn(x)D 1
n
f̃

Note that Pn(x) is non-zero on [0, 2π), and is bounded away from zero on [0, π] (for in-

stance). The same can be said for f̃0(x) = 1−e−ix
ix

, so it is safe to divide by both f̃0 and

Pn(x)D 1
n
f̃0 when x is in [0, π]. Doing this we get:

f̃

f̃0

=
Pn(x)D 1

n
f̃

Pn(x)D 1
n
f̃0

= D 1
n

f̃

f̃0

,

as long as both sides are evaluated in [0, π]. We rewrite this in terms of g = f̃/f̃0:

g = D 1
n
g,

again as long as both sides are evaluated in [0, π].

We can chain some of these results together, and get a similar results for α ∈ Q \ {0},
instead of just n ∈ Z \ {0}. Indeed suppose α = n/m with n,m ∈ Z and m 6= 0 then:

D n
m
g = D 1

m
Dng = D 1

m
g = g
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as long as nx/m, x/m and x are all in [0, π] (and if x is in the correct range x/m certainly

is). So g = Dαg in our range.

Now we define G(x) =
∫ x

0
g(x′) dx′. Remember that f̃ is in L2(R) which implies that

f̃
∣∣∣
[0,π]

is in L1(R). Combining this with the fact that f̃0 is bounded away from zero on this

interval we can conclude that g|[0,π] is in L1(R) also‡. So using Lemma 4.7 we conclude

G(x) is continuous on [0, π].

But we can actually work out G(x) on the rationals. Let α be in Q:

G(α) =

∫ α

0

g(x′) dx′

=

∫ α

0

D 1
α
g(x′) dx′

=

∫ α

0

g

(
x′

α

)
dx′

= α

∫ 1

0

g(y)dy

= αG(1)

So, as Q is dense, and G(α) = αG(1) for α ∈ Q ∩ [0, π] and G continuous on [0, π] we can

say G(x) = xG(1) for all x ∈ [0, π].

Now we apply the second part of Lemma 4.7 to conclude that G′ = g almost everywhere

on [0, π]. So:

g(x) = G(1) a.e. x ∈ [0, π]

f̃(x) = G(1)f̃0(x) a.e. x ∈ [0, π]

f̃(x) = G(1)f̃0(x) a.e. x ∈ R+ by Lemma 4.6

By using negative scales and the negative scale dilation equation in Remark 4.3 we also

find that f̃(x) = G(1)f̃0(x) for almost all negative x. Thus f̃ = G(1)f̃0 in L2(R).

�

Remark 4.7. Examining the properties of the set of dilations (Z \ {0}) which were used in

the proof, we see the only property we used was that the multiplicative group generated

by the set was dense in R. We don’t actually need that many scales in our set of dilations

‡What we really mean by g|[0,π] ∈ L1(R) is that gχ[0,π] ∈ L1(R)
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to get this. Consider for instance {−1, 2, 3}. The multiplicative group generated by this

is:

S = {±2n3m : n,m ∈ Z}

We can examine the positive part of this set this by taking log2, so we get {n+mθ : n,m ∈
Z}, where θ is log2 3. As log2 : R+ → R is a homeomorphism, the original set is dense iff

this one is. But this new set is clearly invariant under translation by integers, so we just

need to decide if {mθ mod 1 : m ∈ Z} is dense in [0, 1]. But θ is irrational therefore the

set is dense in [0, 1], and so the original set S is dense in R.

We can see from this that when the set of dilations contains two scales which are not

rational powers of one another we get a set dense in R+. Including a negative scale then

gives us a set dense in all of R.

With this remark in mind, we could use our last theorem to show the following, which

really answers the question asked at the start of the section.

Theorem 4.9. Let A : L2(R)→ L2(R) be a bounded transform which satisfies:

1. A is linear.

2. ATnf = RnAf ∀n ∈ Z.

3. ADλf = 1
|λ|D 1

λ
Af ∀λ ∈ Z ⊂ Z \ {0}

4. The multiplicative group S generated by Z is dense in R.

Then A is a constant multiple of the Fourier transform.

Proof. By using essentially the same proof as in Theorem 4.8 we show that Aχ[0,1) is a

constant multiple of Fχ[0,1). Then using the MRA construction of the Fourier transform

from Chapter 3 we show that A must be that multiple of the Fourier transform. �

We could actually recast this style of proof into a uniqueness result for simultaneous

dilation equations.

Theorem 4.10. Say f and g are L2(R) solutions to the integer scale dilation equations:

f(x) =
∑
n

cmnf(αmx− n)
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(αm ∈ Z) for m = 0, 1, 2, . . . N . Further suppose that:

S = {αn0
0 α

n1
1 . . . αnNN : n0, n1 . . . nN ∈ Z}

is dense in R and that f̂(ω) = (Ff)(ω) is bounded away from zero on [0, ε] for some ε > 0,

then g is a constant multiple of f .

4.7 Conclusion

We have seen that a single dilation equation may have many solutions in L2(R). With

further restrictions we can actually get the solution to be unique up to multiplication by

a constant. The two restrictions we have encountered are:

• The function has compact support, and so is in L1(R), and has a continuous Fourier

transform.

• The function solves a set of dilation equations of varying scales, which generate a

multiplicative group that is dense in the reals.

In Chapter 3 we used the first of these restrictions to “weaken” our definition of the Fourier

transform. In this chapter we used the second to give a uniqueness result: we can now pin

down the Fourier transform as the only bounded transform with certain translation and

dilation properties.

It should be possible to generalise this proof to L2(Rn), but this would require more

complicated dilation structures and an Rn version of Theorem 4.7. This more complex

dilation would have to allow independent dilation in each direction in Rn.

We have still said only a little about producing solutions to a dilation equation. We

have, however, learned to produce new solutions from one which we have been given.



Chapter 5

Future Work

As Shelley claims Ozymandias said:

Look on my works, ye Mighty, and despair!

Which, as intended by Shelley, can be interpreted in several ways. The work presented

here is far from earth shattering (and perhaps sufficiently far from earth shattering that it

would make the mighty despair), but the aspect to be focused upon in this final section is

the fact that learning more only serves to highlight how little we really know. This work

has almost certainly raised more questions than it has answered in the author’s mind.

Even Chapter 1 and Chapter 2 leave some interesting questions. The Haar MRA and

band limited MRA are in some senses duals of one another — g for the Haar MRA is the

characteristic function of an interval as is ĝ for the band limited MRA. This dual structure

of the MRA may warrant further investigation.

The examples in Chapter 1 which use music to demonstrate the usefulness of the CWT

raise the possibility of using the CWT to automatically produce sheet music from a record-

ing. This could be an extremely rewarding project requiring many diverse skills to com-

plete.

Our definition of the Fourier transform, when examined in another light, looks like

an intertwining of representations of the affine group on L2(R). The affine group can be

considered to be the set of first degree polynomials:

{ax+ b : a, b ∈ R and a 6= 0} ,

with a group operation of composition. This may well allow group representation results

to be exploited in this definition.

79
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Chapter 3 also offers several questions in its conclusion. Can we use this type of

construction for other transforms? Can we establish a convolution result using a different

MRA, or a structure linked with MRA?

Finally Chapter 4 shows how little is known about dilation equations — a subject

which looks remarkably similar to the familiar turf of difference equations and differential

equations. Even cataloging all the solutions of the most simple dilation equation:

f(x) = f(2x) + f(2x− 1),

does not seem to have been achieved! A more detailed study of dilation equations on a

variety of spaces might level the playing field a little. This study might even produce new

wavelets which are suitable for new situations.

Also dilation equations are only the first step in a chain where sums are replaced with

integrals, functions replaced with distributions, scalars are replaced with matrices and

single scales replaced with multiple scales. All in all there are not just many questions to

be answered, but also many questions still to be thought of.
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