The validity of IEEE 802.11 MAC modeling hypotheses

David Malone

Joint work with Kaidi Huang and Ken Duffy

Hamilton Institute, National University of Ireland Maynooth

MACOM, Barcelona, September 14th 2010

Talk outline.

- ▶ DCF the IEEE 802.11 CSMA/CA MAC.
- ▶ Mathematical modeling of 802.11 MAC.
- Implicit approximations made to make modeling practical.
- ▶ Directly testing these hypotheses with test-bed data.
- Summary, thoughts and conclusions.

The 802.11 DCF

Figure: 802.11 MAC operation (not to scale)

The 802.11 MAC flow diagram

Figure: Saturated 802.11 MAC operation

Popular mathematical modeling approaches

- P-persistent:approximate the back-off distribution be a geometric with the same mean. E.g. work by Marco Conti and co-authors (F Cali, M Conti, E Gregori, P Aleph IEEE/ACM ToN 2000).
- ► Mean-field Markov models: seminal work by Bianchi (IEEE Comms L. 1998, IEEE JSAC 2000).

Bianchi's approach

Observation: each individual station's impact on overall network access is small.

Mean field approximation: assume a fixed probability of collision at each attempted transmission p, irrespective of the past.

Each station's back-off counter then a Markov chain.

Mean-field Markov Model's Chain

Figure: Individual's Markov Chain if p known

Mean-field Markov Overview

Stationary distribution gives the probability the station attempts transmission in a typical slot

$$\tau(p) = \frac{2(1-2p)}{(1-2p)(W+1) + pW(1-(2p)^m)}.$$

Figure: Attempt probability $\tau(p)$ vs p

The self-consistent equation

Network of N stations. Mean field decoupling idea: the impact of **every** station on the network access of the others is small, so that

$$1 - p = (1 - \tau(p))^{N-1}.$$
 (1)

Solution of equation (1) determines the network's "real" p^* .

Figure: 1 - p and $(1 - \tau(p))^N$ for N = 2, 4, 8 & 16

Example developments

- ► Unsaturated 802.11, Small buffer: Ahn, Campbell, Veres and Sun, IEEE Trans. Mob. Comp., 2002; Ergen, Varaiya, ACM-Kluwer MONET, 2005; Malone, Duffy, Leith, IEEE/ACM Trans. Network., 2007.
- ▶ Unsaturated 802.11, Big buffer: Cantieni, Ni, Barakat and Turletti, Comp. Comm., 2005; Park, Han and Ahn, Telecomm. Sys., 2006; Duffy. and Ganesh, IEEE Comm. Lett., 2007.
- ▶ 802.11e, Saturated: Kong, Tsang, Bensaou and Gao, IEEE JSAC, 2004; Robinson and Randhawa, IEEE JSAC, 2004. Unsaturated: Zhai, Kwon and Fang, WCMC, 2004. Chen, Xhai, Tian and Fang, IEEE Trans. W. Commun., 2006.
- ▶ 802.11s, unsaturated: Duffy, Leith, Li and Malone, IEEE Comm. Lett., 2006.

Standard approach to model verification

ASK: Do the model throughput and delay predictions match well with results from simulated system?

NOT: Make the approximations explicit hypotheses and check them directly.

Why do these models produce good predictions? Is there a Therom we should know?

Why is this important?

Test bed

Figure: PC as AP, 1 PC and 9 PC-based Soekris Engineering net4801 as clients. All with Atheros AR5215 802.11b/g PCI cards. Modified MADWiFi wireless driver for fixed 11 Mbps transmissions and specified queue-size.

A first look at the data

Figure: Collision probability at backoff stages versus load. 2 stations.

Also checked with simulations.

What are the hypotheses?

Common assumptions to all:

- $C_k = 1$ if k^{th} transmission results in collision.
- $C_k = 0$ if k^{th} transmission results in success.

Assumptions:

- ▶ (A1) $\{C_k\}$ is an independent sequence;
- ▶ (A2) $\{C_k\}$ are identically distributed with $P(C_k = 1) = p$.

Testing (A1): $\{C_k\}$ independent

Figure: Saturated C_1, \ldots, C_K normalized auto-covariances. Experimental data, N = 2, 5, 10, K = 2500k, 1200k, 711k.

Testing (A1): $\{C_k\}$ pairwise independent

Figure: Unsaturated, big buffer C_1, \ldots, C_K normalized auto-covariances. Experimental data, N = 2, 5, 10, K = 1800k, 750k, 380k.

Testing (A2): $\{C_k\}$ identically distributed

Record the backoff stage at which the attempt was made.

Probability p_i of collision given backoff stage i.

Assumption (A2): $p_i = p$ for all i.

MLE

$$\hat{p}_i = \frac{\text{\#collisions at back-off stage } i}{\text{\#transmissions at back-off stage } i}.$$

Hoeffding's inequality (1963):

$$P(|\hat{p}_i - p_i| > x) \le 2 \exp(-2x(\#\text{transmissions at back-off stage } i))$$
.

To have 95% confidence that $|\hat{p}_i - p_i| \le 0.01$ requires 185 attempted transmissions at backoff stage i.

Testing (A2): $\{C_k\}$ identically distributed

Figure: Saturated collision probabilities. Experimental data.

Testing (A2): $\{C_k\}$ identically distributed

Figure: Unsaturated, big buffer collision probabilities. Experimental data.

What are the big-buffer hypotheses?

Big-buffer models:

- $Q_k = 1$ if packet waiting after k^{th} successful transmission.
- $Q_k = 0$ if no packet waiting after k^{th} successful transmission.

Assumptions:

- ▶ (A3) $\{Q_k\}$ is an independent sequence;
- ▶ (A4) $\{Q_k\}$ are identically distributed with $P(Q_k = 1) = q$.

Testing (A3): $\{Q_k\}$ pairwise independent

Figure: Unsaturated, big buffer queue-non-empty sequence normalized auto-covariances. Experimental data. K = 1700k, 720k, 360k.

Testing (A4): $\{Q_k\}$ identically distributed

Figure: Unsaturated, big buffer queue-non-empty probabilities. Experimental data. (Note the large y-range!)

What about 802.11e?

Figure: 802.11 MAC operation (not to scale)

What are the 802.11e hypotheses?

Models with different AIFS values:

• H_k is length of k^{th} period we spend in hold-states.

Assumptions:

- ▶ (A5) $\{H_k\}$ is an independent sequence;
- ▶ (A6) $\{H_k\}$ are identically distributed and if we know silence probability distribution can be determined from Markov chain.

Testing (A5): $\{H_k\}$ pairwise independent

Figure: Hold state normalized auto-covariances. 5 class 1, 5 class 2 stations, D = 2,4 & 8. K = 1700k, 1200k, 850k. ns-2 data

Testing (A6): $\{H_k\}$ specific distribution

Figure: Hold state distributions, D = 2, 12. ns-2 data.

Kolmogorov-Smirnov test accepts fit for K of the order 10,000; rejects it for K of the order 1,000,000.

What are the 802.11s hypotheses?

Mesh model(s) assume:

• D_k is k^{th} inter-departure time.

Assumptions:

- ▶ (A7) $\{D_k\}$ is an independent sequence;
- \triangleright (A8) $\{D_k\}$ are exponentially distributed.

Testing (A7): $\{D_k\}$ pairwise independent

Figure: Inter-departure time normalized auto-covariances. Experimental data data

Testing (A8): $\{D_k\}$ exponentially distributed

Figure: Inter-departure time distribution. 5 stations, small buffer. Low load, Big Biffer and Saturated. Experimental data

Summary

Assumption	Sat.	Small buf.	Big buf.
(A1) $\{C_k\}$ indep.	√	✓	√
(A2) $\{C_k\}$ i. dist.	√	✓	×
(A3) $\{Q_k\}$ indep.	-	-	√/×
(A4) $\{Q_k\}$ i. dist.	-	-	×
(A5) $\{H_k\}$ indep.	√	-	-
(A6) $\{H_k\}$ dist.	√	-	-
(A7) $\{D_k\}$ indep.	√	✓	✓
(A8) $\{D_k\}$ exp. dist.	×	light load	light load

Table: $\{C_k\}$ collision sequence; $\{Q_k\}$ queue-occupied sequence; $\{H_k\}$ hold sequence; $\{D_k\}$ inter-departure time sequence.

What to do?

- Collision probability assumption pretty good.
 - ► Full Markov chain?
- Modeling variable queue more tractable.
 - Arrival process structure.
 - Can also build queue into Markov chain.
 R.P. Liu, G.J. Sutton, I.B. Collings, IEEE TWC, To Appear.
- 11e assumptions look OK, for moderate AIFS.
 - More specialized.
- When network is busy Poisson not that good.
 - Insensitive to distribution?

Impact of incorrect hypotheses?

Figure: Theory & ns-2 data.

K.D. Huang & K.R. Duffy IEEE Comms Letters 2009.

Conclusions

- Some of our assumptions are good,
- Some are not so good,
- Our results are usually good, but not always.
- Possible to provide any analysis?
- ▶ Other assumptions: slottedness and channel.

Thanks! Questions?