Guesswork is not a substitute for Entropy

David Malone and Wayne Sullivan

Measuring Randomness

- * simple measurement of uncertainty: a program that reads n bits of random state can only have 2ⁿ outcomes.
- * Lotto: 42!/6!36! = 5245786 (23 bits)
- * Shuffling Card: 52! = 8.0658x1067 (29 bits)
- * Shuffling Votes: 1000000! (20 million bit = 1.25MB)

Entropy Measuring Uncertainty

- * Source produces symbol a with prob pa.
- * Entropy $h(p) := -\sum p_a \log(p_a)$
- * Shannon: h(p) is average number of bit required to encode long message.
- * Nice properties: adds for independent.
- * Often thought of as uncertainty.

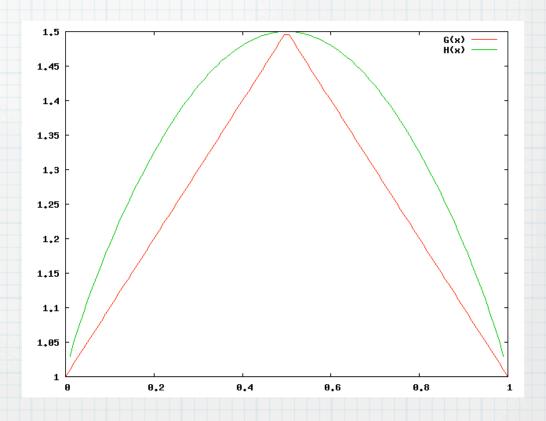
Guessing and Cryptography

- * Encryption uses algorithm and key.
- * Algorithms usually carefully chosen.
- * Easier to attack key?
- * Brute Force Attack vs. Dictionary Attack.
- * Not just people need to seed PRNGs.

Entropy and Guessing

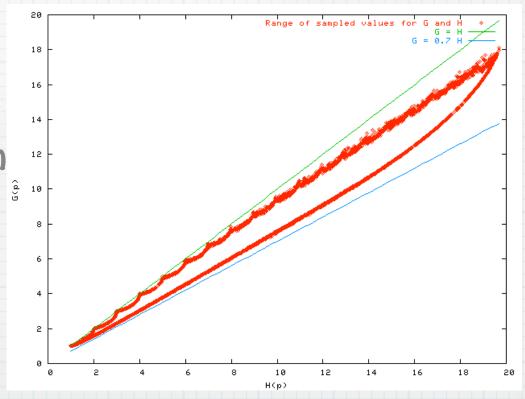
- * Poes Shannon's Entropy capture hard to guessness?
- * sci.crypt FAQ:

We can measure how bad a key distribution is by calculating its entropy. This number E is the number of `real bits of information'' of the key: a cryptanalyst will typically happen across the key within 2^E guesses.


* No proof offered - can we check?

Guesswork

- * Quickest way to guess is from most to least likely.
- * Sort pi so that p1 is most likely then p2, ...
- * Mean number of guesses: G(p) := Σi pi
- * Compare to $H(p) = (2^{h(p)} + 1)/2$.


Single Random Bit

- * Choose single random bit with some prob.
- * Compare Entropy H and Guesswork G.
- * Similar, not same.
- * Note effect of sorting.

Multi-Symbol Sources

- * Simulate source with up to 20 symbols.
- * Sample 1000000 distributions for each number.
- * $0.7 H(p) \le G(p) \le H(p)$?
- * No! (Massey, Arikan, ...)

Other measures

- * Guesswork is related to Réyni entropy.
- * Other measures of guessability
- * work-factor (give up after most of prob)
- * distance from uniform
- * (RFC 4086) min-Entropy

Moral

- * Pon't always believe simulations.
- * Decide what you want your randomness for, choose the right measure.
- * Crypto guys didn't but got lucky.
- * Arcane mathematical abstractions get applied sooner or later.