On Efficiency and Validity of Previous Homeplug MAC Performance Analysis

Cristina Cano and <u>David Malone</u> Hamilton Institute, NUI Maynooth.

Hamilton Institute

Supported by Science Foundation Ireland grants 08/SRC/I1403 and 07/SK/I1216a.

DQC

MAC Modeling

- The Homeplug/1901 MAC similar to 802.11's DCF.
- 802.11's MAC extensively studied using Bianchi's model¹ and extensions.
- This has been extended to cover the Homeplug/1901².
- Deferral counter requires extra states in Markov Chain.

Bianchi. Performance analysis of the IEEE 802.11 distributed coordination function. Selected Areas in Communications, IEEE Journal on 18.3 (2000): 535-547.

- Solving the model is computationally expensive
 - 1 iteration loop that contains 2 more loops
 - Computationally expensive operations
- Aimed to simplify model to make it quicker to solve.
- Same assumptions as considered by Chung et al.
 - Infinite queue size and retry limit.
 - Exponential distributed interarrival of packets.
 - Ideal channel conditions.
 - Contention among homogeneous access categories.

Sac

Simplification

- We take a renewal reward approach³⁴.
 - We compute the waiting times at each backoff stage
 - Define the probability to fail at backoff stage *i*,

•
$$p_{\rm f}^{(i)} = p \cdot p_{\rm bo}^{(i)} + p_{\rm defer}^{(i)}$$
..

- Then compute average time in backoff to successfully transmit.
- We can precompute deferral probability and expected backoff times.
- Can also make exponential approx. to simplify further.

stations	Original Analysis	Simplified	Exponential	10000s Simulation
10	584.5 s	3.7 s	1.7 s	165.5 s
50	420.0 s	4.2 s	3.5 s	866.2 s

³ Kumar et al., *New insights from a fixed point analysis of single cell IEEE 802.11 WLANs*, INFOCOM 2005.

Bianchi and Tinnirello, Remarks on IEEE 802.11 DCF performance analysis, IEEE Communication Letters 2005 🖉 🔗 ۹. 🤭

Validation Problems

< (1)< (1)</

₹ 9Q@

Saturated Conditions

Same results as Chung. et al.

Unsaturated Conditions

The results were not fitting but prior to saturation only

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ○○○

Explanation

< □ > < □ > < Ξ > < Ξ >

€ 990

Obtaining Two Solutions

Depending on the starting parameters:

- Due to coupling of queue dynamics and channel access.
- Something similar in WiFi⁵.

⁵Duffy, *Mean field Markov models of wireless local area networks*, Markov Processes and Related Fields, vol. 16, no. 2, pp. 295-328 2010 → (Ξ) → (

Temporal Evaluation

Evolution of throughput/Queue size (max, av, min):

Hamilton Institute

▲□▶ ▲@▶ ▲ 差▶ ▲ 差 ● ○ Q @

Validation

Simulations (with pre-loaded queues) fit saturated solution:

▲□▶▲□▶▲≧▶▲≧▶ 差 釣�?

- For large queues: long transitory phase before saturation.
- Shows up as extra fixed point in model.
- Can lead to misinterpretation of analysis and simulations.

Sar

- Model improvements for PLC at http://arxiv.org/abs/1401.6803.
- Actually present in Wi-Fi and other protocols too.
- Thinking about practical implications.

