
Fourier Series

Suppose f : [0, 2π]→ C and:

f(x) =
∑
n=0

an cosnx

How could we find the an if we know f ?

Having a look at cos :

cos(0x) cos(1x) cos(2x)

Average 1 Average 0 Average 0

∫ 2π

0

f(x) dx =
∑
n=0

an

∫ 2π

0

cosnx dx = 2πa0

How do we find the rest of the an ?
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cosnx cosmx = 1/2(cos(m+n)x+cos(m−n)x)

∫ 2π

0

f(x) cosmxdx

=
∑
n=0

an

∫ 2π

0

cosnx cosmxdx

= πam

We can do a complex version. If:

f(x) =
∞∑

n=−∞
ane

inx

⇒
∫ 2π

0

e−inxf(x) dx = 2πan

And an integral version. If:

f(x) =
∫ ∞
−∞
a(ω)eiωx dω

⇒
∫ ∞
−∞
e−iωxf(x) dx = 2πa(ω)

So what functions can we write as
∑
ane

inx ?

2



Lp and friends

The sets of functions people look at:

L2([0, 2π])

=
{
f : [0, 2π]→ C|

∫ 2π

0

|f(x)|2 dx <∞
}

L1(R)

=
{
f : R→ C|

∫ ∞
−∞
|f(x)| dx <∞

}
L3(N)

=

{
an|n ∈ N,

∞∑
n=0

|an|3 <∞

}

{einx : n ∈ Z} are a basis for L2([0, 2π]).
{eiωx : ω ∈ R} are a bit like a basis for L2(R).

So by adding up our einx’s we get quite a lot of
functions.
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This seems a bit pointless.

If v(x) = eiωx then :

d

dx
v =

d

dx

(
eiωx

)
= iωeiωx = iωv

So with Fourier analysis we can write things is
terms of eigenvectors for differentiation.

Good for solving stuff like the wave equation:

∂2

∂x2
− 1
v2

∂2

∂t2
= 0

And so for signal processing. It also tells us
about the frequencies present in a signal.
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e−x
2

cos(7x):

F(e−x
2

cos(7x))
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The catch

The Fourier transform tells us nothing about
when the frequencies occur. It only tells us how
much they occur on the whole.

This means at a glance we can’t tell the
difference between:

G2 � � � � �
and:

G2 �����
�

( α7 = 1.498, α9 = 1.681 , α5 = 1.334,
α−7 = 0.667, α0 = 1 )
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Close Encounter:

F(Close Encounter):
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Windowed Fourier Transforms

Cut your signal into little bits, and look at
what frequencies they have. You use a
‘Window’ to do the cutting.

e−x
2

χ[−1,1] 1 + cosx

So you center your window over the bits you’re
interested in, multiply and take the Fourier
transform.
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F(Close Encounter):

0.5 1.5 2.5

3.5 4.5
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Why Wavelets ?

Well you have to choose how wide your window
is. If you don’t know in advance you’re in
trouble.

Also if the frequency you’re interested in has
period longer than your window you’re in
trouble!

With wavelets you link your window size to the
frequency you are looking for. We can take a
window ( e−x

2
) and a wave ( sinx ) and glue

them together.

ψ(x) = e−x
2

sinx

ψ F(ψ)
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If you’re looking for frequency µ you scale :

ψ(µx) = e−(µx)2
sinµx

And if you want to look at a certain position
x0 you slide :

ψ(µ(x− x0)) = e−(µ(x−x0))2
sinµ(x− x0)

This approach often works, and is responsible
for much of the industry related to wavelets.

There is another way to make wavelets....

...using multi-resolution analysis.
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Multi-Resolution

Approximation

With traditional Fourier series, we can chop
our sum and hopefully get a good
approximation of what we want.

With multi-resolution approximation we want
to get something ‘twice’ as good as the last at
each level.
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To approximate something:

1. take a function ( g(x) ),

2. move it to your ‘nodes’ ( g(x− n) ),

3. multiply ( ang(x− n) ),

4. and add.

V0 = {
∑

ang(x− n) : n ∈ Z}

To improve your resolution, move your nodes
twice as close together:

Vj+1 = {f(2x) : f ∈ Vj}

And the next level should be at least as good
as the last:

Vj ⊂ Vj+1
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Our approximations are like ‘averages’ over
length 1

2j . At each stage we add on the local
detail at the new scale 1

2j+1 .

fj+1(x) = fj(x) + dj(x)

Vj+1 = Vj ⊕Wj

We know that the Vj were related by
Vj+1 = {f(2x) : f ∈ Vj} so we make the Wj be
related by the same.

We also know that V0 is the span of the
g(x− n), so we hope W0 is spanned by some
w(x− n).

This w(x) will be out wavelet!

So how do we find suitable g and w ?
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Dilation Equations

Remember:
g ∈ V0 ⊂ V1

but V1 is the span of g(2x− k), so:

g(x) =
∑
k

ckg(2x− k)

Suppose we have 4 ck’s. Then g(x) is:

c0g(2x) + c1g(2x−1) + c2g(2x−2) + c3g(2x−3)

Try w(x):

c3g(2x)− c2g(2x−1) + c1g(2x−2)− c0g(2x−3)

This w(x) is in V1, but is it in V0 ? Check if
w(x) was orthogonal to the g(x− n) and get
some conditions on ck.
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1. Integrating the dilation equation gives:∫
g(x) dx =

∫ ∑
ckg(2x− k) dx

=
∑

ck
1
2

∫
g(x) dx

So
∑
ck = 2.

2. Wanting the g(x− n) to be orthonormal
means

∑
ckck−2m = δ0m for any m.

3. Wanting the wavelet to be orthogonal to
the g(x− n) produces another condition.

4. If
∑

(−1)kkmck = 0 for m = 0, 1, . . . p− 1
gives some very interesting info:

• 1, x, x2, . . . xp−1 are in your space.

• Error ≈ O( 1
2pj ) in Vj .

5. Other properties mean other conditions.
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Famous values of ck

Haar Wavelets have c0 = 1, c1 = 1 :

g(x) w(x)

Daubechies Wavelets have c0 = 1
4
(1 +

√
3),

c1 = 1
4
(3 +

√
3), c2 = 1

4
(3−

√
3), c3 = 1

4
(1−

√
3):

g(x) w(x)
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How to draw these beasties.

Given c0, c1, . . . , cN :

1. Assume g(x) is zero outside (0, N + 1).

2. Try to find g(1), . . . g(N) :

g(1) = c1g(1) + c0g(2)

g(2) = c3g(1) + c2g(2) + c1g(3) + c0g(1)
...

This is a matter of finding the eigenvector
(g(1), . . . , g(N)).

3. Recursively use g(x) =
∑
k ckg(2x− k) for

values at half values what you already have.

These aren’t the only solutions - check
log(|1− 1/x|) in the Haar equation.
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Trying to find a formula.

Taking the Fourier transform of the dilation
equation:

F(g(x)) = F(
∑

ckg(2x− k))

ĝ(ω) =
∑

cke
−ikω

2 ĝ(
ω

2
)

Let P (ω) =
∑
cke

−ikω
2 , then:

ĝ(ω) = P (ω)ĝ(
ω

2
)

= P (ω)P (
ω

2
)ĝ(

ω

4
)

=

 n∏
j=0

P (
ω

2j
)

 ĝ
( ω

2n+1

)

=

 ∞∏
j=0

P (
ω

2j
)

 ĝ(0)

So if you can un-transform that - you’re away.
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And back again.

If g = χ[0,1] ( the g for Haar wavelets ), then
define G by :

1. G(g(x)) = 1−e−iω
iω

2. G(g(x− n)) = e−iωnG(g(x)).

3. G is linear.

4. G(f(2x)) = 1
2G(f)(ω2 )

This defines G on Vj . It is in fact the Fourier
transform.
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