When Priority Resolution Goes Way Too Far: An Experimental Evaluation in PLC Networks

Cristina Cano and David Malone

09/06/2015

Hamilton Institute
Motivation

- In-house Power Line Communications
- Standards: Homeplug/Homeplug AV/IEEE 1901
- Qualcomm Atheros reports 100M PLC devices shipped
- Research efforts focused on the physical layer
- PLC MAC is relatively unexplored
- MAC like IEEE 802.11, but:
 - Deferral counter
 - **Strict priority resolution scheme**
 - Negotiated tone map
 - Large aggregated frames
Priority Resolution

- Definition of 4 CAs
- CA3/CA2 and CA1/CA0 share W_i (BO) and M_i (DC) values
- Strict prioritisation through Priority Resolution Slots (PRS)

But, only present after successful transmissions!
Testbed Setup

- **Devices**
 - Zyxel PLA4215 PLC adapters with INT7400 chipset
 - Connected via an UPS unit
 - Attached to the Gigabit Ethernet port of Soekris boxes

- **Tools:**
 - *Iperf*:
 - Generate traffic/measure per-second throughput
 - *Faifa*
 - Count channel accesses (Jain’s Fairness Index)
 - Spectrum Analyser
 - Get more insight on the transmissions on the channel
Lower Priority Starvation

Two saturated stations in different CAs.
How strict is the prioritisation?

CA3
av. 179.3564
min. 0
max. 203.0952

CA2
av. 1.2075
min. 0
max. 181.5979
Higher Priority Contention

3 CA3 Stations. What??!!!
Higher Priority Contention

Oscillatory Behaviour!

Throughput [Mbits/s]

Tone map information is sent at CA2!
Conclusions

- Outcomes
 - Lower-CA traffic
 - Suffers from starvation
 - *High variability (aggregation and buffer management)*
 - Higher-CA flows
 - Oscillatory behaviour

- Some plausible solutions
 - Reserved priority for control messages
 - Police/Shape higher classes
 - *Limit variability of aggregation*

JSAC Issue on PLC in Networking Ecosystem: Submission 1 July 2015.