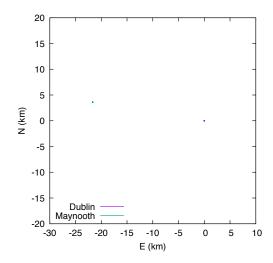
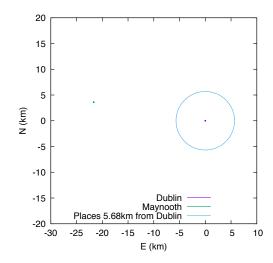
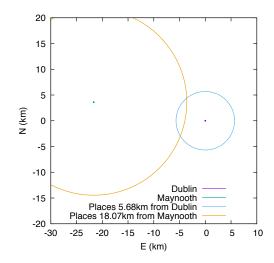

Triangulation and Education or Where is Dunsink?

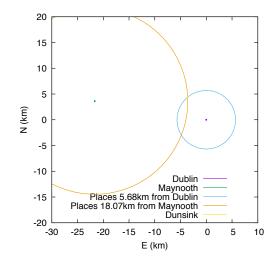

David Malone Hamilton Institute / Dept of Maths&Stats, Maynooth University.

2020-11-03 19:00:00 UTC


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Measuring Space




▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

As an equation, a circle of radius R with centre (x_c, y_c) is

$$R^{2} = (x - x_{c})^{2} + (y - y_{c})^{2}$$

We can use twice to get our circles and solve for Maynooth.

Where distances are in km and

- Dublin is at (0,0),
- Maynooth is at (-21.664772, 3.608656)
- R_{Dunsink,Dublin} = 5.679756 and
- $R_{\text{Dunsink},\text{Maynooth}} = 18.071940.$

Trick is called trilateration.

My Workings

$$\begin{split} & \underbrace{ \begin{pmatrix} \xi_{hog}^{2} \xi_{hg}^{2} &= (\chi - \chi_{hog})^{2} + (J - Y_{hgh})^{2} & 0 \\ & & \\ & \\ & & & \\ & & \\ & &$$

Now solve for
$$g$$

 $7g = 32 \cdot 5 + 22 \times = 7$ $g = \frac{32 \cdot 5 + 22 \times 2}{2 \times 2}$ 0
Remember $\chi^{2+}g^{2-}e^{-5/2}$, so fill in for g .
 $\chi^{2+} + (\frac{12 \cdot 5 + 22 \times 2}{4})^{2-}e^{-5/2}$
 $\chi^{2+} + (\frac{12 \cdot 5 + 22 \times 2}{4})^{2-}e^{-5/2}$
 $\chi^{2+} + (\frac{12 \cdot 5 + 22 \times 2}{4})^{2-}e^{-5/2}$
 $4^{4} \times 2 + 484 \times 2 + 14474 \times 1056 \times 2 = 20 \cdot 25.097$
 $g^{-1} + 1056 \cdot 12 + 14474 \times 1056 \cdot 12 = 20 \cdot 12.097$
 $g^{-1} + 1056 \cdot 12 + 14474 \times 1056 \cdot 12 = 20 \cdot 12.097$
 $g^{-1} + 1066 \cdot 12 + 14474 \times 1056 \cdot 12 = 20 \cdot 12.097$
 $g^{-1} - 5133 \times 2 + 14474 \times 1056 \cdot 12 = 20 \cdot 12.097$
 $g^{-1} - 515 \cdot 16474 \times 2 + 10475 \times 10^{-1} \times 10^{-1}$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

GPS is a bunch of flying atomic clocks.

It wants to know (x, y, z, t) and solves for it using 4 equations (satellites).

э

Meteors

How are the meteors located?

- Locations of each camera is known.
- Distances aren't, but the direction the camera points is.
- So, we can measure the angle and use *triangulation*.
- Uses a bit of trigonometry.
- With enough equagions (cameras) we get the location.

Not too hard, but best done by coding it up for a computer.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Citizen Science

Great to get *real* people involved in the science,while hiding some of the boring stuff.

Why?

- In theory anyone can check the science themselves.
- Getting involved helps in lots of ways
 - Advancing the science,
 - Understanding limitations of data, analysis, ...
 - Thinking about what science you/we should do,
 - Giving ownership of a bit of science,
 - Giving context for the science,
- And, examples of where all that maths is used.

Thanks!

Problem with midnight — it depends where you live.

Dunsink Observatory Usher: 25m7–48s (1787). Brinkley: 25m22s (1832). Romney-Robinson: 25m21s (1838). Elliott-(Ray-Drury-Malone): 25m21.02s (2017).

Image: Google Maps

6°20.3',53°23.2' vs 6°20.2',53°23.3'

・ロト ・ 日 ト ・ モ ト ・ モ ト

э

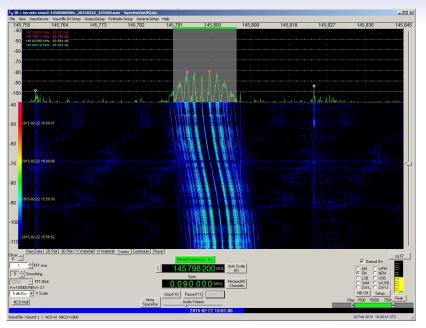
Used ET, based on Newcomb's measurements from 1750-1892.

Tidal forces (1.7ms/d/c) mean UT and SI seconds are different (by 2.5ms).

Coordinated Universal Time is a compromise. It ticks once per SI second, in sync with TAI.

If UTC is more than one second from UT1 then UTC is adjusted.

Doppler


Waves pile up if you move towards source, or source moves towards you.

$$f = \frac{1 + \frac{v_r}{c}}{1 + \frac{v_s}{c}} f_0$$

If you aren't moving fast compared to the wave

$$f = \left(1 + \frac{\Delta v}{c}\right) f_0$$

Where Δv is the relative speed of source and receiver. There is also a version that takes relativity into account!

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 − のへで