2 and 3 Refinable Functions

David Malone

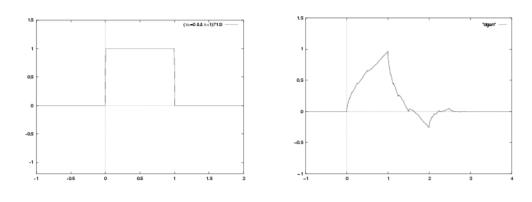
22 December 1999

Refinable Functions

A 2-refinable function satisfies:

$$f(x) = \sum_{k} c_k f(2x - k).$$

The equation is a dilation equation.



Harr function

 D_4

People are usually interested in compactly supported L^1 solutions for wavelets with $\sum c_k = 2$. In this case there is at most one solution.

 L^2 solutions are not unique. They are in correspondence with $L^2(\pm[1,2))$ or $L^{\infty}(\pm[1,2))$. However, adding more scales gave uniqueness in operator results.

What functions are 2 and 3 refinable? ie.

$$f(x) = \sum_{k} c_k f(2x - k) = \sum_{k} d_k f(3x - k).$$

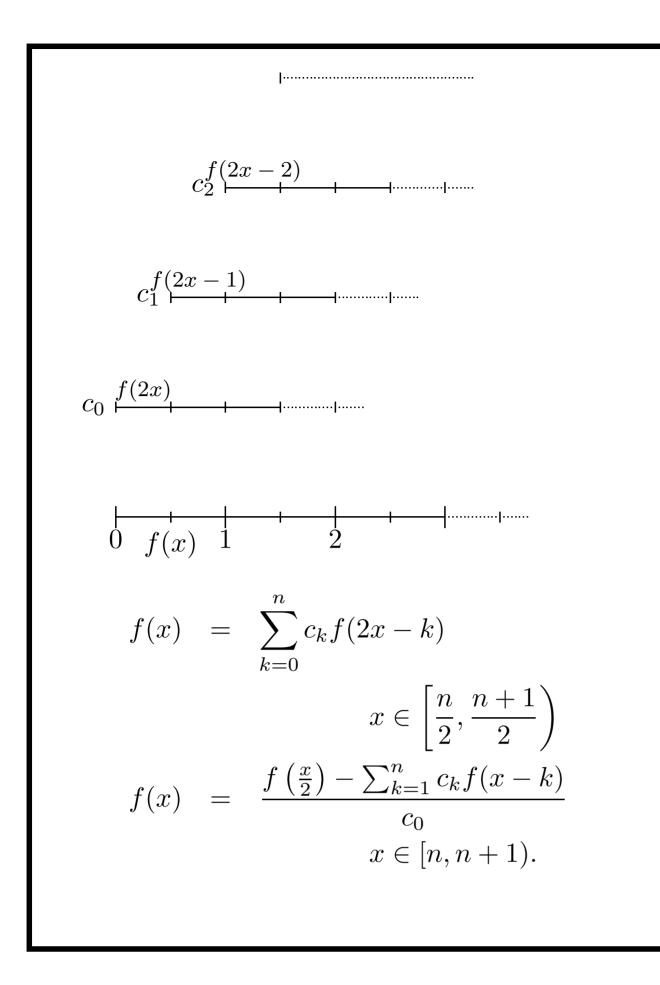
Assumptions:

- Only finitely many non-zero c_k and d_k .
- Functions compactly supported.

Left Hand End

Lemma 1 Suppose $g(x) = \sum d_k g(2x - k)$, and only finitely many of the d_k are non-zero. Then we can find l so that when we translate g by l to get f we find: $f(x) = \sum c_k f(2x - k), c_0 \neq 0, c_k = 0$ when k < 0 and $c_k = d_{k-l}$.

Lemma 2 If f is compactly supported and satisfies a dilation equation $f(x) = \sum c_k f(2x - k)$, where $c_0 \neq 0$ and $c_k = 0$ when k < 0, then f is zero almost everywhere in $(-\infty, 0)$.



If you do this for two scales, everything lines up and we get:

$$f(x) = c_0 f(2x) = d_0 f(3x),$$

on $[0, 1/2) \cap [0, 1/3)$.

Theorem 3 Suppose f is 2 and 3 refinable, say:

$$f(x) = \sum_{k} c_k f(2x - k) = \sum_{k} d_k f(3x - k),$$

and $c_0 \neq 0$ and $c_k = 0$ when k < 0. Suppose further that f is integrable on some interval $[0, \epsilon]$, then $f(x) = \gamma x^{\beta}$ on [0, 1) where $\beta = -\log_2 c_0 = -\log_3 d_0$.

In L^p this will be an almost everywhere relationship. So we integrate:

$$F(x) = \int_0^x f(t) \, dt.$$

We can show this satisfies:

$$F(2^n 3^m \alpha) = \left(\frac{2}{c_0}\right)^n \left(\frac{3}{d_0}\right)^m F(\alpha)$$

Continuity forces $\log_2 c_0 = \log_3 d_0 = -\beta$. So:

$$F(2^{n}3^{m}\alpha) = (2^{n}3^{m})^{\beta+1} F(\alpha)$$

One continuous function does this:

$$x^{\beta+1} \frac{F(\alpha)}{\alpha^{\beta+1}}$$

Giving
$$f$$
 on $[0, 1/3)$:

$$f(x) = \frac{d}{dx}F(x) = (\beta + 1)x^{\beta}\frac{F(\alpha)}{\alpha^{\beta+1}}.$$

From here it is easy so show f must have the form:

$$f(x) = \sum_{l=0}^{n} a_l (x-l)^{\beta},$$

on [n, n + 1). For this to be compactly supported $\beta \in \mathbb{N}$. This means that fmust be a B-spline.

The fact that f behaves like x^{β} on [0, 1)is interesting, and actually holds in a much looser sense if you have function which just solves one dilation equation. There is a measure of smoothness called the Hölder exponent, where $f \in C^{n+s}$ if f is n times differenciable and:

 $|f(x+h) - f(x)| < k|h|^s.$ Now, $x^\beta \in C^{n+s}$ for $n+s < \beta$, and it can be shown that for $f \in C^{n+s}$ then $n+s < \beta$.

I have examples which can produce fwhich are almost this smooth, and in some simple cases this gives the correct smoothness.

		TLoW			SRCfSS	
$-\log_2 c_0 $	p226	p232	p239	r_{20}	r_∞	UB
0.550	0.339	0.500	0.550	0.550	0.550	0.550
1.0878	0.636	0.915	1.0878	1.0831	1.0878	1.0878
6	1.6179 0.913	1.275	1.6179	1.6066	1.6179	1.6179
	2.1429 1.177	1.596		1.9424		1.9689
	2.6644 1.432	1.888		2.1637		2.1891
3.1831	1.682	2.158		2.4348		2.4604