
2 and 3 Refinable Functions

David Malone

22 December 1999

1



Refinable Functions

A 2-refinable function satisfies:

f(x) =
∑
k

ckf(2x− k).

The equation is a dilation equation.

Harr function D4

People are usually interested in

compactly supported L1 solutions for

wavelets with
∑
ck = 2. In this case

there is at most one solution.
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L2 solutions are not unique. They are in

correspondence with L2(±[1, 2)) or

L∞(±[1, 2)). However, adding more

scales gave uniqueness in operator

results.

What functions are 2 and 3 refinable?

ie.

f(x) =
∑
k

ckf(2x−k) =
∑
k

dkf(3x−k).

Assumptions:

• Only finitely many non-zero ck and

dk.

• Functions compactly supported.
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Left Hand End

Lemma 1 Suppose

g(x) =
∑
dkg(2x− k), and only finitely

many of the dk are non-zero. Then we

can find l so that when we translate g by

l to get f we find:

f(x) =
∑
ckf(2x− k), c0 6= 0, ck = 0

when k < 0 and ck = dk−l.

Lemma 2 If f is compactly supported

and satisfies a dilation equation

f(x) =
∑
ckf(2x− k), where c0 6= 0 and

ck = 0 when k < 0, then f is zero

almost everywhere in (−∞, 0).
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f(x) =
n∑
k=0

ckf(2x− k)
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[
n

2
,
n+ 1

2

)
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f
(
x
2
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−
∑n
k=1 ckf(x− k)
c0

x ∈ [n, n+ 1).
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If you do this for two scales, everything

lines up and we get:

f(x) = c0f(2x) = d0f(3x),

on [0, 1/2) ∩ [0, 1/3).

Theorem 3 Suppose f is 2 and 3

refinable, say:

f(x) =
∑
k

ckf(2x−k) =
∑
k

dkf(3x−k),

and c0 6= 0 and ck = 0 when k < 0.

Suppose further that f is integrable on

some interval [0, ε], then f(x) = γxβ on

[0, 1) where β = − log2 c0 = − log3 d0.
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In Lp this will be an almost everywhere

relationship. So we integrate:

F (x) =

∫ x

0

f(t) dt.

We can show this satisfies:

F (2n3mα) =

(
2

c0

)n(
3

d0

)m
F (α)

Continuity forces log2 c0 = log3 d0 = −β.

So:

F (2n3mα) = (2n3m)β+1 F (α)

One continuous function does this:

xβ+1F (α)

αβ+1
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Giving f on [0, 1/3):

f(x) =
d

dx
F (x) = (β + 1)xβ

F (α)

αβ+1
.

�

From here it is easy so show f must

have the form:

f(x) =
n∑
l=0

al(x− l)β,

on [n, n+ 1). For this to be compactly

supported β ∈ N. This means that f

must be a B-spline.
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The fact that f behaves like xβ on [0, 1)

is interesting, and actually holds in a

much looser sense if you have function

which just solves one dilation equation.

There is a measure of smoothness called

the Hölder exponent, where f ∈ Cn+s if

f is n times differenciable and:

|f(x+ h)− f(x)| < k|h|s.

Now, xβ ∈ Cn+s for n+ s < β, and it

can be shown that for f ∈ Cn+s then

n+ s < β.

I have examples which can produce f

which are almost this smooth, and in

some simple cases this gives the correct

smoothness.
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