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Multi-Resolution Analysis I

To approximate something we:

. Take some “basis” function g.

. Move it to our nodes.

. Multiply by some coefficients.

. Sum the results.




This is our first step in a multi-resolution

analysis.

1. Our first resolution of approximation is:
Vo =span{g(x —n):n € Z}

. The g(x — n) should be orthogonal.

. Now build many levels:
flx) eV <= f(2x) € Vi
. They should be increasing:
Vie C Vg

. The union should be dense:

+oo
J vi=L®)

j=—00

. The intersection should be almost empty:

+o00
) Vi={0}

j=—00




3 Examples I

L. 9(5’7) = X[0,1)-

(om B2 071D

2. f/; is functions supported on [—277, 277].
Using:

F(f(20)) (@) = 5F (@) (%)
We can check:

f(a:) c Vi <— f(QZU) € Viaq
Also g(z) = 22IZ works.

3. Daubechie’s generating Function.
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Why MRA ? I

Natural way to increase resolution.

Produces wavelets.

Visn =V & W;
Many properties relate to g chosen.
Dilation Equations.

gEVOCV1

but V; is the span of g(2z — k), so:

g(x) = eg(2w — k)

k

The ¢, contain important information

about g.




How to define:
Determinants

Formula

Properties
det : R""*" — R

o det(el,ea,...,€,) =1 where {€;},=1.n

is the usual basis for R™.

o det(...,d;,...,d;5,...) =
det(...,d; +dj,...,da,;,...)

o det(A1dy, \oda, ..., \pdy) =
(A A2 ... A\p) det(dy, ds,...,d,)




How to define:
Fourier Transform

Formula

Properties

g(x) = X[0,1)(97)

CF(g) (w) = =57

w

. F(T,f) (w) = e F (f) (w) for n € Z.

. JF 1is linear.




The Plan '

+00
We'lllcall | V;=D.

J=—00

Check F is well defined. Some f in D have

more than one representation

Extend F to all of L?(R). To take limits we

must show F is bounded on D.

Check its the same as the traditional.

Can we get the integral formula?

Show it is invertible. Hopefully using the

Multi-Resolution frame.




F 1s well defined I

X[o,l)(l’) = X[o,%)(ﬂf) T X[%,l)(l’)

9(z) = g(2z) + g2z — 1)
9(z) = Dag(x) + DT 19()
Applying F and using rules:

W | W

Flg)(w) = %f(g) (5) 4 56—25}"(9) (§>

Tw

Checking F(g)(w) = =-— makes this OK.




f € D. Suppose f € Vy, and

17 @00 + 3 @11 — 37 @3 + 2" @3

T+ 3@ — 37 @3 + 2 @3

TP Ik 13T Pk 3 2 @)

T 43T @11 — 37 @3 + 27 @3
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Showing F is bounded on D I

Suppose:

= Z akg(Q‘]a: —

Then ||f[|3 = 3" |ax|?/27. Now find [|7(f)|3.

Fiw) = 2 S gt

So F is bounded from D to L?(R).
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Bonus: Plancherel’s Theorem !

17Nz =27 £1I2

|
(f,9) = 2m(F(f), F(g9))

Review:

We defined F on g.

Translation rule defined F on g(z — n).

Linearity defined F on Vj.
Dilation rule defined F on D.
We checked F was well defined.

We show F is bounded on D and so we can
take limits to define F on L*(R).
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Integral Formula I

Let f € V; for 5 > J and f supported on
[—R, R]. Then :

R27 -1

> arxp,n 2z — k)

k=—R27

R27 -1

@)= 3 Jaxon@z — k)

k=—R2J
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Let h € L?(R) and take h,, — h in D all
supported on [—R, R].

/_}; f(x)e ™% dy
(f

» X[-R,R) €iww)

1F]l; V2R
So for h:

F(h) lim F(hy) = lim Fg(hy,)
FR(lim hn) = fR(h)

If h € L*(R), then h,, = hX[_pn) — h. So in
L?(R):
F(h) = lim F(hy,)

and pointwise:

lim F(hy)(w) lim /_’n h(z)e ™" dx

/ h(z)e " da
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Properties of F I

Define:
Rn(f)(x) = ™ f(x)

Then F has the following properties on D:

F(Tn(f)) = Ru(F(f))
1

F(Da(f)) = WD%(}—(JC))

F(Rn(f)) = T-n(F(f))

All of the form FA = BF, with A, B bounded

and linear.

It is easy to extend these to all of L*(R) by

limits.
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Inverse Transform I

1. G (g) (w) = 5= 1=

2. G(T,.f) (w) = e“"G (f) (w) for n € Z.

3. G is linear.

e G is well defined.
e G is bounded with norm 1/+/27.

e G has integral formula 5= [ f(z)e™? dz.

e G has properties:
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We look at 7 =G o F:

1. Z(g) (w) =777

2. T(Tnf) = T (Z(f)) for n € Z.

3. 7 is linear.

4. T(Dxf)=Dx(Z(f)) where A = 2", n € Z.
To find Z(g) = G o F(g) use the formula:

1 — e—z’w .
- ezwa: dw
W

plw _ eiw(:c—l)
: dw
w

/sinwx—sinw(x— 1) p
w

w

Sin w

(sign(z) — sign(xz — 1)) / dw

w

g(x)2m
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Summing up I

Easier than Schwartz Class 7

Hands on.

R™ should be easy.

Well defined weakens:
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