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Entropy in Information

Theory

A source which produces symbols a ∈ A
with probability pa has entropy

h(p) =
∑
a∈A

pa lg
1

pa
.

Entropy is often interpreted as the

amount of information or uncertainty

associated with a source. It is the average

number of bits required to encode a

message from that source. It adds for

independent sources.
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Asymptotic

Equipartition

One important place where entropy arises

is in the Asymptotic Equipartition

Property (AEP). If we have n independent

identical sources and we look at their

combined output in An then the set

T (n)
ε =

{
a ∈ A : |P(a)− 2−nh(p)| < ε

}
has the following properties:

• P(T
(n)
ε )→ 1 as n→∞.

• |T (n)
ε | ≈ 2nh(p).

These elements are considered ‘typical’.
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Guessing and

Cryptography

Encryption requires selecting an algorithm

and a key. Great care is invested in

designing algorithms and so it may be

easier to attack the key.

• A brute force attack involves trying

every key one after another. Your key

space must be big to make this

impractical.

• A dictionary attack uses the fact that

people are more likely to choose real

words as keys.

Pseudo-random numbers used by

computers can be subject to

dictionary-like attacks if seeded badly.
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Entropy and Guessing

Entropy is a measure of uncertainty. Does

it capture how hard it is to guess a

number? From the sci.crypt FAQ:

We can measure how bad a key

distribution is by calculating its

entropy. This number E is the

number of “real bits of information”

of the key: a cryptanalyst will

typically happen across the key

within 2E guesses. E is defined as

the sum of −pK log2 pK , where pK is

the probability of key K.
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The quickest way to guess a symbol is to

first guess the most likely value, and then

proceed towards the least likely value.

Label pk in decreasing order with integers

then the expected amount of guessing

time or guess work is

G(p) =
∑
k

pkk.

We want to compare this to an entropy

based estimate,

H(p) =
2h(p) + 1

2
,

because guessing from r equally likely

options takes (r + 1)/2 guesses.
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Bernoulli Source

Here A = {0, 1} and

P(0) = p,P(1) = q = 1− p.

G(p) =

1p+ 2(1− p) p ≥ 0.5

1(1− p) + 2p p < 0.5
.

H(p) = 2−p lg p−(1−p) lg(1−p) = p−pq−q.
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Simulation

Simulated by choosing up a random

distribution on up to 20 symbols.

Hypothesis:

0.7H(p) ≤ G(p) ≤ H(p).
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Show 0.7H(p) ≤ G(p) with Lagrange

Multipliers: Fix G(p) and find extrema of

H(p) at

pk = Cλk,

(luckily, a decreasing sequence).

Then evaluate G and H explicitly.

lim
n→∞,λ→1

G

H
= lim

λ→1

2

1− λ+ λλ/(λ−1)
→ 2

e
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Massey also shows that the upper bound

G(p) < H(p) isn’t, using the sequence

pk =


1− β

n
k = 1

β

n2 − n
2 ≤ k ≤ n

,

and letting n become large. This sequence

has an entropy tending to zero, but a

constant guess work.

So, entropy is a lower bound on guess

work, but not an upper bound. Luck for

those cryptologists. . .

How did this incorrect idea get into the

folklore?
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AEP and Guessing

Plaim suggests that the link between

guesswork and entropy may have arisen

via the AEP. Remember, the AEP says

that we can find a set of words T
(n)
ε so

that the probability of each word is about

2−nh(p) and by making n big enough we

can make P(T
(n)
ε ) close to 1. Ignoring the

atypical words,

G(p) =
∑
k

pkk =
∑
T

(n)
ε

2−nh(p)k =
2nh(p) + 1

2
.

Setting n = 1 then produces folklore. . .

Reminiscent of replica formalism?
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Can we salvage a result if n large?

Look at sets of symbols (a1, . . . an) in An

with probability pa1 . . . pan . Guess in the

same was as before and only stop if all

symbols correct.

To evaluate Gn(p) calculate all the

products pa1 . . . pan and sort them, then

Gn(p) =
∑
k

pak,1 . . . pak,nk.

Evaluating Hn(p) is much easier ’cos the

entropy of independent sources adds:

Hn(p) =
2hn(p) + 1

2
=

2nh(p) + 1

2
=
H(p)n + 1

2
.

Is Gn(p) ≈ Hn(p)?
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Product Bernoulli Source

Most cases are hard: have to sort product

of probabilities. In Bernoulli case, if

0 ≤ p ≤ 0.5, we know pkqn−k is in

non-increasing order. Thus,

Gn(p) =
n∑
k=0

f(k, n)pkqn−k
(
n

k

)
where

f(k, n) =
k−1∑
j=0

(
n

j

)
+

1

2

(
n

k

)
.

Hn(p) grows exponentially so consider

lim
n→∞

1

n
logGn(p).
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We find that

Gn(p) �
(

(
√
p+
√
q)2
)n

and know that

Hn(p) �
(
p−pq−q

)n
.
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We can also look at

lim
n→∞

logGn(p)

logHn(p)
= lim

n→∞

logGn

n

1

h(p)
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Application

Collecting randomness by measuring

background radiation. Watch for time

interval T , no decays a = 0 otherwise

a = 1. Poisson distributed so p = e−T . Do

optimal T for long term rate of entropy

and guess work collection differ?
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Conclusions

1. Entropy is not guess work, it is easier

than guess work. This does not seem

to have been spotted until 1994.

2. Simulation didn’t pick this out, but

should have. Used

p = (U1, . . . , Ur)/
∑
Uk, with Uk

uniform in [0, 1].

3. Even for distributions with AEP,

entropy is not guess work. We can

make them similar by sticking to the

typical sets and giving up if we don’t

guess correctly.
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4. Massey’s example shows that guess

work may not be a good measure of

guessability. Plaim also suggests work

factor:

wfα(p) = inf{n :
n∑
k=1

pk > α}.

5. For Bernoulli sources have guess work

entropy based entropy
(√

p+
√
q
)2

.

Can this be extended to other

independent cases?

6. It would be fun to calculate H(p) and

G(p) for some human chosen

passwords.
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