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Multi-Resolution

Analysis

To approximate something we:

1. Take a basis function g.

2. Translate to nodes.

3. Multiply by coefficients.

4. Sum the results.

To improve, try moving nodes closer

together.
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Definition of a Multiresolution Analysis:

1. A set V0:

V0 = span {g(x− n) : n ∈ Z}

2. The g(x− n) should be orthogonal.

3. Add multiple resolutions:

f(x) ∈ Vk ⇐⇒ f(2x) ∈ Vk+1

4. They should be increasing, ie.

Vk ⊂ Vk+1.

5. The union should be dense:

+∞⋃
j=−∞

Vj = L2(R)

6. The intersection should be zero:
+∞⋂
j=−∞

Vj = {0}
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Examples

1. Haar: g(x) = χ[0,1)

g(x) = g(2x) + g(2x− 1).

2. Shannon: g(x) = sinπx
πx

In V̂j if supported on [−2jπ, 2jπ].

g(x) = g(2x) +
∑ (−1)n2

πn
g(2x− 2n).

3. Daubechies:

g(x) = 1
4 [(1 +

√
3)g(2x) + (3 +

√
3)g(2x−

1) +(3−
√

3)g(2x−2) +(1−
√

3)g(2x−3)].
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Haar on Rn

A simple generalisation to R2 might take

the function χQ where Q = [0, 1)× [0, 1).

This works in our definition of MRA by

just replacing R with R2 and Z with R2.

This is really a product of two one

dimensional MRAs. Do more interesting

structures exist on Rn?

Instead of Zn use a full rank lattice Γ.

Instead of dilation by two use a mairix

A whose eigenvalues have norm bigger

than one and which leaves Γ fixed.
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Multiresolution Analysis of scale A on

lattice Γ:

1. V0 s.t.:

V0 = span {g(x− γ) : γ ∈ Γ}

2. The g(x− γ) should be orthogonal.

3. Multiple resolutions:

f(x) ∈ Vk ⇐⇒ f(Ax) ∈ Vk+1

4. Increasing: Vk ⊂ Vk+1.

5. Dense Union:

+∞⋃
j=−∞

Vj = L2(R)

6. Zero intersection:
+∞⋂
j=−∞

Vj = {0}
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Haar Bases and

Self-Affine Tiles

Gröchenig and Madych (1992):

Theorem 1 If Q is a bounded and

measurable set, then χQ generates a

MRA iff:

1. Q ∩ (Q+ k) has measure zero for

k ∈ Zn \ {0}.

2. There is a collection of distinct coset

representatives of Zn/AZn such that:

AQ = ∪qi=1(ki +Q).

3. Q tiles Rn when translated by Zn.

Consequently: |Q| = 1 and q = | det(A)|.

7



Digit Sets

Consider iterating:

Q = ∪qi=1A
−1(ki +Q)

Q = ∪qi=1 ∪
q
j=1 A

−1ki + A−2kj + A−2Q

But A−nQ→ 0, so:

Q =

{
∞∑
j=1

A−jεj : εj ∈ {k1, . . . , kq}

}

This is like a base A expansion of the

points in Q, and so {k1, . . . , kq} is called

the digit set.
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Examples

1. On R and taking dilation by 2, we

can take {0, 1} as coset reps of

Z/2Z. This leads to:

∞∑
j=1

1

2j
εj where εj ∈ {0, 1}

ie. the binary expansion of points in

[0, 1].

2. By translation we can ensure that 0

is always in the digit set. For

instance {3, 4} leads to

Q = [3, 4] = 3 + [0, 1]. Other

representatives lead to stretched

sets {0, 5} ⇒ [0, 5].
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Gröchenig and Madych (1992):

Theorem 2 Given {k1, . . . , kq} distinct

coset representatives of Zn/AZn, and Q

produced from these digits, then TFAE:

1. χQ generates a MRA,

2. |Q| = 1,

3. k +Q are essentially disjoint for

k ∈ Zn.

(Also includes three technical

conditions).
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To produce a Haar like MRA of scale A

we must select a digit set which

generates a set Q of measure 1. Is this

always possible?

It was shown that two necessary

conditions were that the digits form a

complete set of coset representatives

and that Z[A,D] = Z.

This was shown to be sufficient when

n = 1 or when det(A) was prime

(characteristic poly of A irreducable).

Suitable sets of digits were definitely

shown to exist when det(A) ≥ n+ 1 and

when n = 1, 2, 3.

Unfortunately this missed the most

interesting case for the wavelets people.

When det(A) = 2 you only need one

wavelet, and this case wasn’t covered.
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In 1994 Lagarias and Wang (almost)

proved the following:

Theorem 3 If f , the characteristic

polynomial of A, is irreducable with

|f(0)| = 2 then A has a primitive

complete digit set iff Z[1, θ, . . . , θn−1] has

class number 1.

In 1997 Potiopa found an example

which didn’t have class number 1.

A =


0 1 0 0

0 0 1 0

0 0 −1 2

−1 0 −1 1

 .
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My Aim: Find characteristic functions

that satisfy dilation equations.

What do we already know?

1. χ[0,1) satisfies f(x) =
n−1∑
k=0

f(nx− k)

for n ∈ N, n > 0.

2. Cantor’s middle third set satisfies

f(x) = f(3x) + f(3x− 2).

3. χR(x) =
∑
ckχR(2x− k) for any ck

summing to one.

4. χ[0,1)∪[2,3) satisfies a scale 2 equation

cn = 1, 1,−1,−1, 2, 2,−2,−2, . . ..

5. Self affine tiles which generate

MRAs satisfy dilation equations

with cn ∈ {0, 1} due to

orthogonality.
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Left/Right Hand End

Assume: Compact support & finite

nonzero cn.

Lemma 4 Suppose

g(x) =
∑
dkg(2x− k), and only finitely

many of the dk are non-zero. Then we

can find l so that if f(x) = g(x− l) we

find:

f(x) =
∑

ckf(2x− k),

c0 6= 0, ck = 0 when k < 0 and

ck = dk−l.

Lemma 5 If f is compactly supported

and satisfies a dilation equation

f(x) =
∑
ckf(2x− k), where c0 6= 0 and

ck = 0 when k < 0, then f is zero

almost everywhere in (−∞, 0).
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Theorem 6 If S is bounded and

satisifies a dilation equation

χS(x) =
∑
ckχS(2x− k) a.e., where

c0 6= 0 and ck = 0 when k < 0, then

either:

• S is of measure zero or,

• c0 = 1, the rest of the ck are integers

with |ck| ≤ 2k and E has non-zero

measure in both [0, 1
2
) and [1

2
, 1).

Problem: For scale 2 it looks like E

must be the whole interval. For the

moment we’ll assume it.
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Theorem 7 The map from functions

which are constant on [n, n+ 1) to the

polynomials given by:

f(x) =
∑
r

arχ[r,r+1)(x) 7→
∑
r

arx
r = Pf (x),

is a linear bijection, transforming the

following operations in the following

way:

(αf + βg)(x) 7→ αPf (x) + βPg(x),

f
(x
n

)
7→ xn − 1

x− 1
Pf (x

n),

f(x− k) 7→ xkPf (x),∑
k

ckf(x− k) 7→ Pf (x)Q(x),

where Q(x) =
∑
ckx

k.
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Our dilation equation becomes:

P (x)Q(x) = P (x2)(x+ 1).

Messing with polynomials and roots

gives:

1. R(x)Q(x) = R(x2) iff when r a root

of R of order p then r2 is a root of

R of order atleast p.

2. P (x) = R(x)/(x− 1) where

R(1) = 0.

3. All of P ’s roots are either 0 or a

root of unity.

4. If P ’s coefficients are real then P is

palendromic or anti-palendromic.
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P = 1, Q = 1 1

P = 1 1, Q = 1 0 1

P = 1 1 1, Q = 1 0 0 1

P = 1 0 1 0 1, Q = 1 1 -1 -1 1 1

P = 1 1 1 1, Q = 1 0 0 0 1

P = 1 1 1 1 1, Q = 1 0 0 0 0 1

P = 1 0 0 1 0 0 1, Q = 1 1 0 -1 -1 0 1 1

P = 1 1 1 1 1 1, Q = 1 0 0 0 0 0 1

P = 1 1 1 1 1 1 1, Q = 1 0 0 0 0 0 0 1

P = 1 0 0 0 1 0 0 0 1, Q = 1 1 0 0 -1 -1 0 0 1 1

P = 1 0 1 0 1 0 1 0 1, Q = 1 1 -1 -1 1 1 -1 -1 1 1

P = 1 1 0 1 1 0 1 1, Q = 1 0 1 -1 0 -1 1 0 1

P = 1 1 1 1 1 1 1 1, Q = 1 0 0 0 0 0 0 0 1

P = 1 1 1 1 1 1 1 1 1, Q = 1 0 0 0 0 0 0 0 0 1

P = 1 0 0 0 0 1 0 0 0 0 1, Q = 1 1 0 0 0 -1 -1 0 0 0 1 1

P = 1 1 0 0 1 1 0 0 1 1, Q = 1 0 1 0 -1 0 -1 0 1 0 1

P = 1 1 1 0 1 1 1 0 1 1 1, Q = 1 0 0 1 -1 0 0 -1 1 0 0 1

P = 1 0 1 1 1 1 1 1 1 0 1, Q = 1 1 -1 -2 0 2 2 0 -2 -1 1 1

P = 1 1 1 1 1 1 1 1 1 1, Q = 1 0 0 0 0 0 0 0 0 0 1

P = 1 1 1 1 1 1 1 1 1 1 1, Q = 1 0 0 0 0 0 0 0 0 0 0 1

P = 1 0 0 0 0 0 1 0 0 0 0 0 1, Q = 1 1 0 0 0 0 -1 -1 0 0 0 0 1 1

P = 1 0 0 1 0 0 1 0 0 1 0 0 1, Q = 1 1 0 -1 -1 0 1 1 0 -1 -1 0 1 1

P = 1 0 1 0 1 0 1 0 1 0 1 0 1, Q = 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1

P = 1 1 0 0 0 1 1 0 0 0 1 1, Q = 1 0 1 0 0 -1 0 -1 0 0 1 0 1

P = 1 1 1 0 0 1 1 1 0 0 1 1 1, Q = 1 0 0 1 0 -1 0 0 -1 0 1 0 0 1

P = 1 1 1 1 1 1 1 1 1 1 1 1, Q = 1 0 0 0 0 0 0 0 0 0 0 0 1

P = 1 1 1 1 1 1 1 1 1 1 1 1 1, Q = 1 0 0 0 0 0 0 0 0 0 0 0 0 1

P = 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1, Q = 1 1 0 0 0 0 0 -1 -1 0 0 0 0 0 1 1

P = 1 0 0 1 0 1 0 0 1 0 1 0 0 1, Q = 1 1 0 -1 -1 -1 1 2 1 -1 -1 -1 0 1 1

P = 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1, Q = 1 1 -1 -1 1 0 -1 1 1 -1 0 1 -1 -1 1 1

P = 1 1 0 0 0 0 1 1 0 0 0 0 1 1, Q = 1 0 1 0 0 0 -1 0 -1 0 0 0 1 0 1

P = 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1, Q = 1 0 0 1 0 0 -1 0 0 -1 0 0 1 0 0 1

P = 1 0 0 1 1 0 1 1 1 0 1 1 0 0 1, Q = 1 1 0 -1 -2 -1 1 2 2 1 -1 -2 -1 0 1 1

P = 1 1 0 1 1 0 1 1 0 1 1 0 1 1, Q = 1 0 1 -1 0 -1 1 0 1 -1 0 -1 1 0 1

P = 1 1 1 1 0 1 1 1 1 0 1 1 1 1, Q = 1 0 0 0 1 -1 0 0 0 -1 1 0 0 0 1

P = 1 1 1 1 1 1 1 1 1 1 1 1 1 1, Q = 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

P = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1, Q = 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

P = 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1, Q = 1 1 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 1 1

P = 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1, Q = 1 1 0 0 -1 -1 0 0 1 1 0 0 -1 -1 0 0 1 1
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