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Multi-Resolution

Analysis

To approximate something we:

1. Take a basis function g.

2. Translate to nodes.

3. Multiply by coefficients.

4. Sum the results.

To 1mprove, try moving nodes closer

together.




Definition of a Multiresolution Analysis:

1. A set Vp:
Vo =span{g(z —n) :n € Z}
. The g(z — n) should be orthogonal.

. Add multiple resolutions:
f(ZE) eV, «<— f(233> S Vk+1

. They should be increasing, ie.
Vk C Vk+1.

. The union should be dense:

+00
J vi=1®)

j=—00

. The intersection should be zero:

{1 vi={0}

j=—00




Examples I

1. Haar: g(z) = X10,1)

(omd 88 01T

s

9(z) = g(22) + 922 — 1),

sin T
T

. Shannon: g(x) =
In V; if supported on [—2/m, 297].
g(x) = 9(22) + 3 52922 — 2n).

. Daubechies:

ekgerr

g(z) = 3[(1+v3)g(2z) + (34 V3)g(2z —
1)+ (3—v3)g(2r—2)+ (1 - v3)g(25-3)].




Haar on R" I

A simple generalisation to R* might take
the function xg where Q = [0,1) x |0, 1).
This works in our definition of MRA by
just replacing R with R? and Z with R?.

This is really a product of two one
dimensional MRAs. Do more interesting

structures exist on R"™?
Instead of Z" use a full rank lattice I.

Instead of dilation by two use a mairix
A whose eigenvalues have norm bigger

than one and which leaves I' fixed.




Multiresolution Analysis of scale A on
lattice I':

1. Vi s.t.:
Vo =span{g(z —v):v €}
. The g(x — 7) should be orthogonal.

. Multiple resolutions:
flx) eV <= f(Ax) € Viiq

. Increasing: Vi, C Viyq.

. Dense Union:

+00
J Vi =L*(R)

j=—00

. Zero intersection:




Haar Bases and
Self-Affine Tiles

Grochenig and Madych (1992):
Theorem 1 If () is a bounded and

measurable set, then xqo generates a

MRA iff:

1. QN (Q + k) has measure zero for
kez™\ {0}

2. There is a collection of distinct coset
representatives of Z" |AZ"™ such that:

AQ = UL, (ki + Q).

3. Q) tiles R™ when translated by Z".

Consequently: |Q] =1 and ¢ = | det(A4)|.




Digit Sets I

Consider iterating:

Q=UL_ A7 (ki + Q)

Q=U_ Ul A7k + A7%k; + A7°Q

But A=) — 0, so:

Q = {ZAjEj L€ € {klw -'7kq}}
j=1

This is like a base A expansion of the
points in Q, and so {ky,...,k,} is called
the digit set.




Examples I

1. On R and taking dilation by 2, we

can take {0, 1} as coset reps of
Z./27. This leads to:

oo

1
Z —e€,; where €; € {0,1}

2J
j=1

ie. the binary expansion of points in
0,1].

. By translation we can ensure that 0
1s always in the digit set. For
instance {3,4} leads to
Q= 13,4 =3+ 10,1]. Other
representatives lead to stretched
sets {0,5} = |0, 5].




Grochenig and Madych (1992):

Theorem 2 Given {ky,..., k,} distinct
coset representatives of 2" JAZ", and Q)
produced from these digits, then TFAE:

1. xq generates a MRA,

2. 1Q| =1,

3. k+ Q are essentially disjoint for
keZ".

(Also includes three technical

conditions).
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To produce a Haar like MRA of scale A
we must select a digit set which
generates a set () of measure 1. Is this

always possible?

It was shown that two necessary
conditions were that the digits form a

complete set of coset representatives
and that Z|A, D| = Z.

This was shown to be sufficient when

n = 1 or when det(A) was prime

(characteristic poly of A irreducable).

Suitable sets of digits were definitely
shown to exist when det(A) > n+ 1 and
whenn =1, 2, 3.

Unfortunately this missed the most
interesting case for the wavelets people.
When det(A) = 2 you only need one

wavelet, and this case wasn’t covered.
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In 1994 Lagarias and Wang (almost)

proved the following:

Theorem 3 If f, the characteristic
polynomual of A, is wrreducable with

| f(0)| =2 then A has a primitive
complete digit set iff Z[1,6,...,0" ] has

class number 1.

In 1997 Potiopa found an example

which didn’t have class number 1.

0 0 )

1 0
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My Aim: Find characteristic functions

that satisty dilation equations.

What do we already know?

L.

n—1

Xjo,1) satisfies f(z) = > f(nx — k)

k=0
forn e N, n > 0.

. Cantor’s middle third set satisfies

flz) = f(3zx) + f(3z - 2).

. xr(z) = ) cexr(22 — k) for any ¢
summing to one.

. X[0,1)uf2,3) satisfies a scale 2 equation

=11 -1-122 -2 -2 ...

. Selt affine tiles which generate

MRASs satisty dilation equations
with ¢, € {0,1} due to
orthogonality.
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Left /Right Hand End I

Assume: Compact support & finite
NONZETO Cy,.

Lemma 4 Suppose

g(x) =D drg(2x — k), and only finitely
many of the d;, are non-zero. Then we

can find | so that if f(x) = g(x — 1) we
find:

flx)=> cf(2z—k),

co # 0, ¢, =0 when k <0 and
Ck:dk—l-

Lemma 5 If f is compactly supported

and satisfies a dilation equation

flx)=> cpf(2x — k), where ¢y # 0 and
cr, =0 when k <0, then f is zero

almost everywhere in (—oo,0).

14
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Theorem 6 If .S is bounded and

satisifies a dilation equation

xs(z) = > ckxs(2x — k) a.e., where
co # 0 and ¢, = 0 when k < 0, then

either:
e S is of measure zero or,

e ¢y = 1, the rest of the ¢ are integers

with |c| < 2% and E has non-zero

measure in both [0,3) and [3,1).

Problem: For scale 2 it looks like E
must be the whole interval. For the

moment we’ll assume 1it.
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Theorem 7 The map from functions

which are constant on [n,n + 1) to the

polynomaals given by:

S e (@) — Y i = Pl

r

1$ a linear bijection, transforming the

following operations in the following
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Our dilation equation becomes:

Messing with polynomials and roots

glves:

1. R(z)Q(x) = R(x?) iff when r a root
of R of order p then r? is a root of

R of order atleast p.

. P(x) = R(x)/(x — 1) where

. All of P’s roots are either O or a

root of unity.

. If P’s coefficients are real then P is

palendromic or anti-palendromic.
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