Self Affine Tiles and Dilation Equations

David Malone

March 2000

Multi-Resolution Analysis To approximate something we: 1. Take a basis function g. 2. Translate to nodes. 3. Multiply by coefficients.

4. Sum the results.

To improve, try moving nodes closer together.

Definition of a Multiresolution Analysis:

1. A set V_0 :

$$V_0 = \operatorname{span} \left\{ g(x - n) : n \in \mathbb{Z} \right\}$$

- 2. The g(x-n) should be orthogonal.
- 3. Add multiple resolutions:

 $f(x) \in V_k \iff f(2x) \in V_{k+1}$

- 4. They should be increasing, ie. $V_k \subset V_{k+1}$.
- 5. The union should be dense:

$$\bigcup_{j=-\infty}^{+\infty} V_j = L^2(\mathbb{R})$$

6. The intersection should be zero:

$$\bigcap_{j=-\infty}^{+\infty} V_j = \{0\}$$

Haar on \mathbb{R}^n

A simple generalisation to \mathbb{R}^2 might take the function χ_Q where $Q = [0, 1) \times [0, 1)$. This works in our definition of MRA by just replacing \mathbb{R} with \mathbb{R}^2 and \mathbb{Z} with \mathbb{R}^2 .

This is really a product of two one dimensional MRAs. Do more interesting structures exist on \mathbb{R}^n ?

Instead of \mathbb{Z}^n use a full rank lattice Γ .

Instead of dilation by two use a mairix A whose eigenvalues have norm bigger than one and which leaves Γ fixed.

Multiresolution Analysis of scale A on lattice Γ :

1. V_0 s.t.:

$$V_0 = \operatorname{span} \left\{ g(x - \gamma) : \gamma \in \Gamma \right\}$$

- 2. The $g(x \gamma)$ should be orthogonal.
- 3. Multiple resolutions:

$$f(x) \in V_k \iff f(Ax) \in V_{k+1}$$

- 4. Increasing: $V_k \subset V_{k+1}$.
- 5. Dense Union:

$$\bigcup_{j=-\infty}^{+\infty} V_j = L^2(\mathbb{R})$$

6. Zero intersection:

$$\bigcap_{j=-\infty}^{+\infty} V_j = \{0\}$$

Haar Bases and Self-Affine Tiles

Gröchenig and Madych (1992):

Theorem 1 If Q is a bounded and measurable set, then χ_Q generates a MRA iff:

- 1. $Q \cap (Q+k)$ has measure zero for $k \in \mathbb{Z}^n \setminus \{0\}.$
- 2. There is a collection of distinct coset representatives of $\mathbb{Z}^n/A\mathbb{Z}^n$ such that:

 $AQ = \bigcup_{i=1}^{q} (k_i + Q).$

3. Q tiles \mathbb{R}^n when translated by \mathbb{Z}^n .

Consequently: |Q| = 1 and $q = |\det(A)|$.

Digit Sets

Consider iterating:

$$Q = \bigcup_{i=1}^{q} A^{-1}(k_i + Q)$$

$$Q = \bigcup_{i=1}^{q} \bigcup_{j=1}^{q} A^{-1}k_i + A^{-2}k_j + A^{-2}Q$$
But $A^{-n}Q \to 0$, so:

$$Q = \left\{ \sum_{j=1}^{\infty} A^{-j}\epsilon_j : \epsilon_j \in \{k_1, \dots, k_q\} \right\}$$

This is like a base A expansion of the points in Q, and so $\{k_1, \ldots, k_q\}$ is called the digit set.

Examples

On ℝ and taking dilation by 2, we can take {0,1} as coset reps of Z/2Z. This leads to:

$$\sum_{j=1}^{\infty} \frac{1}{2^j} \epsilon_j \text{ where } \epsilon_j \in \{0, 1\}$$

ie. the binary expansion of points in[0, 1].

2. By translation we can ensure that 0 is always in the digit set. For instance $\{3, 4\}$ leads to Q = [3, 4] = 3 + [0, 1]. Other representatives lead to stretched sets $\{0, 5\} \Rightarrow [0, 5]$.

Gröchenig and Madych (1992):

Theorem 2 Given $\{k_1, \ldots, k_q\}$ distinct coset representatives of $\mathbb{Z}^n / A\mathbb{Z}^n$, and Qproduced from these digits, then TFAE:

- 1. χ_Q generates a MRA,
- 2. |Q| = 1,
- 3. k + Q are essentially disjoint for $k \in \mathbb{Z}^n$.

(Also includes three technical conditions).

To produce a Haar like MRA of scale Awe must select a digit set which generates a set Q of measure 1. Is this always possible?

It was shown that two necessary conditions were that the digits form a complete set of coset representatives and that $\mathbb{Z}[A, \mathcal{D}] = \mathbb{Z}.$

This was shown to be sufficient when n = 1 or when det(A) was prime (characteristic poly of A irreducable).

Suitable sets of digits were definitely shown to exist when $det(A) \ge n + 1$ and when n = 1, 2, 3.

Unfortunately this missed the most interesting case for the wavelets people. When det(A) = 2 you only need one wavelet, and this case wasn't covered.

In 1994 Lagarias and Wang (almost) proved the following:

Theorem 3 If f, the characteristic polynomial of A, is irreducable with |f(0)| = 2 then A has a primitive complete digit set iff $\mathbb{Z}[1, \theta, \dots, \theta^{n-1}]$ has class number 1.

In 1997 Potiopa found an example which didn't have class number 1.

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 2 \\ -1 & 0 & -1 & 1 \end{pmatrix}.$$

My Aim: Find characteristic functions that satisfy dilation equations.

What do we already know?

1.
$$\chi_{[0,1)}$$
 satisfies $f(x) = \sum_{k=0}^{n-1} f(nx-k)$
for $n \in \mathbb{N}, n > 0$.

- 2. Cantor's middle third set satisfies f(x) = f(3x) + f(3x - 2).
- 3. $\chi_{\mathbb{R}}(x) = \sum c_k \chi_{\mathbb{R}}(2x k)$ for any c_k summing to one.
- 4. $\chi_{[0,1)\cup[2,3)}$ satisfies a scale 2 equation $c_n = 1, 1, -1, -1, 2, 2, -2, -2, \dots$
- 5. Self affine tiles which generate MRAs satisfy dilation equations with $c_n \in \{0, 1\}$ due to orthogonality.

Left/Right Hand End

Assume: Compact support & finite nonzero c_n .

Lemma 4 Suppose $g(x) = \sum d_k g(2x - k)$, and only finitely many of the d_k are non-zero. Then we can find l so that if f(x) = g(x - l) we find:

 $f(x) = \sum c_k f(2x - k),$

 $c_0 \neq 0, c_k = 0$ when k < 0 and $c_k = d_{k-l}.$

Lemma 5 If f is compactly supported and satisfies a dilation equation $f(x) = \sum c_k f(2x - k)$, where $c_0 \neq 0$ and $c_k = 0$ when k < 0, then f is zero almost everywhere in $(-\infty, 0)$.

Theorem 6 If S is bounded and satisifies a dilation equation $\chi_S(x) = \sum c_k \chi_S(2x - k)$ a.e., where $c_0 \neq 0$ and $c_k = 0$ when k < 0, then either:

- S is of measure zero or,
- $c_0 = 1$, the rest of the c_k are integers with $|c_k| \le 2^k$ and E has non-zero measure in both $[0, \frac{1}{2})$ and $[\frac{1}{2}, 1)$.

Problem: For scale 2 it looks like Emust be the whole interval. For the moment we'll assume it.

Theorem 7 The map from functions which are constant on [n, n + 1) to the polynomials given by:

$$f(x) = \sum_{r} a_r \chi_{[r,r+1)}(x) \mapsto \sum_{r} a_r x^r = P_f(x),$$

is a linear bijection, transforming the following operations in the following way:

$$(\alpha f + \beta g)(x) \mapsto \alpha P_f(x) + \beta P_g(x),$$

$$f\left(\frac{x}{n}\right) \mapsto \frac{x^n - 1}{x - 1} P_f(x^n),$$

$$f(x - k) \mapsto x^k P_f(x),$$

$$\sum_k c_k f(x - k) \mapsto P_f(x) Q(x),$$
where $Q(x) = \sum c_k x^k.$

Our dilation equation becomes:

 $P(x)Q(x) = P(x^2)(x+1).$

Messing with polynomials and roots gives:

1. $R(x)Q(x) = R(x^2)$ iff when r a root of R of order p then r^2 is a root of R of order atleast p.

2.
$$P(x) = R(x)/(x-1)$$
 where
 $R(1) = 0.$

- 3. All of *P*'s roots are either 0 or a root of unity.
- 4. If P's coefficients are real then P is palendromic or anti-palendromic.