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Measuring Randomness

Start with a simple measurement of

uncertainty.

You have a program with n bits of random

initial state then the program can have at

most 2n different ways it can run.

Calculate minimum randomness for:

Lotto Quick Pick:

42!

6!36!
= 5245786

Requires lg(5245786) ≈ 23 bits.

Shuffling Cards:

52! = 8.0658 . . .× 1067

Requires lg(52!) ≈ 226 bits (29 bytes).
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Shuffling Election votes: For n votes

we need about this many bits:

lg(n!) =
n∑

m=1

lg(m)

≈
∫ n

1

lg(m) dm

≈ n lg(n)

For 1,000,000 votes that is about 20

million bits — or about 1.25MB!
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Entropy Measuring

Uncertainty

A source which produces symbols a ∈ A
with probability pa has entropy

h(p) =
∑
a∈A

pa lg
1

pa
.

Shannon proved h(p) is the average

number of bits required to encode a

message from that source. It adds for

independent sources.

Entropy is often interpreted as the

amount of information or uncertainty

associated with a source.
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Guessing and

Cryptography

Encryption requires selecting an algorithm

and a key. Great care is invested in

designing algorithms and so it may be

easier to attack the key.

• A brute force attack involves trying

every key one after another. Your key

space must be big to make this

impractical.

• A dictionary attack uses the fact that

people are more likely to choose real

words as keys.

Pseudo-random numbers used by

computers can be subject to

dictionary-like attacks if seeded badly.
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Entropy and Guessing

Entropy is a measure of uncertainty. Does

it capture how hard it is to guess a

number? From the sci.crypt FAQ:

We can measure how bad a key

distribution is by calculating its

entropy. This number E is the

number of “real bits of information”

of the key: a cryptanalyst will

typically happen across the key

within 2E guesses. E is defined as

the sum of −pK log2 pK , where pK is

the probability of key K.

Can we check this?
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The quickest way to guess a symbol is to

first guess the most likely value, and then

proceed towards the least likely value.

Label pk in decreasing order with integers

then the expected amount of guessing

time or guess work is

G(p) =
∑
k

pkk.

We want to compare this to an entropy

based estimate,

H(p) =
2h(p) + 1

2
,

because guessing from r equally likely

options takes (r + 1)/2 guesses.
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Bernoulli Source

Here A = {0, 1} and

P(0) = p,P(1) = q = 1− p.
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H(p) = 2−p lg p−(1−p) lg(1−p) = p−pq−q.
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Simulation
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Simulated by choosing up a random

distribution on up to 20 symbols.

Hypothesis:

0.7H(p) ≤ G(p) ≤ H(p).
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Show 0.7H(p) ≤ G(p) with Lagrange

Multipliers: Fix G(p) and find extrema of

H(p) at

pk = Cλk,

(luckily, a decreasing sequence).

G(x,y)/H(x,y)
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Then evaluate G and H explicitly.

lim
n→∞,λ→1

G

H
= lim

λ→1

2

1− λ+ λλ/(λ−1)
→ 2

e
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Massey also shows that the upper bound

G(p) ≤ H(p) isn’t, using the sequence

pk =


1− β

n
k = 1

β

n2 − n
2 ≤ k ≤ n

,

and letting n become large. This sequence

has an entropy tending to zero, but a

constant guess work.

So, entropy is a lower bound on guess

work, but not an upper bound. Lucky for

those cryptologists. . .

How did this incorrect idea get into the

folklore?
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Asymptotic

Equipartition

One important place where entropy arises

is in the Asymptotic Equipartition

Property (AEP). If we have n independent

identical sources and we look at their

combined output in An then the set

T (n)
ε =

{
a ∈ An : |P(a)− 2−nh(p)| < ε

}
has the following properties:

• P(T
(n)
ε )→ 1 as n→∞.

• |T (n)
ε | ≈ 2nh(p).

These elements are considered ‘typical’.
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AEP and Guessing

Plaim suggests that the link between

guesswork and entropy may have arisen

via the AEP. Remember, the AEP says

that we can find a set of words T
(n)
ε so

that the probability of each word is about

2−nh(p) and by making n big enough we

can make P(T
(n)
ε ) close to 1. Ignoring the

atypical words,

G(p) =
∑
k

pkk =
∑
T

(n)
ε

2−nh(p)k =
2nh(p) + 1

2
.

Setting n = 1 then produces folklore. . .
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Can we salvage a result if n large?

Look at sets of symbols (a1, . . . an) in An

with probability pa1 . . . pan . Guess in the

same way as before and only stop if all

symbols correct.

To evaluate Gn(p) calculate all the

products pa1 . . . pan and sort them, then

Gn(p) =
∑
k

pak,1 . . . pak,nk.

Evaluating Hn(p) is much easier ’cos the

entropy of independent sources adds:

Hn(p) =
2hn(p) + 1

2
=

2nh(p) + 1

2
=
H(p)n + 1

2
.

Is Gn(p) ≈ Hn(p)?
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Product Bernoulli Source

Most cases are hard: have to sort product

of probabilities. In Bernoulli case, if

0 ≤ p ≤ 0.5, we know pkqn−k is in

non-increasing order. Thus,

Gn(p) =
n∑
k=0

f(k, n)pkqn−k
(
n

k

)
where

f(k, n) =
k−1∑
j=0

(
n

j

)
+

1

2

(
n

k

)
.

Hn(p) grows exponentially so consider

lim
n→∞

1

n
logGn(p).
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We find that

Gn(p) �
(

(
√
p+
√
q)2
)n

and know that

Hn(p) �
(
p−pq−q

)n
.
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This generalises as you would hope:

Gn(p) �
(

(
√
p1 +

√
p2 + . . .)2

)n
Amazingly, lg

((√
p1 +

√
p2 + . . .

)2
)

is a

generalisation of Shannon entropy called

Rényi entropy.

Has also been generalised to Markov

Chains (WGS) and to more general spaces

(WGS+CP).
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Collecting Randomness

Various techniques:

• Timing radioactive decays.

• Radio Noise (www.random.org).

• Timing interrupts.

• Compressed machine state

(egd.sourceforge.net).

• Intel 8XX chipset.

Offered on Unix via /dev/random.

Managed via techniques such as Yarrow.
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Application

Collecting randomness by measuring

background radiation. Watch for time

interval T , no decays a = 0 otherwise

a = 1. Poisson distributed so p = e−T . Do

optimal T for long term rate of entropy

and guess work collection differ?
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Another Guessing

Problem

Help desk answers m types of question

(frequency q1, . . . qm).

’Phoning to random person dealing with 1

type, transfered until right type.

If trained in proportion p1, . . . pm, how

many transfers?

E[search time] =
m∑
k=1

qk

∞∑
l=1

pk(1− pk)ll

=
m∑
k=1

qk
pk
.
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How should we train the helpdesk?

Optimising pk gives(
pk
pl

)2

=

(
qk
qm

)
,

so pk ∝
√
qk and

(
∑
k

√
qk)

2.

This is also a modle for indexing in P2P

networks.
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Moral

1. Don’t always believe simulations.

2. Randomness is important: but be

careful to define randomness.

3. The crypto guys goofed: Entropy is

easier than guess work.

4. Mathematical abstractions usually

find an application.

Furtue

1. Calculate G,H for people.

2. How does guesswork combine?

3. Link between Rényi and guessing?
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