Hash Pile Ups: Using Collisions to Identify
Unknown Hash Functions

R. Joshua Tobin and David Malone

11 October 2012

Hash Functions

We are talking about hash functions for consistent assighment. For
example,

e Hash tables,

e Network balancing packets (CEF, LAG, ECMP),
e Service load balancing (BIG-IP),

¢ Packets to CPUs (Microsoft RSS),

* etc.

These are not usually cryptographic strength!
Collisions relatively easy to find.

Outline

1. Background motivation.
2. ldea — learning and generating collisions.

3. 3 examples

3.1 the hash,
3.2 the attack,
3.3 the results.

4. Conclusion.

There is an analysis of each attack in the paper.

Background Motivation

Algorithmic Complexity Attacks (Crosby and Wallach, 2003).
Some algorithms have different typical and worst case.
Attack by choosing input to be worst case.

Can be applied to hash tables, sorting, string matching, ...

Hashes are canonical examples.

Demonstration attack

Random Attack —+—
Complexity Attack ---x---

60

, ,
o o o
< @ «

(sdd) papiemio sjexoed

10 -

20

15

10
Time (s)

How to Fix?

e In general use algorithm with good worst case.
e Hash functions too useful though.

e Using crypto-strength hashes often too slow?
e What happens if the hash used is a secret?

Choose your hash randomly from a family on startup.
(Advisories still being released on this issues.)

Hash Costs

T T T
ZRS|
2y AU TESESSEEEESESSSSY
mm EzzzzzzzzZZ ¢x
L B A S E=19)
S0 CTEGOWCO Z©
SESFOTIN -
XZ225350g
D= T
Jen
D.U (%]
mm
=<8
<t
I~
L
2@
Nz
o
SN
i
3\
M 3
n0u2
S SSSSSSSSSSSSSSSSSSSS
I
8=
DO
S
\

(sn)
swll NdO

Idea — Learning from collisions

1. You usually can't observe hash output.

2. You can often observe collisions (e.g. time hash lookups,
processing time, reordering, traceroute, server IDs, ...).

3. By design, your hashes should have different collisions.

4. Observing collisions leaks information about hash in use

Can we use this to identify the hash function or generate collisions?

Example 1: Small Hash Famaly

Often the hash is keyed by an integer or a few bits.

Suppose the number of hashes is small enough to iterate
through.

3. For example, Bob Jenkins's hash in RFC 5475.

4. Use 4 bits of output (e.g. 16 routes).

Example 1: Small Hash Famaly

Attack:
1. Make a list of all hashes.
2. Find two colliding inputs (Birthday Paradox).
3. Remove hashes that do not collide on these inputs.

4. Repeat until one hash left.

Number of Probe Strings

30

25

Example 1: Small Hash Family

Attempts —+—

Optimistic Estimate
ponservatiye Estimatg

100 1000 10000 100000 1e+06 1e+07 1e+08
Number of Hashes

Example 2: Pearson’s Hash

In 1990 Pearson proposed a neat, fast, randomly keyed hash, using
a random permutation T of a byte and xor (®).
To hash a string of bytes:

1. h< 0

2. foreach (byteli])
h + T[byte[i] & h]

3. return h
Family is really big — 256!

Example 2: Pearson’s Hash

Attack: Recover the permutation.
1. Insert all strings x000. .. 0 and 0y00...0
2. Algebra: collide in pairs (a, b) where T(a) = T(0) ® b.
3. From collisions, we know pairs (using 2*256 strings).
4. T(0) is remaining unknown (small family, get in 256+small
strings).

Attack generalises to replacing bytes and xor with any group.

Pearson’s Hash

Ezxample 2

T T T T T T
m m 1o
0o
© O
ED
Lo © 4~
8¢
Sa
o
o
S
\<I 4 ©
L 4 v
L +4 <
L ™
S S S SN LISONDLLS
L Rt o
R S]
ho2aietoietotatotatotatoraiedaiedoletod
L L L L
™~ © 0 < [o - o
o o o o o o o

S[el} o uonoey;

number of random strings hashes to recover T

Example 3: Toeplitz Hash

Microsoft have a standard for network cards to hand off packet to
CPUs (RSS). The key K is a longish bit string.
1. r<20

2. foreach bit b in input
if (b ==1) r < r® left-most 32 bits of K
shift K left 1 bit position

3. return r

In practice you use 1-7 bits and might pass through a lookup table
to choose CPU.

Example 3: Toeplitz Hash

Attack: It's linear over Z,, use some linear algebra.

1. Choose the bits of the input you control. Set one to zero at a
time.

o

Group the bits according to which collide (Ej, ..., E).
3. For any even-sized subsets Ej, ..., E/ of Ey,..., E

hlx+ Y e] =h(x)+ Y h(e) =h(x),

ecJ E/ eclJ E/
4. So every even-sized subset collection gives a collision.

Can work with other linear functions too, but more effective for
low index.

Mean lookup time

60000

50000

40000

30000

20000

10000

Ezxample 3: Toeplitz Hash

Base Attack on Linear Indirection —+—
Base Attack on Non-Linear Indirection --->--—
Modified Attack on Non-Linear Indirection ----x---

Xmm K m KR K
L I

S e
|

80 100 120 140 160
Basis bits used by attacker

S Tt Lo e =

Conclusion

Algorithmic Complexity Attacks.

For hashes, choosing from a family is useful.
However, collisions leak information.

Means you need to choose family carefully.
Small family is bad.

Structure like linear or group is bad.

