
Hash Pile Ups: Using Collisions to Identify

Unknown Hash Functions

R. Joshua Tobin and David Malone

11 October 2012

Hash Functions

We are talking about hash functions for consistent assignment. For
example,

• Hash tables,

• Network balancing packets (CEF, LAG, ECMP),

• Service load balancing (BIG-IP),

• Packets to CPUs (Microsoft RSS),

• etc.

These are not usually cryptographic strength!
Collisions relatively easy to find.

Outline

1. Background motivation.

2. Idea — learning and generating collisions.

3. 3 examples

3.1 the hash,
3.2 the attack,
3.3 the results.

4. Conclusion.

There is an analysis of each attack in the paper.

Background Motivation

• Algorithmic Complexity Attacks (Crosby and Wallach, 2003).

• Some algorithms have different typical and worst case.

• Attack by choosing input to be worst case.

• Can be applied to hash tables, sorting, string matching, . . .

• Hashes are canonical examples.

Demonstration attack

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20

P
a
c
k
e
ts

 F
o
rw

a
rd

e
d
 (

p
p
s
)

Time (s)

Random Attack
Complexity Attack

How to Fix?

• In general use algorithm with good worst case.

• Hash functions too useful though.

• Using crypto-strength hashes often too slow?

• What happens if the hash used is a secret?

Choose your hash randomly from a family on startup.
(Advisories still being released on this issues.)

Hash Costs

 0

 2

 4

 6

 8

 10

 12

 14

 16

Geode
500MHz

Core 2 Duo
2.66GHz

Athlon 64
2.6GHz

Xeon
3GHz

Atom
1.6GHz

C
P

U
 T

im
e

(u
s
)

Xor
Jenkins

Pearson
Universal

MD5
SHA

SHA256

Idea — Learning from collisions

1. You usually can’t observe hash output.

2. You can often observe collisions (e.g. time hash lookups,
processing time, reordering, traceroute, server IDs, . . .).

3. By design, your hashes should have different collisions.

4. Observing collisions leaks information about hash in use

Can we use this to identify the hash function or generate collisions?

Example 1: Small Hash Family

1. Often the hash is keyed by an integer or a few bits.

2. Suppose the number of hashes is small enough to iterate
through.

3. For example, Bob Jenkins’s hash in RFC 5475.

4. Use 4 bits of output (e.g. 16 routes).

Example 1: Small Hash Family

Attack:

1. Make a list of all hashes.

2. Find two colliding inputs (Birthday Paradox).

3. Remove hashes that do not collide on these inputs.

4. Repeat until one hash left.

Example 1: Small Hash Family

 0

 5

 10

 15

 20

 25

 30

 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

N
u
m

b
e
r

o
f
P

ro
b
e
 S

tr
in

g
s

Number of Hashes

Attempts
Optimistic Estimate

Conservative Estimate

Example 2: Pearson’s Hash

In 1990 Pearson proposed a neat, fast, randomly keyed hash, using
a random permutation T of a byte and xor (⊗).
To hash a string of bytes:

1. h← 0

2. foreach (byte[i])
h← T [byte[i]⊕ h]

3. return h

Family is really big — 256!

Example 2: Pearson’s Hash

Attack: Recover the permutation.

1. Insert all strings x000. . . 0 and 0y00. . . 0

2. Algebra: collide in pairs (a, b) where T (a) = T (0)⊗ b.

3. From collisions, we know pairs (using 2*256 strings).

4. T (0) is remaining unknown (small family, get in 256+small
strings).

Attack generalises to replacing bytes and xor with any group.

Example 2: Pearson’s Hash

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 2 3 4 5 6 7 8

fr
a
c
ti
o
n
 o

f
tr

ia
ls

number of random strings hashes to recover T

1,000,000 trials
predicted

Example 3: Toeplitz Hash

Microsoft have a standard for network cards to hand off packet to
CPUs (RSS). The key K is a longish bit string.

1. r ← 0

2. foreach bit b in input
if (b == 1) r ← r ⊗ left-most 32 bits of K
shift K left 1 bit position

3. return r

In practice you use 1–7 bits and might pass through a lookup table
to choose CPU.

Example 3: Toeplitz Hash

Attack: It’s linear over Z2, use some linear algebra.

1. Choose the bits of the input you control. Set one to zero at a
time.

2. Group the bits according to which collide (E1, . . . ,El).

3. For any even-sized subsets E ′

1
, . . . ,E ′

l
of E1, . . . ,El

h



x +
∑

e∈
⋃

E ′

i

e



 = h(x) +
∑

e∈
⋃

E ′

i

h(e) = h(x),

4. So every even-sized subset collection gives a collision.

Can work with other linear functions too, but more effective for
low index.

Example 3: Toeplitz Hash

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 20 40 60 80 100 120 140 160

M
e
a
n
 l
o
o
k
u
p
 t
im

e

Basis bits used by attacker

Base Attack on Linear Indirection
Base Attack on Non-Linear Indirection

Modified Attack on Non-Linear Indirection

Conclusion

1. Algorithmic Complexity Attacks.

2. For hashes, choosing from a family is useful.

3. However, collisions leak information.

4. Means you need to choose family carefully.

5. Small family is bad.

6. Structure like linear or group is bad.

