
Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 63 No. 2, 2020

© The British Computer Society 2019. All rights reserved.
For permissions, please e-mail: journals.permissions@oup.com

Advance Access publication on 8 November 2019 doi: 10.1093/comjnl/bxz081

Power Saving Proxies for Web Servers

Karl J. O’Dwyer1, Eoin Creedon2, Mark Purcell2 and
David Malone1,*

1Hamilton Institute, Maynooth University, Kildare, Ireland

2IBM Research Ireland
∗Corresponding author: David.Malone@mu.ie

Electricity is a major cost in running a data centre, and servers are responsible for a significant
percentage of the power consumption. Given the widespread use of HTTP, both as a service and a
component of other services, it is worthwhile reducing the power consumption of web servers. In this
paper we consider how reverse proxies, commonly used to improve the performance of web servers,
might be used to improve energy efficiency. We suggest that when demand on a server is low, it may
be possible to switch off servers. In their absence, an embedded system with a small energy footprint
could act as a reverse proxy serving commonly-requested content. When new content is required,
the reverse proxy can power on the servers to meet this new load. Our results indicate that even with

a modest server, we can get a 25% power saving while maintaining acceptable performance.

Keywords: power aware computing; power saving; HTTP; Web server; reverse proxies.;

Received 11 September 2018; Revised 6 April 2019; Editorial Decision
Handling editor: Gerard Parr

1. INTRODUCTION

IT now contributes measurably to the global consumption of
electricity. While this is less than other sectors [1] and progress
has been made, there is room for improvement in areas such
as on-demand use of resources, trading energy usage and
quality of service [2]. New server technologies promise to
lower power consumption when resources are idle. Servers are
specified to meet or exceed current peak demands; however,
common power-saving techniques are unable to power the
server off while idle, as the server must remain responsive to
new requests. Empirical tests show that while powered off or
sleeping, servers consume significantly less power than in the
lowest-power idle states (e.g. [3, 4]).

Mechanisms for temporarily turning servers on and off do
exist. Recent server hardware supports the Advanced Con-
figuration and Power Interface (ACPI) power-saving modes,
which were previously only available on laptop and desktop
computers. These include methods to suspend to disk (i.e.
hibernation) and suspend to RAM, which are low power modes
with quick recovery to normal operation. The Wake-on-LAN
(WoL) standard for remote activation of devices offers a con-
venient method to initiate recovery remotely.

Thus, if we can overcome the adverse effect on availability
resulting from putting a server to sleep, then it may be prac-
tical to save energy. The use of reverse proxies for website

acceleration or load balancing is relatively commonplace. In
this paper we consider using a low-power device acting as a
reverse proxy. It will have the additional ability to shut down
the server when demand is low, serve cached content while the
server is sleeping and wake the server if new content is required.
In contrast to previous papers, which have considered how to
reduce power usage when the service is provided in the cloud
or on a large-scale in a data-centre (see Section 2 for a review),
we are targeting services typically provided by a single server
which may have low-demand periods (e.g. in-house servers at
night, low-demand on-site hosted web servers, . . . ).

We explore this approach by developing a small testbed
that allows us to replay web access patterns, estimate energy
savings, etc. We review some related work in Section 2. In
Section 3, we describe the web access patterns that we observe
on a campus web server and their implications for designing
a power-saving scheme. In Section 4, we describe the relevant
power-management features and measure their power usage.
We then discuss the limits of possible power savings without
introducing additional delays in Section 5. This leads us to
the design of a power-saving scheme in Section 6 and our
evaluation of this scheme in Section 7. In Section 8 we discuss
our results and conclude in Section 9. This paper is an extended
version of the conference paper [5], which presents preliminary
results on web access patterns and the limits of power saving
schemes.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/63/2/179/5614859 by jcrem
in@

tcd.ie user on 02 January 2021



180 K. J. O’Dwyer et al.

2. RELATED WORK
Though energy saving has long been of interest for clients such
as laptops (e.g. [6]), desktops (e.g. [7, 8] and phones (e.g. [9]),
there has been a thread of interest in applying techniques to
servers, including an early call to apply them to web servers
[10]. Various specific facilities have been used to improve
energy efficiency, often controlled by the host operating sys-
tem. For example, Dynamic Voltage and Frequency Scaling
(DVFS) can reduce the energy consumption of the CPU and
other components and is often controlled by the operating
system (e.g. [11]). Energy proportionality is the idea that the
amount of energy used should be proportional to the amount
of work done [12], but this can be challenging to achieve with
some computer components, such as disks, that are either on
or off. Sleep states have long been used for desktop computers
and mobile devices, but they have proven useful on servers too.
For example, Gandhi et al. [3] make the case for sleep states on
servers, evaluating their use in a cluster of 24 servers. Of course,
other features can have an impact on energy consumption, from
the programming language used to implement the system [13],
the protocols in use at the client [14] or the server [15], to
the use of modern devices such as GPUs (Graphic Processing
Units) [16].

Energy usage in data centres and the cloud has generated a
large literature. The ability to consolidate workloads [17] has
provided the facility to reduce the number of idle services. A
common thread in many energy-reduction schemes is to model
the power usage of the data centre or cloud and combine this
with a characterization of the demand (e.g. [18, 19]). More
recent works take such schemes and build resource manage-
ment frameworks for data centres [20]. In a similar, vein Xu
and Li [21] propose an energy efficient framework for resource
allocation in the cloud, and others have proposed schemes
aiming for energy proportionality for large-scale systems con-
sisting of thousands of servers [22]. Simulation environments
for understanding energy usage of cloud services have also
been built and tested [23–27]. Surveys of research on energy
efficiency in the cloud [28] and data centres [29] have been
conducted, including surveys of specific applications, such as
computational work [30], taxonomies of the problems being
addressed [31], broader strategies for energy and carbon effi-
ciency of data centres [32] and even surveys of the surveys [33].

Another more application-specific way to consider this prob-
lem is to consider the content delivery networks (CDNs) that
are used by large-scale providers of web content. These works
consider factors impacting energy consumption (e.g. [34]) and
how CDNs can be managed for energy efficiency (e.g. [35]).
This can include powering off devices in a CDN network (e.g.
[36, 37]) and the trade off between energy and QoS (e.g. [38]).

In this paper, we share common elements with previous
work, such as exploiting typical traffic patterns and measuring/
modeling energy usage in order to obtain savings. Our focus,
however, is away from the data centre and instead on services
that might be provided by individual servers, rather than large-

FIGURE 1. Median number requests per hour by day, sample web
logs.

scale systems, where low-demand periods can be still exploited
to save energy. Particularly, by reducing baseline energy usage
when the system is close to idle we aim to move the system
closer to energy proportionality.

3. INVESTIGATION OF TRAFFIC

Our aim is to exploit patterns in web traffic in order to turn
off web servers when they are not required. There has been
considerable work to characterize web traffic (e.g. [39–44]),
and it is known that web access patterns are bursty.

A reverse proxy is a web server that accepts requests from
clients and forwards them to a back-end server, which stores
or generates all the website’s available content. The reverse
proxy caches the content as it is served, and uses the cached
content to answer requests when possible. As websites often
have ‘hot’ static content [45], or content that is expensive to
generate but can be cached once generated, reverse proxies
can often result in performance improvements. We use Varnish
[46] as a reverse proxy. The reverse proxy’s ability to cache
content, and so to save power, will depend on the details of the
accesses. Consequently, we will design and assess our scheme
using actual requests from a campus web server.

This web server hosts the websites of around 400 student
clubs, societies and individuals. It has a variety of content and
is accessed frequently by those on and off the campus, and
exhibits a mix of web content and access patterns. In total, it
amounts to over 77GB of content in 400 000 files, excluding
content stored in databases. Frequently-accessed content rep-
resents a considerably smaller subset of this total. The server is
not busy, typically serving around 30 000 requests per day, but
the volume of content should make caching more challenging.

We looked at the median and mean number of requests per
hour over 270 days worth of data and grouped them by a

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 63 No. 2, 2020

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/63/2/179/5614859 by jcrem
in@

tcd.ie user on 02 January 2021



Power-saving proxies for Web servers 181

FIGURE 2. Mean number requests per hour by day, sample web logs.

TABLE 1. Strings used to identify common spiders.

Googlebot Slurp Baiduspider

bingbot urlresolver Speedy Spider

Sosospider Sogou web spider Gigabot

specific hour during a week. The median is shown in Fig. 1,
with the noisier mean values in Fig. 2. We do not see periodic
activity, but a diurnal pattern emerges, showing significant
variation throughout the day.
Further inspection of the data reveals that a significant number

of requests are from web spiders [47].1 Based on a manual
inspection of the User Agent field of the log file, and consulting
lists of common spiders, we found that matching the list in
Table 1 allowed us to identify the majority of requests made
by spiders to this site. We randomly sampled requests that did
not match this list, and inspected them manually. Only ∼ 5%
of the remaining requests came from suspected spiders.

We calculate the median and mean request rate from spiders
in this list and also show this median and mean in Fig. 1
and Fig. 2, respectively. We see that a significant number of
requests are actually from these spiders and that this traffic does
not exhibit the same diurnal pattern. This suggests that it may
be useful to handle web traffic from spiders as a special case.

If we want a server to sleep between requests, then an impor-
tant factor is the period between requests, which we estimate
using the length of gaps between logged requests (logged at
a resolution of 1 second in Combined Logfile Format). The
length of these gaps will indicate whether it may be possible
to switch off the web server between requests, or if such
opportunities are limited.

1 A web spider, sometimes called a robot, a bot or a crawler, is an automated system

that loads web pages [48, 49], e.g. search-engines’ crawlers.

FIGURE 3. Number of gaps of a particular duration between
requests. We omit gaps of duration <1 second.

FIGURE 4. Number of gaps of a particular duration between requests
to back end, omitting requests served by reverse proxy. We omit gaps
of duration <1 second.

Using a subset of our data, amounting to 40305 requests over
28 hours, we look at the distribution of the gaps. Figure 3 shows
the frequency of the gap of a particular duration. As we expect,
gaps are typically quite short, which limits our chances to turn
a server off and on without impacting on web traffic.

To consider the impact of caching on the gaps between
requests to the (back-end) web server we replayed the requests
to the campus server using Varnish [46] as a reverse proxy to
cache the content.2 The resulting distribution of gap lengths
is shown in Fig. 4. We see an increase in the number of long

2 The cache starts empty. We use the default Varnish configuration.

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 63 No. 2, 2020

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/63/2/179/5614859 by jcrem
in@

tcd.ie user on 02 January 2021



182 K. J. O’Dwyer et al.

FIGURE 5. Number of gaps of a particular duration between non-
spider requests. We omit gaps of duration <1 second.

duration gaps, representing an increase in opportunities to put
the server to sleep.

For comparison, we also consider the distribution of gaps
between requests when we omit requests from spiders. We do
this on the basis that a spider does not usually need the content
immediately, and indeed, some spiders can be told to make their
requests later using a HTTP 503 response with a Retry-After
header [50–52]. The results are shown in Fig. 5. We now see
that the tail of the distribution of gap durations has thickened,
which suggests a better chance of powering the server off
without impacting on user requests. Comparing these results
with Fig. 4, it appears that, for this log file, smart handling of
spiders might have a bigger impact than caching of commonly-
accessed content.

4. POWER STATES AND RECOVERY

Various systems are available for controlling the power state
of servers. In particular, we will make use of an interface for
putting the system into a low power state (ACPI) and then
waking it at some later point (WoL).

ACPI is a standard that aims to consolidate all power man-
agement and configuration standards [53]. The ACPI standard
defines a number of Power States, from G0 (active) to G3
(mechanical off). The sleeping state, G1, is subdivided into
4 states (S1–S4). For us, S3 and S4 are interesting as they define
Suspend to RAM and Suspend to Disk respectively. As we will
see, in these states servers consume almost as little power as
when powered off. With operating system support, the power
state of a server can be changed.

WoL is an industry standard introduced by IBM and Intel
for remotely powering on computers. It requires a compatible
network interface card which remains powered on after the

computer is powered off. A number of different signals can
be used to wake a computer, based on hardware support,
including PHY activity, ARP and broadcast, unicast and mul-
ticast messages. The most commonly supported signal used to
wake up a computer is called the Magic Packet, a broadcast
frame with a payload that is 6 bytes set to 255 followed by
the target computer’s MAC address repeated 16 times. WoL
can usually be configured via the BIOS/firmware or operating
system.

To illustrate these power management features, we investi-
gate the power consumption of the device we use as a server. We
investigated a number of methods of measuring power usage,
such as the MaplinTM 200MU-UK (which gives a manual read-
ing of total energy usage) or a APCTM AP7900 PDU (which
gave regular power usage measurements by SNMP, but gave
inaccurate readings at low power usage). We decided to make
our measurements using a Current Cost EnviR and a Current
Cost Individual Appliance Monitor. The energy consumption
for each device is supplied by the monitor and logged via USB
using a Python script every 7 seconds. We describe how we
model the energy use of our servers below. For these systems,
we also measure the time needed to put the system to sleep
and the time to wake after a WoL message. This will influence
the responsiveness of our scheme. We call the sum of these the
turn-around-time. We also characterize the turn-around-time
below.

We characterize our hardware in Table 2. For comparison,
we also show the power consumption of a Soekris net5501.
We will use this as a reverse web proxy during quiet
periods.

MSI Server: The server used was a custom-built
server based on an MSI ‘Military class’ motherboard,
an Intel i7 2700k processor and 16GB of RAM.
We used the on-board 1G Ethernet for a network
connection. We tested several other servers of this and
older generations and found that this system had good
support for both WoL and use of ACPI power states. The
power supply was rated at several hundred Watts, though
in practice it used considerably less when operating
as a web server. We ran Ubuntu 12.04 LTS on the
server.
Soekris net5501: The Soekris net5501 is a single
board PC based around the AMD GeodeTM, using a
max of 20W, but typically much lower, as we see in
Table 2. We ran an older version of Ubuntu, 8.04.4 LTS,
with smaller resource requirements on this device. We
did not use or report on the sleep/wake features of the
net5501, as we intended to use this device as the reverse
proxy.

In reviewing older server hardware, we found that WoL and
ACPI support was less consistent. For example, after upgrad-
ing the firmware on a Dell

®
PowerEdgeTM 1800 we found

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 63 No. 2, 2020

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/63/2/179/5614859 by jcrem
in@

tcd.ie user on 02 January 2021



Power-saving proxies for Web servers 183

TABLE 2. Measured power profile for devices.

On power usage Off power usage Switch cost Sleep time Time to recover
(W) (W) (J) (s) (s)

MSITM server 43.3 1.6 170.7 3.7–4.3 0.1–0.2
Soekris net 5501 5 NA NA NA NA

FIGURE 6. Power consumption for a server when sleeping, waking
and powered on.

WoL and ACPI were available. However, as only suspend
to disk was possible, wake times were over 1 minute. The
Dell

®
OptiplexTM 755 desktop system supported suspend to

RAM, with much better wake times, however we found that
WoL did not always wake the system, and though capable of
running a web server, the system was not typical of server-class
hardware.

4.1 Modelling power and energy usage

Figure 6 shows the power usage for our server over a number
of sleep/wake/powered-on cycles. We can see that there is a
pattern, which suggests roughly constant power usage when
sleeping or powered on/off. There is a brief spike in power
usage when the machine wakes. Based on this, we model the
server as having a power usage Pon while on, a power usage
Poff when off and there is a cost for each switch-on event of
Eswitch. From Fig. 6 we see that these quantities are not fixed,
but in fact random.

We model these by measuring the power used by the test bed
while it performs a series of sleeps and wakes of variable length
in an experiment labelled i. For each experiment we record four
variables: the total amount of time awake Toni , the total amount
of time sleeping as Toffi , the number of times it switches on or
off Nswitchi and the total energy used Etotali . Our model suggests

that in expectation we have

ToniE[Pon] + ToffiE[Poff] + NswitchiE[Eswitch] = E[Etotali] (1)

We then want to estimate the power used while the server is
on and off, and the energy overhead for a switch between these
two states. Over a number of runs we can write this as(

Toni Toffi Nswitchi
...

...
...

)⎛
⎝ E[Pon]

E[Poff]
E[Eswitch]

⎞
⎠ ≈

(
Etotali

...

)
. (2)

We can then use the least squares estimator for E[Pon], E[Poff]
and E[Eswitch] given Etotali ,⎛

⎝ E[Pon]
E[Poff]

E[Eswitch]

⎞
⎠ ≈ (ATA)−1AT

(
Etotali

...

)
, (3)

where A is the matrix of on/off times and switch counts. The
results of performing these estimates for our server are shown
in Table 2.

4.2 Server wake/sleep times

The length of time required to put a server to sleep and to wake
it again is also important to our scheme. These determine the
minimum amount of time we can sleep for, and also how long
it will take to answer an uncached request that arrives while
the server is asleep. We describe how we measure both times
below using ICMP ping packets to determine if the IP stack of
the server is operational.

To measure the time that it takes the server to be put asleep,
we issue a sleep command to the server via ssh. At the same
time, we ping the server once every 100 ms until we receive
no response. The number of pings between issuing the ssh
command and the last received ping gives us the time to sleep
in tenths of a second. Note, that there is some timing overhead
associated with the ssh connection, which would not be present
if a more lightweight way of issuing the sleep command was
used. To estimate this, we also timed how long it took ssh to
run a null command.

To estimate the wake-up time, we also send a ping to the
server ever 100ms and then send a WoL magic packet. We then
observe the amount of time between issuing the magic packet
and when the server starts to respond. In order to avoid issues

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 63 No. 2, 2020

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/63/2/179/5614859 by jcrem
in@

tcd.ie user on 02 January 2021



184 K. J. O’Dwyer et al.

with ARP entries timing out, we manually set the ARP entries
for the server. Again, this gives us an estimate of the time to
wake the system to the nearest tenth of a second.

The results of estimating both the wake and sleep times for
our server are shown in Table 2.

5. IDEALIZED POWER SAVING MODEL

In this section, we show how to estimate the possible power
savings for a web server, given information about power usage,
gaps between requests and how quickly it can be turned on
and off. Consider an idealized situation, where the server could
somehow determine when the next request will arrive. After
serving each request, it could see if the time to the next request
is greater than its turn-around-time. If so, the server goes
immediately to sleep and schedules a wake up just in time to
serve the next request. This would allow the server to serve
all requests without introducing any delays waking the server,
while sleeping for the maximum time possible. However, as
we would only like to consider sleeping if we get a resulting
power saving, and as we will see in Section 6.3, this can also
be converted into a minimum threshold on the sleep time.

We can calculate the power saving given by this idealized
scheme. Let (ti)i=1..N be the sequence of gaps between requests.
We can find To and Ts, the time that the server spends on or
sleeping respectively. For this scheme,

To =
N∑

i=1,ti<tthr

ti

and

Ts =
N∑

i=1,ti≥tthr

ti,

where tthr is the threshold given by the minimum turn-around-
time and the requirement for power saving. Total energy usage,
in kWh, will then be

ToPon + TsPoff + NEswitch

3.6 × 106
,

where N is the number of switches, given by the number times
ti < tthr.

Using this model, we can assess the power saving possible
without introducing extra delays. Figure 7 shows the total
energy consumption possible as a function of the threshold
time, tthr, assessed for the original sequence of requests served
by the web server. We see that for the original log file, for a
turn-around-time of 20s or more, there are few opportunities to
sleep, and the total power usage is similar to having the server
always on. However, turn-around-times of 2–5 s actually result
in significant savings.

Following our observations from Section 3, we consider
the impact of spiders and caching. First, Fig. 7 also shows

FIGURE 7. Power saving for the idealized scheme that results in no
delay, as a function of the turn-around time.

FIGURE 8. Power saving for idealized scheme, answering requests
that cannot be responded to by reverse proxy as a function of the turn-
around time.

the results if we are willing to ignore requests from spiders.
Here the situation is much more promising. With our idealized
scheme, a turn-around-time of 20 s allows a reduction of energy
consumption to around one third of the consumption for a
server that is always on.

Second, we consider the impact of caching in Fig. 8. Here,
we use the idealized power-saving model on requests that are
passed by a Varnish cache to the the back end server. This
eliminates the need for the backend to serve the content cached
by the reverse proxy. As expected, based on our discussion
in Section 3, we see a saving over answering all requests;
however, the improvement is not as large as the saving for
ignoring requests from spiders. We also see that combining

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 63 No. 2, 2020

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/63/2/179/5614859 by jcrem
in@

tcd.ie user on 02 January 2021



Power-saving proxies for Web servers 185

caching with the special handling of requests from spiders
results in useful gains.

6. DESIGN OF A PRACTICAL POWER SAVING
STRATEGY

In this section we will consider how to design a practical
scheme to allow web servers to sleep. We consider when to
power the server down, when to power it up and, as the scheme
does not have advance knowledge of the requests, how to
handle requests that arrive when the server is powered down.

6.1 Architecture

The system we consider is a high-power web server with a low-
power reverse proxy (though other configurations are discussed
in Section 8). The reverse proxy manages the power state of the
web server via ACPI and WoL. We assume that the low-power
proxy does not cause performance problems during periods of
high load. In practice, this issue can be overcome by switching
to directly serving requests (via DNS or ARP/IP mapping) or
switching in a higher-power proxy at higher loads. Similarly,
we assume that caching is managed in the usual way by Varnish,
with parameters set as described in Section 7.1.

6.2 Power-on decisions

Power-on decisions must be made by the reverse proxy, as
the server is not available to make decisions itself. Thus, we
describe the power-on decisions in terms of the operation of the
reverse proxy. Of course, if the web server is on, we configure
the reverse proxy to operate as usual, responding to queries
from the cache or making requests to the back end.

If a server is off, we trigger power-on requests based on the
arrival of server requests. Naturally, if the request can be served
from the cache, then there is no need to wake the back end.
Based on the discussion in Section 3, we believe there may
be an advantage to handling requests from spiders in a special
way. If the back end is off and the request is from a spider,
we also choose not to wake the back end and instead issue
a 503 response, indicating that the spider should return later.
We suggest that this time could be chosen to be a known-busy
hour of the day or a period specially chosen to facilitate website
crawling by spiders. The logic is summarized in Algorithm 1.

6.2.1 Implementation
In our implementation, the server’s state is tracked by Var-
nish. Algorithm 1 can easily be implemented using Varnish’s
VCL configuration language to tag requests from spiders in
vcl_recv, and deciding if the server should be woken in
vcl_miss.

6.3 Power-off decisions

In practice, the power-off decision could be made by either
the back-end web server or the reverse proxy. We considered a
number of possible strategies for making this decision, includ-
ing forecasting demand based on previous weekly/diurnal pat-
terns, monitoring the hit rate in the reverse proxy’s cache, or
using a learning algorithm. We will consider a scheme that aims
to achieve power savings on average while also achieving a
target delay for serving requests.

One possible improvement that applies to most schemes is to
ensure server sleep time isn’t interrupted by requests from web
crawling agents used to index websites for search engines. This
can be achieved by responding to all requests from such agents
with either cached-content, no update or a HTTP 503 error
(this should mitigate any negative effect on search ranking).
Consideration should also be given to client-side caching for
supported clients as a means to reduce the number of possible
requests to the server.

6.3.1 Expectation of power saving
An important consideration for switching off is, will turning off
save power? Ideally we would like the power used to turn off
and then power back on again to be less than the power used
for turning on, i.e. TPoff + Eswitch < TPon, where T is time
between requests, and Poff, Pon and Eswitch are the energy usage
parameters described above. Since these quantities, particularly
T , are random quantities, we can instead ask to save power on
average, so we take the expectation,

E[TPoff + Eswitch] < E[TPon] (4)

E[T]E[Poff] + E[Eswitch] < E[T]E[Pon] (5)

This can be further simplified to give us this lower bound,
below which we should not send the server to sleep:

E[T] >
E[Eswitch]

E[Pon] − E[Poff]
(6)

provided that E[Pon]−E[Poff] is positive, which we expect for
realistic on/off power values.

To implement this condition, we estimate the power usage
parameters, as described in Section 4.1, and use a window
of 10 requests to estimate the current spacing to the next
request T .

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 63 No. 2, 2020

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/63/2/179/5614859 by jcrem
in@

tcd.ie user on 02 January 2021



186 K. J. O’Dwyer et al.

6.3.2 Managing delay
If we do not mind delaying requests, then putting the server to
sleep for extended periods can save a lot of power. However,
we suppose that we have a SLA that requires that no more than
a fraction fSLA of the requests can be delayed by more than a
delay δ over some window.

Suppose that at some time the number of requests that will
arrive in a turn-around period is K. If D is the number of
requests that have exceeded the delay threshold δ and T is the
total number of requests seen in the current window, then, to
achieve the SLA, we require

D + (1 + E[K]) < fSLA(T + (1 + E[K])). (7)

In this case, we know D and T , however K is random and
unknown. So, by taking expectations, we get a condition on
E[K]:

E[K] <

(
fSLAT + fSLA − D − 1

1 − fSLA

)
(8)

provided that fSLA ≤ 1
The implementation of this condition is relatively simple,

and requires the server to maintain a counter of the total number
of requests T and a counter of delayed requests D. Estimating
the expected number of requests in the turn around time K
is relatively simple, by maintaining the request rate over a
window. Note that we expect that maintaining this condition
will increase power usage, which is in line with other studies
considering power usage and SLAs [2, 54].

6.3.3 Power cycling cost and debounce
Our scheme, in practice, limits the amount of switching
between on and off states. However, a server might want to limit
the amount hardware stress due to power cycling or bouncing
between on and off states because of conflicting on and off
conditions. We implement two simple conditions: first, we will
not power off the server for 60 seconds after a power-on, to
avoid excessive power cycling; second, we will wait at least
5 seconds after the most recent request before powering the
server down, to allow slow clients to request all the content for
a page load.

6.3.4 Implementation
For our evaluation, we prototype a small daemon in Python that
runs on the reverse proxy. Varnish uses signals to notify the
daemon of incoming requests and the daemon reads Varnish’s
log files to count requests meeting the delay bound. It also
makes the server’s current state available to Varnish via shared
memory to ease the implementation of Algorithm 1.

6.4 Mitigating mistakes

We note that a power-saving scheme does not know when
requests will arrive so it will ultimately make some mistakes.

If requests from users are delayed while waiting for a server to
awaken, this could have a negative impact on their experience
of using the service, or might result in a HTTP connection time-
out. In the case that the reverse proxy detects that is must wake
the server, we propose a method to combat this. If the content
is delayed, alternative web pages could be presented by the
proxy, such as a splash screen or a loading bar. Alternatively,
an advertisement or suggestion that the user take a short survey
might be offered.

Note that we must only stall the user for ∼5 seconds in order
to wake a server from the suspend-to-RAM state, when the user
can be redirected to their originally requested content. We have
implemented this last method as an addition to Varnish. If a
request requires a server to power on, the end user is served
a page asking them to take part in a survey and giving them
a countdown until they will be redirected to their requested
content. We call this method ‘Survey’.

6.5 Other considerations

Reverse proxies are generally used to increase throughput
or performance. To decrease power usage, most of our tests
are conducted with a low-power device, which may actu-
ally decrease performance. We evaluate the impact of this in
Section 7 by studying actual request delays. However, we also
assess the possibility of using a high-performance embedded
device in Section 7.4 as an alternative.

7. RESULTS

7.1 Test system

Our prototype test system consists of three components: a
client, a reverse proxy and a server. The client makes requests to
the reverse proxy or server using a group of Python scripts that
replay a given Apache access log in real time (i.e. requests are
spaced as in the log file). These scripts record the HTTP status
of the request responses and the delay in serving the content.

For a reverse proxy, we use a Soekris net5501 embedded
computer, with power usage detailed in Table 2. The system
runs a version of Varnish Cache (Version 3.0.1), which has
been modified to allow the operation described in Section 6.1.
Varnish has been configured with a 128 MB cache space. The
connection timeout to the back end is set to 10s. The server
runs Apache 2.2.2 and is a MSITM -based system whose power
requirements are detailed in Table 2.

To implement the power-saving scheme from Section 6.1,
we send UDP packets between the reverse proxy and the
server. We found that all the WoL implementations we tested
sometimes entered a state where wake requests were ignored.
To work around this, we initially tried using an optocoupler
attached to the Soekris net5501 GPIO pins to ‘press’ the power
button on the server. While this mechanism was more reliable
than using a WoL packet, we still found the servers occasionally
in a state where they would not wake. Our conclusion is that

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 63 No. 2, 2020

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/63/2/179/5614859 by jcrem
in@

tcd.ie user on 02 January 2021



Power-saving proxies for Web servers 187

either the Linux hibernation code or the ACPI implementation
on the servers we tested is not dependable enough to run our
scheme.

Consequently, for our experiments to assess the performance
of the scheme, instead of putting the server to sleep, we set up
a firewall rule that blocking HTTP requests. These rules are
removed, after a delay to simulate the wake time, when the
system is woken. We use 5 seconds as the delay, to overestimate
the full wake/sleep cycle from Table 2. We then estimate the
power usage using the log of sleep/wake events and the power
model from Section 4.1. One advantage of this method is that
we can vary the turn-around-time and power model to estimate
performance of other systems.

7.2 Evaluation

To evaluate the performance and power usage of our scheme,
we replay the 28-hour section of log file described in Section 3.
We consider five different configurations of the test system,
chosen to offer some insight into the performance trade-offs
involved in powering the system down. In each case the cache
starts empty.

No Varnish: The server is always powered on and
requests are sent directly to Apache;
Varnish: Requests are routed to Varnish running with
default parameters. Varnish contacts the always-on back-
end Apache server as necessary;
Varnish (Aggressive caching): Requests are routed to
Varnish running with ttl and grace period set to one hour,
and Varnish contacts the always-on back-end Apache
server as necessary;
Varnish (sleep and bot redirection): Requests are
routed to Varnish running with aggressive cache settings.
Varnish runs the power-control scheme in Section 6.3
and Section 6.2. Wake and sleep times are set to
5 seconds and 5 seconds, respectively, after Varnish
makes the request. Is this one current? Bots are redirected
if the back-end is asleep when a request arrives;
Varnish (Sleep, bot redirection and survey): Requests
are routed to Varnish running with aggressive settings,
running the power-control scheme described above.
Wake and sleep times are also as above, with bot
redirection active. Request from users are redirected to
a survey while the server is waking (as described in
Section 6.5).

In the last two configurations, the algorithm works with a delay
budget of 50 ms, for 90% of requests and uses 5 seconds as an
estimate for the turn-around-time.

7.3 Results

First, let us see if our technique can save power in practice.
Figure 9 shows the power usage for the five different runs

FIGURE 9. Comparison of the results of various experiments in terms
of energy used.

described above. The run with Apache alone, and no Varnish
gives us a baseline of close to 45 W. The second and third
experiments do not attempt to power the server on and off, and
so the power usage is simply the sum of power usage of the
server and Soekris box. The final two experiments do produce
an actual power saving; the extra power used by keeping the
Soekris box on is more than matched by the power saved by
letting the server sleep. The final bars show that it is possible to
save power of ∼25% even accounting for this overhead. Note
that the server we used has quite a modest power usage, and
greater power savings would be seen with more power-hungry
servers.

Now, we need to see the impact of this power saving on
performance. Table 3 shows the breakdown of how requests are
served. The first column shows the results when Apache fields
all requests. While most requests are successful, a number
are for files that do not exist, and these are listed under the
404 heading, for File Not Found. We also record the delays
involved in serving the files. We see that the mean response
time is around a millisecond, and the maximum delay is around
0.4 seconds.

The second column shows the impact of introducing Varnish
to the system. Observe that a significant amount of the content,
around 7000 requests or 17%, can be cached and served by
Varnish. In terms of performance, we see that the low-power
reverse proxy cannot serve content as quickly as the Apache
server. The low power device only increases average delay by
around 5 ms, even though all requests are directed through it.
There are a small number of requests with larger delays and we
can look at the cumulative distribution of these in Fig. 10. We
see that the fraction of requests with a greater than 50 ms is
small.

The third column shows the impact of adjusting Varnish’s
settings to allow more aggressive caching of content. We see
that this is quite effective in increasing the number of requests
served by Varnish, raising the number to around 12000, or

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 63 No. 2, 2020

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/63/2/179/5614859 by jcrem
in@

tcd.ie user on 02 January 2021



188 K. J. O’Dwyer et al.

TABLE 3. Statistics showing results of HTTP requests for each configuration.

Experiment label No Varnish Varnish (default
config)

Varnish (aggressive
config)

Varnish (sleep & bot) Varnish (sleep, bot &
survey)

Requests 40305 40305 40305 40305 41696
— Served By Apache 40298 33288 27673 20280 20245
— Served By Varnish 0 7010 12625 20018 21444
— 200 36846 36837 36834 29879 29922
— 404 3459 3459 3459 2674 2695
— 503 0 9 12 241 163
— malformed requests 7 7 7 7 7
— Bot sleep’d 0 0 0 7511 7525
— People sleep 1391
— Replayed successfully 1041
— Replayed but failed 205
— Replayed but 503’d 14
Mean delay for all requests (s) 0.001 0.007 0.005 0.059 0.009
Mean delay for backend requests (s) 0.001 0.008 0.006 0.112 0.013
Mean delay for varnish (s) 0.002 0.002 0.005 0.005
Max delay apache (s) 0.041 11.238 8.012 12.534 8.053
Max delay varnish (s) 0.207 0.125 3.003 1.984

FIGURE 10. Number of delays and their duration across a number
of experiments.

about 31%. The mean delays for the requests served by both
Varnish and Backend requests does not substantially change,
but overall mean delay decreases because the fraction of
requests served by Varnish has increased.

The fourth column of the table shows the results when the
server is powered on and off, introducing a 5-second delay.
The most significant difference we observe here is that requests
from spiders while the server is off now receive a Retry After
response, indicated by the Bot Sleep’d row. There are additional
delays in responding to backend requests, due to some requests

now having to wait for the server to wake. However, they are
still small on average coming to less 60ms. Consulting Fig. 10,
we see that we easily meet the target of 90% of requests are
served in under 50ms, however there are a cluster of requests
that take several seconds to serve corresponding to the time
taken to wake the server.

The fifth column of Table 3 shows results where if a request
arrives while the backend is sleeping, we suggest the browser
take a survey and wake the backend. The request is then
replayed after 15 seconds. This results in a higher number of
overall requests in this scenario, and we show the results of
these extra requests separately in the table. We see introducing
the survey reduces the average time to serve requests to less
than 10 ms, so it is quite an effective technique. Figure 10
shows the increased number of requests, and that the cluster
of requests is now gone, with just a handful of requests taking
>1 second to serve, which is broadly in line with the number
when we use Varnish but do not put the server to sleep.

7.4 High-performance proxy

In previous sections we reported the results of running our
power saving reverse proxy on a net5501, a free-standing low-
power single-board computer. This raises the possibility that
even though content is being successfully cached during busy
periods, the net5501 may not be able to serve content as quickly
as a fully-featured server system.

However, the reverse proxy could instead be run on an
embedded device designed for high performance networking,
such as a IBM

®
PowerENTM board [55]. These devices are

designed to offer high-performance networking at a lower

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 63 No. 2, 2020

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/63/2/179/5614859 by jcrem
in@

tcd.ie user on 02 January 2021



Power-saving proxies for Web servers 189

FIGURE 11. Performance of PowerENTM -based reverse proxy. The
peak is due to a mismatch between real time and the rate at which
interface statistics are updated.

power consumption than the equivalent PC-based system [56].
In this subsection we demonstrate that using such a device, it
is possible to maintain high network throughput. As the device
we test is a prototype, we cannot report accurate power usage
statistics.

In our test, we ran Varnish on the PowerENTM board, which
proxied content from a server. The content to be proxied was
hundreds of files varying from tens of bytes to hundreds of
megabytes. Apache JMeter [57, 58] was configured to use mul-
tiple threads to request content, with a short ramp-up period.
The resulting throughput of the JMeter host is shown in Fig. 11.
We see that an embedded device designed for high network
performance can maintain a throughput of over 1Gbps, and
seems to be able to burst at a higher rate when a number
of requests for large files arrive concurrently. This raises the
possibility of using an embedded device, even within a server
or router, as a reverse proxy to reduce power usage while
maintaining high performance.

7.5 Performance on other websites

To evaluate the performance of our scheme on other websites,
we built a small simulation tool that reads a web server log file
and estimates the power usage of our scheme. The simulation
implements the scheme described in Section 6. It does not have
a full implementation of Varnish’s caching rules, but uses a
simplified caching system, including a ttl and grace period.
While approximate, when validated against our experiments it
gives a power usage within about 1W of that expected for the
server’s power usage.

As noted in Section 8, many websites actually have a lower
load than that used in Section 7. To see how the scheme would
perform on such websites, we use the simulator to estimate the
performance on two months of log files from three websites: (i)
the website of small organization that receives about 130 000
requests in the period; (ii) the website of a small business that
receives about 20 000 requests in the period; (iii) a personal
website receiving about 7500 requests in the period. For com-
parison, we expect that the web server used in our evaluation
would serve around 2 000 000 requests in this period.

Figure 12 shows the average power usage in each case,
estimated by the simulation tool, from the start of the logs. The
usage is broken down into the power used by the server while
sleeping, the server while awake and the Soekris box running
the reverse proxy. Over the full period, the total power usage
is around 10 W, 7.5 W and 7 W, respectively, for each of the
websites. This indicates that, as we expect, quieter websites
could have larger power savings.

8. DISCUSSION

In Section 7 we saw that in practice we could make power
savings of 25%. This is a reasonable saving, however it is
small compared to the idealized saving for around a 5 -second
turn-around-time, of 60–70% (when the power usage of the
proxy is factored in). This suggests there may be some scope
for improvement, however, it is important to consider that the
idealized uses the arrival time of future requests, which must
be estimated by a practical scheme.

FIGURE 12. Simulated average power usage for three websites under the proposed scheme. On the left, for a small organization, in the middle
for a small business and on the right for a personal website.

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 63 No. 2, 2020

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/63/2/179/5614859 by jcrem
in@

tcd.ie user on 02 January 2021



190 K. J. O’Dwyer et al.

Our practical power savings do have a performance cost
associated with them. For example, the increased baseline
delay of a couple of milliseconds that is visible in Fig. 10.
Some of this is the inevitable result of introducing an extra
proxy system between the client and server, but the exact
values relate our experimental setup. For example, we began
our experiments with an empty cache with a modest size
(128 MB). With a larger cache and a longer test run, it is
possible that caching of static content could be more effective
again, resulting in fewer wake ups and fewer delays in serving
content.

We do not know if our method of introducing a Survey to
stall users while the backend is being woken will be irritating
for users, however, it has been reported that negative feelings
caused by waiting for content can be alleviated can be reduced
by explaining such delays [59] or by successful completion
of the task at hand [60]. Conducting user validation studies
would allow us to see if the added delays or the occasional
stalled request may negatively impact on the end user. These
studies would require adapting our testbed to serve a selection
of different types of web content and will have users rate
their experience of accessing this content while the testbed
is performing a variety of scenarios, such as simulated heavy
request loads and simulated light loads with request stalling.
Such a user study would let us gauge our impact on users, but
is beyond the scope of the current study.

Taking a more realistic view of the users, requests and
web sites might also allow us to improve our power savings.
Tracking the behaviour of users could allow us to predict
their next likely request. This might be achieved by tracking
IP addresses or sessions where active users are monitored. A
long period of inactivity or explicit user logout could provide
better indications of when to sleep. This could be based on
the statistics of the dwell times of typical users, or could be
customized for particular website content, possibly anticipating
wake-ups from patterns of accesses to cached requests.

Similarly, we could extend the techniques that we use to han-
dle spiders. Many sites seem to experience a high proportion of
traffic from spiders [47, 61] and it may be possible to use other
features of spiders [62]. Site maps are commonly employed
by websites to inform web crawlers, both of the structure of
a website, and the frequency of updates to its content. These
could be used to help reduce the number of requests by spiders
to see if page content has been updated or prevent requests for
resources that do not need to be indexed. Another commonly-
requested resource is robots.txt, a text file defining which
well behaved spiders are allowed to crawl the page and what
URLs they are allowed or not allowed to follow. Both the
robots.txt and site map files could be used to mediate the
requests from spiders.

Another important question is how to generalize our results
to other web traffic or server configurations. Based on a search
for sites with online statics publicly available, we find many
sites outside the Alexa top 1 000 000 have a lower load than

the server we consider here. Other aspects of a site’s traffic
may have patterns that can be exploited. If request patterns are
highly predictable, or such that delays in responses of a few
seconds are not a concern, then this could lead to improved
power savings. Alternatively, if content is highly dynamic or
has tight constraints on how quickly it must be served, then
this will make power saving more challenging.

We have considered a situation with a single server hosted
on physical hardware that can be powered down. A similar
configuration with a higher-powered server should result in
the scheme achieving larger savings. The principle of the
scheme also generalizes to other configurations. Multiple
servers hosted on multiple physical systems could be cached
by a single reverse proxy, spreading the cost of a higher-
performance proxy over several web servers.

We have noted some challenges with the dependability of
WoL, however dependability seemed to be improving and
recent network cards that we tested were already at a point
where servers could be woken in the region of a hundred times.
A more advanced network card might allow the running of a
network stack or even whole reverse proxy on the card while
asleep. The results in Section 7.4 indicate that smart high-
performance network devices, such as IBM

®
PowerENTM [55]

could be used as reverse proxies.
Hosting of web servers on virtual hardware is, of course, also

common. One way to apply the power-saving scheme would be
to suspend and resume the virtual hardware. This may result
in indirect power savings because of lower resource usage
on the physical host, though we expect the savings would be
smaller unless enough virtual hosts were suspended to allow a
physical machine to sleep. This might be facilitated by allowing
migration of suspended VMs to reduce the number of physical
hosts currently required.

9. CONCLUSION

We have explored the use of a low-powered reverse proxy to
save power by powering off a web server leaving the reverse
proxy on. We have considered features of web traffic that
facilitate this, including traffic patterns and prevalence of spi-
ders. We demonstrated that if a server is not too busy and can
recover from a low-power state quickly (say 5–10 seconds)
then it is possible to save power by putting a high-power web
server to sleep during low activity periods. In our testbed, we
were able to save 25% energy while keeping performance at an
acceptable level.

Acknowledgments

This research was supported by HEA PRTLI Cycle 5 TGI and
a grant from Science Foundation Ireland and co-funded under
the European Regional Development Fund by Grant Number
13/RC/2077. We thank John Walsh for the use of the MSI
Server.

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 63 No. 2, 2020

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/63/2/179/5614859 by jcrem
in@

tcd.ie user on 02 January 2021



Power-saving proxies for Web servers 191

REFERENCES

[1] Hilty, L. et al. (2009) The role of ICT in energy consump-
tion and energy efficiency. https://cordis.europa.eu/project/rcn/
87015/factsheet/en.

[2] Gelenbe, E. and Caseau, Y. (2015) The impact of information
technology on energy consumption and carbon emissions. Ubiq-
uity, 2015, 1.

[3] Gandhi, A. et al. (2011) The case for sleep states in servers. Proc.
4th Workshop on Power-Aware Computing and Systems 2. ACM,
New York, NY, USA.

[4] Xi, S.L. et al. (2013) Understanding the critical path in power
state transition latencies. Proc. of the 2013 Int. Symposium on
Low Power Electronics and Design, pp. 317–322. ACM, New
York, NY, USA.

[5] O’Dwyer, K. J. et al. (2013) Power saving for web servers
using proxies. In Sustainable Internet and ICT for Sustainability
(SustainIT), 2013, pp. 1–5. IEEE, United States.

[6] Kim, Y.G., Kong, J. and Chung, S.W. (2018) A survey on recent
OS-level energy management techniques for mobile processing
units. IEEE Trans. Parall. Distr. Syst., 29, 2388–2401.

[7] Chetty, M. et al. (2009) It’s not easy being green: understand-
ing home computer power management. Proc. of the SIGCHI
Conf. on Human Factors in Computing Systems, pp. 1033–1042.
ACM, New York, NY, USA.

[8] Yu, Y. and Bhatti, S.N. (2014) The cost of virtue: reward as
well as feedback are required to reduce user ICT power con-
sumption. Proc. of the 5th Int. Conf. on Future Energy Systems,
pp. 157–169. ACM, New York, NY, USA.

[9] Perrucci, G.P., Fitzek, F.H. and Widmer, J. (2011) Survey on
energy consumption entities on the smartphone platform. 2011
IEEE 73rd Vehicular Technology Conf. (VTC Spring), pp. 1–6.
IEEE, United States.

[10] Bohrer, P. et al. (2002) The case for power management in
web servers. Power Aware Computing, pp. 261–289. Springer,
Boston, MA.

[11] Schönherr, J.H. et al. (2010) Event-driven processor power
management. Proc. of the 1st Int. Conf. on Energy-Efficient
Computing and Networking, New York, NY, USA e-Energy’10,
pp. 61–70. ACM, New York, NY, USA.

[12] Barroso, L. A. and Hölzle, U. (2007) The case for energy-
proportional computing. Computer, 12, 33–37.

[13] Pereira, R. et al. (2017) Energy efficiency across programming
languages. ACM SIGPLAN Int. Conf. on Software Language
Engineering. ACM, New York, NY, USA.

[14] Chowdhury, S.A., Sapra, V. and Hindle, A. (2016) Client-side
energy efficiency of HTTP/2 for web and mobile app develop-
ers. Software Analysis, Evolution, and Reengineering (SANER),
2016 IEEE 23rd Int. Conf. on, pp. 529–540. IEEE, United States.

[15] Sapra, V. and Hindle, A. (2016) Web servers energy efficiency
under HTTP/2. PeerJ Preprints, 4, e2027v1.

[16] Mittal, S. and Vetter, J.S. (2015) A survey of methods for
analyzing and improving GPU energy efficiency. ACM Comput.
Surv. (CSUR), 47, 19.

[17] Srikantaiah, S., Kansal, A. and Zhao, F. (2008) Energy aware
consolidation for cloud computing. Proc. HotPower’08 Proc. of
the 2008 Conf. on Power Aware Computing and Systems. ACM,
New York, NY, USA.

[18] Kindelsberger, J., Willnecker, F. and Krcmar, H. (2015) Long-
term power demand recording of running mobile applications.
2015 IEEE 10th Int. Conf. on Global Software Engineering
Workshops (ICGSEW), July, 18–22.

[19] Xu, H. and Li, B. (2014) Reducing electricity demand charge
for data centers with partial execution. In Proc. 5th Int. Conf.
on Future Energy Systems, New York, NY, USA e-Energy’14,
pp. 51–61. ACM, New York, NY, USA.

[20] Chase, J. et al. (2001) Managing energy and server resources in
hosting centers. SIGOPS Oper. Syst. Rev., 35, 103–116.

[21] Xu, H. and Li, B. (2013) Anchor: a versatile and efficient
framework for resource management in the cloud. IEEE Trans.
Parall. Distr. Syst.,, 24, 1066–1076.

[22] Lo, D., Cheng, L., Govindaraju, R., Barroso, L.A. and Kozyrakis,
C. (2014) Towards energy proportionality for large-scale latency-
critical workloads. In Computer Architecture (ISCA), 2014
ACM/IEEE 41st International Symposium on, pp. 301–312.
IEEE.

[23] Kliazovich, D. et al. (2012) Greencloud: a packet-level simulator
of energy-aware cloud computing data centers. J. Supercomput.,
62, 1263–1283.

[24] Calheiros, R.N. et al. (2011) Cloudsim: a toolkit for modeling
and simulation of cloud computing environments and evaluation
of resource provisioning algorithms. Software Pract. Exper., 41,
23–50.

[25] Alshammari, D., Singer, J. and Storer, T. (2018) Performance
evaluation of cloud computing simulation tools. In 2018 IEEE
3rd Int. Conf. on Cloud Computing and Big Data Analysis
(ICCCBDA) (), pp. 522–526. IEEE, United States.

[26] Ahmad, B. et al. (2018) Analysis of energy saving technique
in cloudsim using gaming workload. Cloud Comput., 2018,
143.

[27] Atwal, K.S. and Bassiouni, M. (2016) A novel approach for
simulation and analysis of cloud data center applications. In 2016
IEEE Int. Conf. on Smart Cloud (SmartCloud), pp. 164–169.
IEEE, United States.

[28] Mastelic, T. et al. (2015) Cloud computing: survey on energy
efficiency. ACM Comput. Surveys, 47, 33.

[29] Shuja, J. et al. (2016) Survey of techniques and architectures
for designing energy-efficient data centers. IEEE Syst. J., 10,
507–519.

[30] Shaheen, Q. et al. (2018) Towards energy saving in compu-
tational clouds: taxonomy, review, and open challenges. IEEE
Access., 6, 29407–29418.

[31] Hameed, A.et al. (2016) A survey and taxonomy on energy
efficient resource allocation techniques for cloud computing
systems. Computing, 98, 751–774.

[32] Oró, E. et al. (2015) Energy efficiency and renewable energy
integration in data centres. Strategies and modelling review.
Renew. Sust. Energy Rev., 42, 429–445.

[33] You, X. et al. (2017) A survey and taxonomy of energy efficiency
relevant surveys in cloud-related environments. IEEE Access., 5,
14066–14078.

[34] Bianco, A., Mashayekhi, R. and Meo, M. (2017) On the energy
consumption computation in content delivery networks. Sustain.
Comput. Inform. Syst., 16, 56–65.

[35] Mathew, V., Sitaraman, R.K. and Shenoy, P. (2012)
Energy-aware load balancing in content delivery networks.

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 63 No. 2, 2020

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/63/2/179/5614859 by jcrem
in@

tcd.ie user on 02 January 2021

https://cordis.europa.eu/project/rcn/87015/factsheet/en
https://cordis.europa.eu/project/rcn/87015/factsheet/en


192 K. J. O’Dwyer et al.

In IEEE INFOCOM, 2012 Proceedings, pp. 954–962.
IEEE.

[36] Araujo, J. INFOCOM, 2012 Proceedings IEEE et al.
(2015) Energy efficient content distribution. Comput. J., 59,
192–207.

[37] Mathew, V., Sitaraman, R.K. and Shenoy, P. (2015) Energy-
efficient content delivery networks using cluster shutdown. Sus-
tain. Comput. Inform. Syst., 6, 58–68.

[38] Fang, C. et al. (2017) Distributed energy consumption manage-
ment in green content-centric networks via dual decomposition.
IEEE Syst. J., 11, 625–636.

[39] Braun, H. and K. Claffy (1994) Web traffic characterization: an
assessment of the impact of caching documents from the NCSA’s
web server. In Second International World Wide Web (WWW)
Conference’94 (Oct.), Chicago, IL. Elsevier Science Publishers
B. V. Amsterdam, The Netherlands.

[40] Pitkow, J. (1999) Summary of WWW characterizations. World
Wide Web, 2, 3–13.

[41] Barford, P. et al. (1999) Changes in web client access patterns—
characteristics and caching implications. World Wide Web, 2,
15–28.

[42] Bent, L. et al. (2004) Characterization of a large web site popu-
lation with implications for content delivery. In Proc. of the 13th
Int. Conf. on World Wide Web, New York, NY, USA WWW’04,
pp. 522–533. ACM, New York, NY, USA.

[43] Cao, J. et al. (2004) Stochastic models for generating synthetic
HTTP source traffic. In INFOCOM 2004. Twenty-third Annu-
alJoint Conference of the IEEE Computer and Communications
Societies, March (Vol. 3), pp. 1546–1557. IEEE, United States.

[44] Ihm, S. and Pai, V.S. (2011) Towards understanding modern web
traffic. In Proc. of the 2011 ACM SIGCOMM Conf. on Internet
Measurement Conf., pp. 295–312. ACM.

[45] Padmanabhan, V.N. and Qiu, L. (2000) The content and access
dynamics of a busy web site: findings and implications. ACM
SIGCOMM Comput. Commun. Rev., 30, 111–123.

[46] Kamp, P.-H. (2006–2019). Varnish cache. [Version: varnish-
3.0.1 revision 6152bf7].

[47] Gaffan, M. (2012). What Google doesn’t show you: 31% of
website traffic can harm your business. http://www.incapsula.
com/the-incapsula-blog/item/225-what-google-doesnt-show-
you-31-of-website-traffic-can-harm-your-business.

[48] Olston, C. and Najork, M. (2010) Web crawling. Found. Trends
Inf. Ret., 4, 175–246.

[49] Kumar, M., Bhatia, R. and Rattan, D. (2017) A survey of web
crawlers for information retrieval. Wires Data Min. Knowl. Dis-
covery, 7, e1218.

[50] Fielding, R. et al. (1999). RFC 2616: hypertext transfer protocol
— HTTP/1.1.

[51] Jerkovic, J. (2009) SEO Warrior: essential techniques for
Increasing Web Visibility (). O’Reilly Media.

[52] Mostowfi, M. (2018) HTTP timed redirection to reduce the
energy use of servers. In 2018 IEEE 8th Annual Computing
and Communication Workshop and Conf. (CCWC), pp. 496–501.
IEEE, United States.

[53] UEFI Forum (1996–2019). Advanced configuration and power
interface. http://www.acpi.info.

[54] Menarini, M. et al. (2013) Green web services: improving energy
efficiency in data centers via workload predictions. In Proc.
of the 2nd Int. Workshop on Green and Sustainable Software
(Vol. 13), pp. 8–15. IEEE Press, Piscataway, NJ, USA
GREENS.

[55] Golander, A. et al. (2010) IBM’s PowerEN developer cloud:
fertile ground for academic research. In IEEE 26th Conven-
tion of Electrical and Electronics Engineers in Israel (IEEEi),
pp. 803–807.

[56] Heil, T. et al. (2014) Architecture and performance of the hard-
ware accelerators in IBM’s PowerEN processor. ACM Trans.
Parall. Comput., 1, 5.

[57] Halili, E. (2008) Apache JMeter: A Practical Beginner’s Guide
to Automated Testing and Performance Measurement for Your
Websites. Packt Pub Limited, Birmingham, United Kingdom.

[58] Matam, S. and Jain, J. (2017) Pro Apache JMeter: web applica-
tion performance testing. Apress, New York, NY, USA.

[59] Ryan, G. and Valverde, M. (2006) Waiting in line for online
services: a qualitative study of the user’s perspective. Inf. Syst.
J., 16, 181–211.

[60] Ryan, G., del Mar Pàmies, M. and Valverde, M. (2015) WWW=
wait, wait, wait: emotional reactions to waiting on the internet.
J. Electron. Commer. Res., 16, 261.

[61] Doran, D., Morillo, K. and Gokhale, S.S. (2013) A comparison of
web robot and human requests. In Proc. of the 2013 IEEE/ACM
Int. Conf. on Advances in Social Networks Analysis and Mining,
pp. 1374–1380. ACM, New York, NY, USA.

[62] Brown, K. and Doran, D. (2018) Contrasting web robot and
human behaviors with network models, Journal of Communica-
tions 13(8), January 2018, doi: 10.12720/jcm.13.8.473-481.

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 63 No. 2, 2020

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/63/2/179/5614859 by jcrem
in@

tcd.ie user on 02 January 2021

http://www.incapsula.com/the-incapsula-blog/item/225-what-google-doesnt-show-you-31-of-website-traffic-can-harm-your-business
http://www.incapsula.com/the-incapsula-blog/item/225-what-google-doesnt-show-you-31-of-website-traffic-can-harm-your-business
http://www.incapsula.com/the-incapsula-blog/item/225-what-google-doesnt-show-you-31-of-website-traffic-can-harm-your-business
http://www.acpi.info
https://doi.org/10.12720/jcm.13.8.473-481

	Power Saving Proxies for Web Servers
	Introduction 
	Related Work 
	Investigation Of Traffic
	Power States and Recovery
	Modelling power and energy usage
	Server wake/sleep times

	Idealized Power Saving Model
	Design of a Practical Power Saving Strategy
	Architecture
	Power-on decisions
	Power-off decisions
	Mitigating mistakes
	Other considerations

	Results
	Test system
	Evaluation
	Results
	High-performance proxy
	Performance on other websites

	Discussion
	Conclusion


