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What TCP does for us

• Demuxes applications (using port numbers).
• Makes sure lost data is retransmitted.
• Delivers data to application in order.
• Engages in congestion control.
• Allows a little out-of-band data.
• Some weird stuff in TCP options.
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Congestion Control

• TCP controls the number of packets in the
network.

• Packets are acknowledged, so flow of ACKs.
• Receiver advertises window to avoid overflow.
• Congestion window tries to adapt to network.
• Slow start mechanism to find rough link capacity.
• Congestion avoidance to gradually adapt.



The Congestion Window

• Additive increase,
multiplicative decrease
(AIMD).

• To fill link need to reach
BW x Delay.

• Backoff by 1/2 => buffer
at bottleneck link should
be BW x Delay.

• Fairness (responsiveness,
stability, …)



Basic TCP tuning

• Network stack has to buffer in-flight data.
• Need BW x delay sized sockbuf!
• /proc/net/core/{r,w}mem_max store something

like sockbuf sizes.
• /proc/net/ipv4/tcp_{r,w,}mem store min/def/max

for tcp windows.
• (or sockopt SO_SNDBUF/SO_RCVBUF).
• For large transfers, crank up to few MB.
• Memory will be wired, so need to use balance.



Existing TCP mods

• Window scaling.
• TCP traditionally ACKs last contiguous

byte. SACK - transmits information about
gaps.

• TCP usually uses drops as feedback signal.
ECN allows use of few bits in IP header.

• Timestamps: more accurate RTT estimates.
• MD5 checksums.



Problems for Congestion Control

• Packet loss caused by other factors.
• Filling a big link at one-packet-per-round-trip.
• The combination is bad for high speed long

distance links.
• Problem was flagged up: various solutions being

studied (BIC, Scalable TCP, High-Speed TCP,
FAST TCP, H-TCP, …)



Stability issues
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Convergence Issues
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H-TCP
• Aim to make small

changes we can analyse.
• Rate of increase

depends on how long
since last backoff.

• New flows compete on
level playing field.

• Similar fairness &
responsiveness.

• Competes fairly with
normal TCP where it
can compete.



Quicker Convergence



More Linux tuning

• As of 2.6.13 Linux allows you to choose the
congestion control technique.

• Hidden behind TCP_CONG_ADVANCED.
• Can use /proc/sys/net/ipv4/tcp_congestion_control
• Older versions can disable/enable with

/proc/sys/net/ipv4/tcp_{bic,vegas_cong_avoid,wes
twood}

• Some bugs fixed recently, so new kernels useful.



Practical Issues

• Congestion control isn’t the only issue.
• Implementation is important.
• Testing is important: land speed records.
• Web 100 project to instrument Linux.
• Important stack tuning to be done.
• http://www.psc.edu/networking/projects/pathdiag/
• http://www.csm.ornl.gov/~dunigan/netperf/web10

0.html
• http://www.psc.edu/networking/projects/hpn-ssh/
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Other issues

• High speed is important (packet switched vs.
circuit switched), but not for everyone.

• Sizing router buffers important to everyone (cost,
QoS, optics).

• Wireless interesting - random losses.
• Other interesting wireless issues too.
• Many flows don’t leave slow start => Quick start.
• For really small flows handshake is too much:

T/TCP2.



Thanks!

Questions?
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Adjusting 802.11e Parameters



More Questions?


