
TCP and Network Congestion
Control

Amazon Dublin, December 2005
(David Malone and Doug Leith)

What TCP does for us

• Demuxes applications (using port numbers).
• Makes sure lost data is retransmitted.
• Delivers data to application in order.
• Engages in congestion control.
• Allows a little out-of-band data.
• Some weird stuff in TCP options.

Standard Picture of TCP
SYN

SYN ACK

ACK

Connetor Listener

DATA + ACKs

FIN
FIN

SYN

RST

Connetor No Listener

High port
(usually)

Known port
 (usually)

Other views of TCP
Data In

socket

socket Data Out

Magic

Programmer’s View Network View

Packets In

Buffer

Packets Out (at link speed)

Congestion Control

• TCP controls the number of packets in the
network.

• Packets are acknowledged, so flow of ACKs.
• Receiver advertises window to avoid overflow.
• Congestion window tries to adapt to network.
• Slow start mechanism to find rough link capacity.
• Congestion avoidance to gradually adapt.

The Congestion Window

• Additive increase,
multiplicative decrease
(AIMD).

• To fill link need to reach
BW x Delay.

• Backoff by 1/2 => buffer
at bottleneck link should
be BW x Delay.

• Fairness (responsiveness,
stability, …)

Basic TCP tuning

• Network stack has to buffer in-flight data.
• Need BW x delay sized sockbuf!
• /proc/net/core/{r,w}mem_max store something

like sockbuf sizes.
• /proc/net/ipv4/tcp_{r,w,}mem store min/def/max

for tcp windows.
• (or sockopt SO_SNDBUF/SO_RCVBUF).
• For large transfers, crank up to few MB.
• Memory will be wired, so need to use balance.

Existing TCP mods

• Window scaling.
• TCP traditionally ACKs last contiguous

byte. SACK - transmits information about
gaps.

• TCP usually uses drops as feedback signal.
ECN allows use of few bits in IP header.

• Timestamps: more accurate RTT estimates.
• MD5 checksums.

Problems for Congestion Control

• Packet loss caused by other factors.
• Filling a big link at one-packet-per-round-trip.
• The combination is bad for high speed long

distance links.
• Problem was flagged up: various solutions being

studied (BIC, Scalable TCP, High-Speed TCP,
FAST TCP, H-TCP, …)

Stability issues

0 50 100 150 200 250 300 350
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

time(s)

c
w
n
d

(
p
a
c
k
e
t
s
)

Convergence Issues

0 50 100 150 200 250 300 350 400
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

time (s)

c
w
n
d

(
p
a
c
k
e
t
s
)

H-TCP
• Aim to make small

changes we can analyse.
• Rate of increase

depends on how long
since last backoff.

• New flows compete on
level playing field.

• Similar fairness &
responsiveness.

• Competes fairly with
normal TCP where it
can compete.

Quicker Convergence

More Linux tuning

• As of 2.6.13 Linux allows you to choose the
congestion control technique.

• Hidden behind TCP_CONG_ADVANCED.
• Can use /proc/sys/net/ipv4/tcp_congestion_control
• Older versions can disable/enable with

/proc/sys/net/ipv4/tcp_{bic,vegas_cong_avoid,wes
twood}

• Some bugs fixed recently, so new kernels useful.

Practical Issues

• Congestion control isn’t the only issue.
• Implementation is important.
• Testing is important: land speed records.
• Web 100 project to instrument Linux.
• Important stack tuning to be done.
• http://www.psc.edu/networking/projects/pathdiag/
• http://www.csm.ornl.gov/~dunigan/netperf/web10

0.html
• http://www.psc.edu/networking/projects/hpn-ssh/

Before

After

Other issues

• High speed is important (packet switched vs.
circuit switched), but not for everyone.

• Sizing router buffers important to everyone (cost,
QoS, optics).

• Wireless interesting - random losses.
• Other interesting wireless issues too.
• Many flows don’t leave slow start => Quick start.
• For really small flows handshake is too much:

T/TCP2.

Thanks!

Questions?

802.11 AP Before

Baseline

Adjusting 802.11e Parameters

More Questions?

