
1. (a) Explain the advantages and disadvantages of arrays, linked lists and
hash tables.

(b) Give pseudo code for binary search on a sorted array of integers.

(c) Explain O(f(n)). Say why binary search is O(log2(n)).

2. (a) Explain the two’s complement format for storing signed integers in
binary.

(b) Give a brief overview of the IEEE 754 floating point standard.

(c) Show how the number − 1
3 would be stored as a float. (A normalised

float is written as ±2e−127(1.s) with 8 bits for e and 23 bits for s).

3. (a) What is a SMP system? Give two advantages and two disadvantages
of this type of system when compared with a network of workstations.

(b) Give a description of direct-mapped and fully-associative caches. Why
are all caches not fully-associative?

(c) Figure 1 shows the graph of the performance of a 4 processor SMP
machine, calculating large dot products of various sizes. The tests
were done first running one process at a time and then running 4 pro-
cesses at a time and plotting the performance of one of them. What
can you say about the caches and memory system of the computer
in question?

4. (a) Figure 2 shows some rather dubious C code. List 3 improvements
which could be made to this code.

(b) A user enters the file name:

veryveryveryvery. . . veryveryveryverylongfilename

and the program runs normally but crashes when it finishes. The
debugger shows it crashed trying to run nonexistent code at address
0x76657279. Can you explain what happened in terms of memory
allocation and the stack? (Hint: The ASCII for ’e’ is 0x65).

(c) Describe three common optimisations compilers perform. Give ex-
ample piece of code showing where each might be applied.

1

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

8e+07

9e+07

1e+08

1000 10000 100000 1e+06 1e+07

FL
O

P
S

Bytes

FLOPS vs. Datasize

single process
four process

Figure 1: Performance on Large Dot Products

2

#define DIM 3

FILE ∗fp;

int main() {
char filename[100];

int i, number;

float ∗list;

printf("Data file: ");

gets(filename);

fp = fopen(filename, "r");

fscanf(fp, "%d", &number);

list = malloc(4∗DIM∗number);

for(i = 0; i < number; i++) /∗ Loop around ∗/
read xyz(&(list[DIM∗i]));

free(list);

return 0;

}

void read xyz(float ∗r) {
int i;

for(i = 0; i ≤ DIM; i++)

fscanf("%lf", &(r[i]));

}

Figure 2: Dubious C code

3

