
Profiling Code

Before applying clever tricks it is often
useful to find out what your program
spends its time doing.

Tools for profiling:

profiler cc flags invocation

time /usr/bin/time prog

top top

prof -p prof prog

gprof -pg gprof prog

tcov -a prog then

tcov prog

gcov -fprofile-arcs prog then

-ftest-coverage gcov prog

Time is the simplest to use. Look out for

low user+system
real ratios or high % system

times.

1



You can use top to see if your program is

competing with others or to see if it goes

through phases of paging or being IO

bound.

Prof and gprof provide a summary of what

functions are executed by sampling the

program counter regularly. Gives an

estimate of how long your program spends

in each function.

Tcov and gcov tell you how many times

each line of code was executed, but not

how long was spent executing them.

Other profilers are available as a part of

compiler suites. It can also be interesting

to look at the system calls your program

makes withstrace , ktrace or truss .

2



Optimisation

• Concentrate on what takes time.

• Use a better algorithm/data structure.

• Experiment with compiler

optimisation.

• Tune code.

• Parallelise code.

• Consider buying an upgrade/new

computer.

3



Code Tuning

• Keep code simple - handle special

cases separately.

• Consider using binary data withread

andwrite for internal data files.

Maybe even usemmap.

• Don’t make huge directories, make

multilevel directories instead.

• Store what you can’t easily recompute.

• Don’t store what you can easily

recompute.

• Try collecting subexpressions,

especially if they involve function

calls.

4



• If the compiler supports hints try using

them.

• Factor constant code out of loops.

• Consider unrolling loops.

• Would macros or inline code help?

• It may be quicker to do calculations in

local variables than to use their final

destinations.

• Don’t be mean with variables -

compilers are good at figuring out

when they are no longer needed.

• Check it actually does some good!

5



Benchmarking

Benchmarking: measuring how good a

computer is at aparticular job.

Usually not the job you’re doing.

There are various ill defined benchmarks

such as MIPS and FLOPS.

Benchmarks age badly as CPU & compiler

vendors figure out how to optimise for that

code, or as cache sizes increase.

HPC benchmarks: Linpack, SPLASH,

NAS, STREAM & HINT.

Industry benchmarks: SPECmarks,

Winstones, Quake, . . .

Other benchmarks: Webstones,

Worldstones, lmbench, TP, NFS, X, . . .

6



If you are going to benchmarking:

• the benchmark should represent what

you do in the conditions it is done,

• make sure your problem/code isn’t

optimised away,

• use identical code/problems on each

system,

• set the rules and make sure everyone

knows them,

• take quality of system, tools and

vendor into account,

• check the output isn’t nonsense,

• benchmark your old system.

7



Assignment

Produce a table of how long each of the
following takes on a machine of your
choice.

Ints i++

i = j + k

i = j - k

i = j * k

i = j / k

i = j % k

Floats x = y + z

x = y - z

x = y * z

x = y / z

Doubles x = y + z

x = y - z

x = y * z

x = y / z

Convert x = i

i = x

sscanf("3.14159", "%lf", &pi)

sprintf("%6.2f", pi)

Functions x = drand48()

x = sin(x)

x = sqrt(x)

free(malloc(sizeof(double)))

8


