
Virtual Memory

Without virtual memory addresses in a

program tell you where, physically, to find

data you are interested in.

Virtual memory breaks this direct

relationship allowing complex rules for

translating addresses used by your program

(virtual addresses) into addresses locating

data in memory (physical addresses).

MMUs provide the ability to do these

translations in a way that is transparent to

running programs. Traditionally virtual

memory has been much more under the

control of the OS than caches have.

1



Pages and Segments

Memory is divided into chunks, on which

translations are similar.

pages All of memory divided into of fix

sized chunks (pages). Apage table

describes how virtual pages are

mapped on to physical pages and other

metadata (eg. writable, read by OS).

segmentsDivide memory up into variable

sized chunks based on intended use.

Typically the number of segments will

be small (16?). Access to segments

through special instructions, registers

etc.

These can be combined (eg. pages within

segments).

2



Translation & TLB

Address will usually divided into page

number and offset. Page number looked up

in page table to get address of physical

page and offset added to give final address.

To reduce cost of lookup aTranslation

Lookaside Bufferstores recent translations.

Local and linear memory access are likely

to be kind to TLB.

To store the page table as a simple array

can be quite space consuming, so

sometimes inverted or multilevel page

tables are used.

3



Page Faults

Page faults occur when the MMU finds that

the page table entry for the desired page is

invalid. This does not have to be an error,

the OS must decide what to do.

This may result in a page being loaded

from disk, zeroed or maybe just he page

table being changed. If it is an error then

the program may be killed or signaled.

As a page fault involves at least going into

the kernel and at worst waiting for a disk

transfer. This makes them expensive.

4



VM features

protection By mapping only pages

belonging to a process you can prevent

processes changing one another’s data.

demand paging Loading an entire

program at startup may be wasteful.

Demand paging only loads parts of a

program as it is needed.

shared pagesTwo copies running copies

of the same program can use the same

pages of an executable. Data can also

be shared if pages can be made

copy-on-write.

memory mapping of files A file can be

made to look like part of a processes

memory. When a page is read it is first

5



copied in from the file. Good for

sparse access to structured files. Also

used for shared libraries.

sparse memory mappingWhen you

malloc space it may not be allocated

until you first read or write it.

paging More memory can be allocated to

processes than is available as ram. By

unmapping pages and copying them to

disk the OS can free ram for new data.

If the data on disk is needed again a

page fault occurs and the data can be

fetched from disk.

swapping If the OS has run very short of

memory whole processes may be

copied to disk to free ram.

6



VM management

How VM is managed has a large effect on

the performance of a busy computer. For

many applications adding ram may have

improve performance more than adding a

faster CPU.

• Merged disk cache & VM system,

• better allocators,

• OPT, LRU, etc.

• read ahead,

• prepaging.

7



References

• http:

//www.inf.fu-berlin.de/

lehre/WS94/RA/RISC-9.html

• http://www.eng.dmu.ac.uk/

˜pdn/UltraSPARC/ultra_

arch_architecture.html

• Any OS book.

• http://www.backplane.com/

FreeBSD/FreeBSDVM.txt

• http://www.backplane.com/

FreeBSD/LinuxVM.txt

8



Assignment

Take your dot product program and split it

into two files, one containing just the dot

product function.

double dotprod(double

*a,double*b,int len);

Use aMakefile to compile the files into

the final program. Experiment with

different levels of optimisation, and

examine the outputted assembly for the dot

product.

Optimisation:-O1 . . .-O6 , Produce

Assebley:-S , Produce Object File:-c .

9


