
What does a Processor Do?

It carries out a series of simple instructions.

Stages:

1. Fetch the next instruction.

2. Decode it.

3. Fetch required data.

4. Execute the instruction.

5. Store any results.

Instructions stored as binaryop-codes.

Each type of processor will understand

different instructions encoded in different

ways.

Everything happens in fixed length stages

known ascycles.

1

Machine Code Assembley Language

4E56 0000 longmul link a6,#0

48E7 F880 movem.l d0-d4/a0,-(a7)

202E 0010 move.l 16(a6),d0

222E 000C move.l 12(a6),d1

206E 0008 move.l 8(a6),a0

3600 move.w d0,d3

C6C1 mulu d1,d3

4840 swap d0

3400 move.w d0,d2

C4C1 mulu d1,d2

4841 swap d1

3801 move.w d1,d4

C8C0 mulu d0,d4

4840 swap d0

C0C1 mulu d1,d0

D082 add.l d2,d0

6400 0008 bcc mni

D8BC 0001 0000 add.l #$00010000,d4

4281 mni clr.l d1

3200 move.w d0,d1

4841 swap d1

4240 clr.w d0

4840 swap d0

D681 add.l d1,d3

D980 addx.l d0,d4

2084 move.l d4,(a0)

2143 0004 move.l d3,4(a0)

4CDF 011F movem.l (a7)+,d0-d4/a0

4E5E unlk a6

4E75 rts

2

Registers

Small number of storage slots within

processor — very fast.

Initially small number of special use

registers. (eg Accumulator, Index Register,

Program Counter, Stack Pointer).

Modern processors may have many GPR

(32 GPR, 32 FPU Registers).

Some processors provide sliding window

of registers for passing data between

functions.

3

Parts of a processor:

Integer Unit Or Fixed point unit. Can

perform logical operations and integer

arithmetic.

Floating Point Unit Can perform

arithmetic on floats and doubles.

Instruction Decode Tells units what

operations to perform based on op

code received.

Branch Unit Deals with jumps in

sequence of execution.

Memory Management Unit Memory

protection, virtual memory,. . .

Either on chip or as co-processor. Possible

co-processors: Vector unit, Graphics

accelerator,1
r

processors.

4

CISC Processors

Complex Instruction Set Computers.

Why CISC? In 60’s and 70’s:

• memory sizes were small,

• compilers weren’t so good,

• coding in assembly was common,

• people like complex instructions,

• packing lots into an op code saved

space.

In the 80s the 68k and 80x86 born into this

world, sporting 100 or so types of

instruction.

5

Features of CISC:

• Lots of nifty instructions.

• Lots of addressing modes.

• Microcoded instructions.

• Fun to write assembly for.

Down-sides:

• compilers dislike complex

instructions,

• complicated to design,

• harder to squeeze onto one chip.

6

Why RISC?

Reduced Instruction Set Computers.

Not so much about reducing instruction
set, more about simplifying design, so that:

• everything (including cache) could go
on one chip,

• things were simple enough to apply
speed up tricks,

• electronics are simple enough to up
the clock rate.

Today the descendants of the 80s RISC
processors often have quite elaborate
instructions. RISC is now often applied to
processors which have used the
optimisations applied to the first RISC
generation.

7

Features of RISC processors:

• Uniform Instruction Length,

• Load/Store architecture (simple

addressing modes),

• Hardwired Instructions,

• Short cycle counts for instructions,

• Sophisticated compiler optimisations,

• Larger program sizes.

Examples of RISC processors today:

Alpha, MIPS, SPARC, HP-PA, IBM

POWER, PPC, ARM.

8

Various Optimisations:

• Pipelines.

• Delayed Branch.

• Super-scalar.

• Out-of-order execution.

• Speculative execution.

• Branch prediction.

• Predicated Execution.

• VLIW

Pipelines Overlap various stages of

instructions.

Ins Fetch Decode Op Fetch Execute Writeback

Ins Fetch

Ins Fetch

Ins Fetch

Decode

Decode

Decode

Op Fetch

Op Fetch

Op Fetch

Execute

Execute

Writeback

Writeback

WritebackExecute

Time

9

Pipelinestallscan be caused by

unavailable data, data dependencies,

slow instructions, branches.

Delayed Branch Used to avoid pipeline

stalls after a branch. Next instruction

is executed regardless of the direction

the branch goes.

Super-scalar Multiple Fixed point,

floating point and other units included

allowing simultaneous execution of

multiple instructions.

Out-of-order Execution Instructions my

overtake one another if some are

delayed, if there are no dependencies.

10

Speculative ExecutionAssume a branch

goes one way and begin execution.

Discard results if assumption was

wrong.

Branch Prediction Remember which way

this branch went before in order to

make better guesses.

Predicated Instructions Avoid branches

all together by having instructions

which are only conditionally executed.

VLIW Very Long Instruction Word -

multiple instructions rolled into one,

aim to keep lots of units busy.

11

500MHz processor which can perform 3

instructions per cycle:

32b∗ 3 ∗ (1 + 2 + 1) ∗ 500MHz = 192Gb/s.

Options:

• Use very fast memory.

• Use very wide memory.

• Usecachesof very fast memory.

As the first isn’t practical mixtures of the

second and third are commonly used.

Cache memory:£1000 per MB.

Normal Memory:£1 per MB.

Disk: £0.1 per MB.

12

Memory Hierarchy

Possible memory speeds for 500MHz

processor:

Size Cycle Time

Registers 1kB 2ns

L1 Cache 8kB 2ns

L2 Cache 512kB 4ns

RAM 512MB 50ns

Disk 16GB 5ms

Registers internal to processor (and

possibly L1). Caches made using SRAM,

RAM using DRAM.

Actual rates of transfer my vary depending

on latency and width.

13

A cache is divided into lines, which are

loaded and stored from memory. A line is

usually quite wide.

Each line will have certain metadata

associated with it:

• The ’address tag’ of data being cached.

• Validity.

• Shared/exclusive.

• Clean/dirty.

Dirty bit used for Write Policy:

Write Through Data written down the

hierarchy after each write.

Write Back Data is written out at leisure

of cache.

14

Cache Organisation

Have to choose how memory will be

mapped into cache.

Fully Associative Any line can cache data

from any location in memory.

Flexible, but costly and complicated.

Direct Mapped Any given location can

only end up in one cache line. Simple,

but subject to trashing.

Set AssociativeLines grouped together

into sets, each of which can store data

from the same collection of locations

in memory. If each set containsn lines

we call itn-way-associative.

15

The cache must be cleared of old data as it

fills. Policies include selection lines

randomly or the least recently used line

(LRU). These policies can interact badly

with code.

Cache options:

• Cache size,

• n-way-associative,

• how many levels,

• line size,

• special instructions (prefetch, bypass

or disable cache).

16

Example:

Consider how the effect of the following

code on a cache of size 64 longs with lines

of size 4 longs if the cache is fully

associative, direct mapped or

2-way-associative.

int main()

{
long a[128],b[64];

for(i = 0; i < 128; i++)

a[i] = i∗i;

for(i = 0 ; i < 64; i++)

b[i] = a[i];

}

17

Speeding up Memory Access

Wide data bus Many memory modules in

parrallel.

Interleaving Many memory modules

accessed round-robin.

Addressing Tricks Conversation on bus

simplified to save time. Eg: Fast Page

Mode Ram (only present low order

address bits), EDO RAM (overlapping

of address and data conversation),

SDRAM (bus is syncronus, less

overhead).

Note that DRAM is subject to errors

caused by ionising radiation. This leads to

other modifications such as parity bits and

use of ECC.

18

Overall effect

People often calculate effective memory

access rates. Suppose 90% L1, 8% L2 and

2% Ram:

0.9∗2ns+0.08∗4ns+0.02∗50ns = 3.12ns

Naturally you want code to achieve

reasonable hit rates.

Moral: Access memory in as linear a

fashion as possible.

19

Assignment 2

Write a program which calculates the dot

product of two dynamically allocated

vectors of variable size. You can produce

the vectors randomly. Use clock(3) or

getrusage(2) to time the execution of the

dot product.

Plot a graph showing operations per second

against the size of the vector for vectors of

length25 to 220. For smaller loops make

sure the loop is run enough times.

20

