
[Sir Thomas L. Heath, The Thirteen Books of Euclid’s Elements (2nd
edition), pp. 350–368 (1925).]

[Heath’s commentary on Euclid, Elements, Book I, Proposition 47.]

1. the square on, τὸ ἀπὸ τετράγωνον, the word ἀναγραφέν or ἀναγεγραμμένον being
understood.

subtending the right angle. Here ὑποτεινούσης, “subtending,” is used with the
simple accusative (τὴν ὀρθὴν γωνίαν) instead of being followed by ὑπό and the
accusative, which seems to be the original and more orthodox construction. Cf.
i. 18, note.

33. the two sides AB, BD . . . . Euclid actually writes “DB, BA,” and therefore the
equal sides in the two triangles are not mentioned in corresponding order, though
he adheres to the words ἑκατέρα ἑκατέρα “respectively.” Here DB is equal to BC
and BA to FB.

44. [But the doubles of equals are equal to one another.] Heiberg brackets
these words as an interpolation, since it quotes a Common Notion which is itself
interpolated. Cf. notes on i. 37, p. 332, and on interpolated Common Notions, pp.
223–4.

“If we listen,” says Proclus (p. 426, 6 sqq.), to those who wish to re-
count ancient history, we may find some of them referring this theorem to
Pythagoras and saying that he sacrificed an ox in honour of his discovery.
But for my part, while I admire those who first observed the truth of this
theorem, I marvel more at the writer of the Elements, not only because he
made it fast (κατεδήσατο) by a most lucid demonstration, but because he
compelled assent to the still more general theorem by the irrefragable argu-
ments of science in the sixth Book. For in that Book he proves generally
that, in right-angled triangles, the figure on the side subtending the right
angle is equal to the similar and similarly situated figures described on the
sides about the right angle.”

In addition, Plutarch (in the passages quoted above in the note on i. 44),
Diogenes Laertius (viii. 12) and Athenaeus (x. 13) agree in attributing this
proposition to Pythagoras. It is easy to point out, as does G. Junge (“Wann
haben die Griechen das Irrationale entdeckt?” in Novae Symbolae Joachim-
icae, Halle a. S., 1907, pp. 221–264), that these are late witnesses, and that
the Greek literature which we possess belonging to the first five centuries af-
ter Pythagoras contains no statement specifying this or any other particular
great geometrical discovery as due to him. Yet the distich of Apollodorus
the “calculator,” whose date (though it cannot be fixed) is at least earlier
than that of Plutarch and presumably of Cicero, is quite definite as to the
existence of one “famous proposition” discovered by Pythagoras, whatever
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it was. Nor does Cicero, in commenting apparently on the verses (De nat.
deor. iii. c. 36, §88), seem to dispute the fact of the geometrical discovery,
but only the story of the sacrifice. Junge naturally emphasises the appar-
ent uncertainty in the statements of Plutarch and Proclus. But, as I read
the passages of Plutarch, I see nothing in them inconsistent with the sup-
position that Plutarch unhesitatingly accepted as discoveries of Pythagoras
both the theorem of the square of the hypotenuse and the problem of the
application of an area, and the only doubt he felt was as to which of the
two discoveries was the more appropriate occasion for the supposed sacrifice.
There is also other evidence not without bearing on the question. The the-
orem is closely connected with the whole of the matter of Eucl. Book ii., in
which one of the most prominent features is the use of the gnomon. Now
the gnomon was a well-understood term with the Pythagoreans (cf. the frag-
ment of Philolaus quoted on p. 141 of Boeckh’s Philolaos des Pythagoreers
Lehren, 1819). Aristotle also (Physics iii. 4, 203 a 10–15) clearly attributes
to the Pythagoreans the placing of odd numbers as gnomons round succes-
sive squares beginning with i, thereby forming new squares, while in another
place (Categ. 14, 15 a 30) the word gnomon occurs in the same (obviously
familiar) sense: “e.g., a square, when a gnomon is placed round it, is in-
creased in size but is not altered in form.” The inference must therefore be
that practically the whole doctrine of Book ii. is Pythagorean. Again Heron
(? 3rd cent. a.d.), like Proclus, credits Pythagoras with a general rule for
forming right-angled triangles with rational whole numbers for sides. Lastly
the “summary” of Proclus appears to credit Pythagoras with the discovery
of the theory, or study, of irrationals (τὴν τῶν ἀλόγων πραγματείαν). But it
is now more or less agreed that the reading here should be, not τῶν ἀλόγων,
but τῶν ἀναλόγων, or rather τῶν ἀνὰ λόγον (“of proportionals”), and that
the author intended to attribute to Pythagoras a theory of proportion, i.e.
the (arithmetical) theory of proportion applicable only to commensurable
magnitudes, as distinct from the theory of Eucl. Book v., which was due to
Eudoxus. It is not however disputed that the Pythagoreans discovered the
irrational (cf. the scholium No. 1 to Book x.). Now everything goes to show
that this discovery of the irrational was made with reference to

√
2, the ratio

of the diagonal of a square to its side. It is clear that this presupposes the
knowledge that i. 47 is true of an isosceles right-angled triangle; and the fact
that some triangles of which it had been discovered to be true were rational
right-angled triangles was doubtless what suggested the inquiry whether the
ratio between the lengths of the diagonal and the side of a square could also
be expressed in whole numbers. On the whole, therefore, I see not sufficient
reason to question the tradition that, so far as Greek geometry is concerned
(the possible priority of the discovery of the same proposition in India will
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be considered later), Pythagoras was the first to introduce the theorem of
i. 47 and to give a general proof of it.

On this assumption, how was Pythagoras led to this discovery? It has
been suggested and commonly assumed that the Egyptians were aware that
a triangle with its sides in the ratio 3, 4, 5 was right-angled. Cantor inferred
this from the fact that this was precisely the triangle with which Pythagoras
began, if we may accept the testimony of Vitruvius (ix. 2) that Pythagoras
taught how to make a right angle by means of three lengths measured by
the numbers 3, 4, 5. If then he took from the Egyptians the triangle 3, 4, 5,
he presumably learnt its property from them also. Now the Egyptians must
certainly be credited from a period at least as far back as 2000 b.c. with
the knowledge that 42 + 32 = 52. Cantor finds proof of this in a fragment
of papyrus belonging to the time of the 12th Dynasty newly discovered at
Kahun. In this papyrus we have extractions of square roots: e.g. that of 16
is 4, that of 1 9

16
is 11

4
, that of 61

4
is 21

2
, and the following equations can be

traced:

12 +
(
3
4

)2
=

(
11
4

)2
82 + 62 = 102

22 +
(
11
2

)2
=

(
21
2

)2
162 + 122 = 202.

It will be seen that 42 + 32 = 52 can be derived from each of these by mul-
tiplying, or dividing out, by one and the same factor. We may therefore
admit that the Egyptians knew that 32 + 42 = 52. But there seems to be
no evidence that they knew that the triangle (3, 4, 5) is right-angled ; indeed,
according to the latest authority (T. Eric Peet, The Rhind Mathematical Pa-
pyrus, 1923), nothing in Egyptian mathematics suggests that the Egyptians
were acquainted with this or any special cases of the Pythagorean theorem.

How then did Pythagoras discover the general theorem? Observing that
3, 4, 5 was a right-angled triangle, while 32 + 42 = 52, he was probably led
to consider whether a similar relation was true of the sides of right-angled
triangles other than the particular one. The simplest case (geometrically)
to investigate was that of the isosceles right-angled triangle; and the truth
of the theorem in this particular case would easily appear from the mere
construction of a figure. Cantor (i3, p. 185) and Allman (Greek Geometry
from Thales to Euclid, p. 29) illustrate by a figure in which the squares are
drawn outwards, as in i. 47, and divided by diagonals into equal triangles;
but I think that the truth was more likely to be first observed from a figure
of the kind suggested by Bürk (Das Āpastamba-Śulba-Sūtra in Zeitschrift
der deutschen morgenländ. Gesellschaft, lv., 1901, p. 557) to explain how
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the Indians arrived at the same thing. The two figures are as shown above.
When the geometrical consideration of the figure had shown that the isosceles
right-angled triangle had the property in question, the investigation of the
same fact from the arithmetical point of view would ultimately lead to the
other momentous discovery of the irrationality of the length of the diagonal
or a square expressed in terms of its side.

The irrational will come up for discussion later; and our next question
is: Assuming that Pythagoras had observed the geometrical truth of the
theorem in the case of the two particular triangles, and doubtless of other
rational right-angled triangles, how did he establish it generally?

There is no positive evidence on this point. Two possible lines are how-
ever marked out. (1) Tannery says (La Géométrie grecque, p. 105) that the
geometry of Pythagoras was sufficiently advanced to make it possible for him
to prove the theorem by similar triangles. He does not say in what partic-
ular manner similar triangles would be used, but their use must apparently
have involved the use of proportions, and, in order that the proof should be
conclusive, of the theory of proportions in its complete form applicable to
incommensurable as well as commensurable magnitudes. Now Eudoxus was
the first to make the theory of proportion independent of the hypothesis of
commensurability; and as, before Eudoxus’ time, this had not been done,
any proof of the general theorem by means of proportions given by Pythago-
ras must at least have been inconclusive. But this does not constitute any
objection to the supposition that the truth of the general theorem may have
been discovered in such a manner; on the contrary, the supposition that
Pythagoras proved it by means of an imperfect theory of proportions would
better than anything else account for the fact that Euclid had to devise an
entirely new proof, as Proclus says he did in i. 47. This proof had to be
independent of the theory of proportion even in its rigorous form, because
the plan of the Elements postponed that theory to Books v. and vi., while
the Pythagorean theorem was required as early as Book ii. On the other
hand, if the Pythagorean proof had been based on the doctrine of Books i.
and ii. only, it would scarcely have been necessary for Euclid to supply a new
proof.
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The possible proofs by means of proportion would seem to be practically
limited to two.

(a) One method is to prove, from the similarity of the triangles ABC,
DBA, that the rectangle CB, BD is equal to the square on BA, and, from
the similarity of the triangles ABC, DAC, that the rectangle BC, CD is
equal to the square on CA; whence the result follows by addition.

A

B CD

It will be observed that this proof is in substance identical with that of
Euclid, the only difference being that the equality of the two smaller squares
to the respective rectangles is inferred by the method of Book vi. instead of
from the relation between the areas of parallelograms and triangles on the
same base and between the same parallels established in Book i. It occurred
to me whether, if Pythagoras’ proof had come, even in substance, so near to
Euclid’s, Proclus would have emphasised so much as he does the originality
of Euclid’s, or would have gone so far as to say that he marvelled more at that
proof than at the original discovery of the theorem. But on the whole I see no
difficulty; for there can be little doubt that the proof by proportion is what
suggested to Euclid the method of i. 47, and the transformation of the method
of proportions into one based on Book i. only, effected by a construction and
proof so extraordinarily ingenious, is a veritable tour de force which compels
admiration, notwithstanding the ignorant strictures of Schopenhauer, who
wanted something as obvious as the second figure in the case of the isosceles
right-angled triangle (p. 352), and accordingly (Sämmtliche Werke, iii. § 39
and i. § 15) calls Euclid’s proof “a mouse-trap proof” and “a proof walking
on stilts, nay, a mean, underhand, proof” (“Des Eukleides stelzbeiniger, ja,
hinterlistiger Beweis”).

(b) The other possible method is this. As it would be seen that the trian-
gles into which the original triangle is divided by the perpendicular from the
rightangle on the hypotenuse are similar to one another and to the whole tri-
angle, while in these three triangles the two sides about the right angle in the
original triangle, and the hypotenuse of the original triangle, are correspond-
ing sides, and that the sum of the two former similar triangles is identically
equal to the similar triangle on the hypotenuse, it might be inferred that the
same would also be true of squares described on the corresponding three sides
respectively, because squares as well as similar triangles are to one another in
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the duplicate ratio of corresponding sides. But the same thing is equally true
of any similar rectilinear figures, so this proof would practically establish the
extended theorem of Eucl. vi. 31, which theorem, however, Proclus appears
to regard as being entirely Euclid’s discovery.

On the whole, the most probable supposition seems to me to be that
Pythagoras used the first method (a) of proof by means of the theory of
proportion as he knew it, i.e. in the defective form which was in use up to
the date of Eudoxus.

(2) I have pointed out the difficulty in the way of the supposition that
Pythagoras’ proof depended upon the principles of Eucl. Books i. and ii.
only.

a

a

b

b

c

a

a

a

a

b

b

b

b

c

c
c

c

Were it not for this difficulty, the conjecture of Bretschneider (p. 82), fol-
lowed by Hankel (p. 98), would be the most tempting hypothesis. According
to this suggestion, we are to suppose a figure like that of Eucl. ii. 4 in which
a, b are the sides of the two inner squares respectively, and a + b is the side
of the complete square. Then, if the two complements, which are equal, are
divided by their two diagonals into four equal triangles of sides a, b, c, we
can place these triangles round another square of the same size as the whole
square, in the manner shown in the second figure, so that the sides a, b of
successive triangles make up one of the sides of the square and are arranged
in cyclic order. It readily follows that the remainder of the square when
the four triangles are deducted is, in the one case, a square whose side is c,
and in the other the sum of two squares whose sides are a, b respectively.
Therefore the square on c is equal to the sum of the squares on a, b. All that
can be said against this conjectural proof is that it has no specifically Greek
colouring but rather recalls the Indian method. Thus Bhāskara (born 1114
a.d.; see Cantor, i3, p. 656) simply draws four right-angled triangles equal to
the original one inwards, one on each side of the square on the hypotenuse,
and says “see!”, without even adding that inspection shows that

c2 = 4
ab

2
+ (a− b)2 = a2 + b2.
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Though, for the reasons given, there is difficulty in supposing that Pytha-
goras used a general proof of this kind, which applies of course to right-angled
triangles with sides incommensurable as well as commensurable, there is no
objection, I think, to supposing that the truth of the proposition in the
case of the first rational right-angled triangles discovered, e.g., 3, 4, 5, was
proved by a method of this sort. Where the sides are commensurable in this
way, the squares can be divided up into small (unit) squares, which would
much facilitate the comparison between them. That this subdivision was
in fact resorted to in adding and subtracting squares is made probable by
Aristotle’s allusion to odd numbers as gnomons placed round unity to form
successive squares in Physics iii. 4; this must mean that the squares were
represented by dots arranged in the form of a square and a gnomon formed of
dots put round, or that (if the given square was drawn in the usual way) the
gnomon was divided up into unit squares. Zeuthen has shown (“Théorème
de Pythagore,” Origine de la Géometrie scientifique in Comptes rendus du
IIme Congrès international de Philosophie, Genève, 1904), how easily the
proposition could be proved by a method of this kind for the triangle 3, 4, 5.
to admit of the two smaller squares being shown side by side, take a square
on a line containing 7 units of length (4 + 3), and divide it up into 49 small
squares. It would be obvious that the whole square could be exhibited as
containing four rectangles of sides 4, 3 cyclically arranged round the figure
with one unit square in the middle. (This same figure is given by Cantor, i3,
p. 680. to illustrate the method given in the Chinese “Chóu-pëı”.) It would
be seen that

A B

CD

E

F

G

H
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(i) the whole square (72) is made up of two squares 32 and 42, and two
rectangles 3, 4;

(ii) the same square is made up of the square EFGH and the halves of
four of the same rectangles 3, 4, whence the square EFGH, being equal to
the sum of the square 32 and 42, must contain 25 unit squares and its side,
or the diagonal of one of the rectangles, must contain 5 units of length.

Or the result might equally be seen by observing that

(i) the square EFGH on the diagonal of one of the rectangles is made up
of the halves of four rectangles and the unit square in the middle, while

(ii) the squares 32 and 42 placed at adjacent corners of the large square
make up two rectangles 3, 4 with the unit square in the middle.

The procedure would be equally easy for any rational right-angled trian-
gle, and would be a natural method for trying to prove the property when
it had once been empirically observed that triangles like 3, 4, 5 did in fact
contain a right angle.

Zeuthen has, in the same paper, shown in a most ingenious way how the
property of the triangle 3, 4, 5 could be verified by a sort of combination of
the second possible method by similar triangles, (b) on p. 354 above, with
subdivision of rectangles into similar small rectangles. I give the method on
account of its interest, although it is no doubt too advanced to have been
used by those who first proved the property of the particular triangle.

Let ABC be a triangle right-angled at A, and such that the lengths of
the sides AB, AC are 4 and 3 units respectively.

Draw the perpendicular AD, divide up AB, AC into unit lengths, com-
plete the triangle on BC as base and with AD as altitude, and subdivide
this rectangle into small rectangles by drawing parallels to BC, AD through
the points of division of AB, AC.

A

B C
D

Now, since the diagonals of the small rectangles are all equal, each being
of unit length, it follows by similar triangles that the small rectangles are
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all equal. And the rectangle with AB for diagonal contains 16 of the small
rectangles, while the rectangle with diagonal AC contains 9 of them.

But the sum of the triangles ABD, ADC is equal to the triangle ABC.
Hence the rectangle with BC as diagonal contains 9 + 16 or 25 of the

small rectangles;
and therefore BC = 5.

Rational right-angled triangles from the arithmetical standpoint.

Pythagoras investigated the arithmetical problem of finding rational num-
bers which could be made the sides of right-angled triangles, or of finding
square numbers which are are sum of two squares; and herein we find the
beginning of the indeterminate analysis which reached so high a stage of
development in Diophantus. Fortunately Proclus has preserved Pythagoras’
method of solution in the following passage (pp. 428, 7—429, 8). “Certain
methods for the discovery of triangles of this kind are handed down, one of
which they refer to Plato, and another to Pythagoras. [The latter] starts
from odd numbers. For it makes the odd number the smaller of the sides
about the right angle; then it takes the square of it, subtracts unity, and
makes half the difference the greater of the sides about the right angle; lastly
it adds unity to this and so forms the remaining side, the hypotenuse. For
example, taking 3, squaring it, and subtracting unity from the 9, the method
takes half of the 8, namely 4; then, adding unity to it again, it makes 5, and a
right-angled triangle has been found with one side 3, another 4 and another
5. But the method of Plato argues from even numbers. For its takes the
given even number and makes it one of the sides about the right angle; then,
bisecting this number and squaring the half, it adds unity to the square to
form the hypotenuse, and subtracts unity from the square to form the other
side about the right angle. For example, taking 4, the method squares half of
this, or 2, and so makes 4; then subtracting unity, it produces 3, and adding
unity it produces 5. Thus it has formed the same triangle as that which was
obtained by the other method.”

The formula of Pythagoras amounts, if m be an odd number, to

m2 +

(
m2 − 1

2

)2

=

(
m2 + 1

2

)2

,

the sides of the right-angled triangle being m,
m2 − 1

2
,
m2 + 1

2
. Cantor

(i3, pp. 185–6), taking up an idea of Röth (Geschichte der abendländischen
Philosophie, ii. 527), gives the following as a possible explanation of the way
in which Pythagoras arrived at his formula. If c2 = a2 + b2, it follows that

a2 = c2 − b2 = (c+ b)(c− b).
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Numbers can be found satisfying the first equation if (1) c + b and c − b
are either both even or both odd, and if further c + b and c − b are such
even numbers as, when multiplied together, produce a square number. The
first condition is necessary because, in order that c and b may both be whole
numbers, the sum and difference of c+ b and c− b must both be even. The
second condition is satisfied if c + b and c − b are what were called similar
numbers (ὅμοιοι ἀριθμοί); and that such numbers were most probably known
in the time before Plato may be inferred from their appearing in Theon of
Smyrna (Expositio rerum mathematicarum ad legendum Platonem utilium,
ed. Hiller, p. 36, 12), who says that similar plane numbers are, first, all
square numbers and, secondly, such oblong numbers as have the sides which
contain them proportional. Thus 6 is an oblong number with length 3 and
breadth 2; 24 is another with length 6 and breadth 4. Since therefore 6 is to
3 as 4 is to 2, the numbers 6 and 24 are similar.

Now the simplest case of two similar numbers is that of 1 and a2, and,
since 1 is odd, the condition (1) requires that a2, and therefore a is also odd.
That is, we may take 1 and (2n+ 1)2 and equated them respectively to c− b
and c+ b, whence we have

b =
(2n+ 1)2 − 1

2
,

c =
(2n+ 1)2 − 1

2
+ 1,

while a = 2n+ 1.

As Cantor remarks, the form in which c and b appear correspond sufficiently
closely to the description in the text of Proclus.

Another obvious possibility would be, instead of equating c− b to unity,
to put c− b = 2, in which case the similar number c+ b must be equated to
double of some square, i.e. to a number of the form 2n2, or to the half of an

even square number, say
(2n)2

2
. This would give

a = 2n,

b = n2 − 1,

c = n2 + 1,

which is Plato’s solution, as given by Proclus.
The two solutions supplement each other. It is intersting to obsere that

the method suggested by Röth and Cantor is very like that of Eucl. x.
(Lemma 1 following Prop. 28). We shall come to this later, but it may
be mentioned here that the problem is to find two square numbers such that
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their sum is also a square. Euclid there uses the property of ii. 6 to the effect
that, if AB is bisected at C and produced to D,

AD . DB +BC2 = CD2.

We may write this
uv = c2 − b2,

where
u = c+ b, v = c− b.

In order that uv may be a square, Euclid points out that u and v must be
similar numbers, and further that u and v must be either both odd or both
even in order that b may be a whole number. We may then put for the similar
numbers, say, αβ2 and αγ2, whence (if αβ2, αγ2 are either both odd or both
even) we obtain the solution

αβ2 . αγ2 +

(
αβ2 − αγ2

2

)2

=

(
αβ2 + αγ2

2

)2

.

But I think a serious, and even fatal, objection to the conjecture of Cantor
and Röth is the very fact that the method enables both the Pythagorean and
the Platonic series of triangles to be deduced with equal ease. If this had been
the case with the method used by Pythagoras, it would not, I think, have been
left to Plato to discover the second series of such triangles. It seems to me
therefore that Pythagoras must have used some method which would produce
his rule only ; and further it would be some less recondite method, suggested
by direct observation rather than by argument from general principles.

One solution satisfying these conditions is that of Bretschneider (p. 83),
who suggests the following simple method. Pythagoras was certainly aware
that the successive odd numbers are gnomons, or the differences between
successive square numbers. It was then a simple matter to write down in
three rows (a) the natural numbers, (b) their squares, (c) the successive odd
numbers consituting the differences between the successive squares in (b),
thus:

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 4 9 16 25 36 49 64 81 100 121 144 169 196

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Pythagoras had then only to pick out the numbers in the third row which are
squares, and his rule would be obtained by finding the formula connecting
the square in the third line with the two adjacent squares in the second line.
But even this would require some little argument; and I think a still better
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suggestion, because making pure observation play a greater part, is that of
P. Treutlein (Zeitschrift für Mathematik und Physik, xxviii., 1883, Hist.-litt.
Abtheilung, pp. 209 sqq.).

We have the best evidence (e.g. in Theon of Smyrna) of the practice of
representing square numbers and other figured numbers, e.g., oblong trian-
gular, hexagonal, by dots or signs arranged in the shape of the particular
figure. (Cf. Aristotle, Metaph. 1092 b 12). Thus, says, Treutlein, it would
be easily seen that any square number can be turned into the next higher
square by putting a single row of dots round two adjacent sides, in the form
of a gnomon (see figures on next page).

If a is the side of a particular square, the gnomon round it is shown by
simple inspection to contain 2a+ 1 dots or units. Now, in order that 2a+ 1
may itself be a square, let us suppose

2a+ 1 = n2

whence a = 1
2
(n2 − 1),

and a+ 1 = 1
2
(n2 + 1).

In order that a and a + 1 may be integral, n must be odd, and we have
at once the Pythagorean formula

n2 +

(
n2 − 1

2

)2

=

(
n2 + 1

2

)2

.

I think Treutlein’s hypothesis is shown to be the correct one by the passage in
Aristotle’s Physics already quoted, where the reference is undoubtedly to the
Pythagoreans, and odd numbers are clearly identified with gnomons “placed
round 1.” But the ancient commentaries on the passage make the matter
clearer still. Philoponus says: “As a proof . . . the Pythagoreans refer to what
happens with the addition of numbers; for when the odd numbers are succes-
sively added to a square number they keep it square and equilateral.. . . Odd
numbers are accordingly called gnomons because, when added to what are
already squares, they preserve the square form.. . . Alexander has excellently
said in explanation that the phrase ‘when gnomons are placed round’ means
making a figure with the odd numbers (τὴν κατὰ τοὺς περιττοὺς ἀριθμοὺς
σχηματογραφίαν). . . for it is the practice with the Pythagoreans to represent
things in figures (σχηματογραφεῖν).”

The next question is: assuming this explanation of the Pythagorean for-
mula, what are we to say of the origin of Plato’s? It could of course be
obtained as a particular case of the general formula of Eucl. x. already re-
ferred to; but there are two simple alternative explanations in this case also.
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(1) Bretschneider observes that, to obtain Plato’s formula, we have only to
double the sides of the squares in the Pythagorean formula, for

(2n)2 + (n2 − 1)2 = (n2 + 1)2,

where however n is not necessarily odd.
(2) Treutlein would explain by means of an extension of the gnomon idea.

As he says, the Pythagorean formula was obtained by placing a gnomon
consisting of a single row of dots round two adjacent sides of a square, it
would be natural to try whether another solution could not be found by
placing round the square a double row of dots. Such a gnomon would equally
turn the square into a larger square; and the question would be whether the
double-row gnomon itself could be a square. If the side of the original square

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

was a, it would easily be seen that the number of units in the double-row
gnomon would be 4a+ 4, and we have only to put

4a+ 4 = 4n2,

whence

a = n2 − 1,

a+ 2 = n2 + 1,

and we have the Platonic formula

(2n)2 + (n2 − 1)2 = (n2 + 1)2.

I think this is, in substance, the right explanation, but, in form, not quite
correct. The Greeks would not, I think, have treated the double row as a
gnomon. Their comparison would have been between (1) a certain square plus
a single-row gnomon and (2) the same square minus a single row gnomon.
As the application of Eucl. ii. 4 to the case where the sides of the square are
a, 1 enables the Pythagorean formula to be obtained as Treutlein obtains it,
so I think that Eucl. ii. 8 confirms the idea that the Platonic formula was
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• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •

obtained by comparing a square plus a gnomon with the same square minus
a gnomon. For ii. 8 proves that

4ab+ (a− b)2 = (a+ b)2,

whence, substituting 1 for b, we have

4a+ (a− 1)2 = (a+ 1)2,

and we have only to put a = n2 to obtain Plato’s formula.

The “theorem of Pythagoras” in India.

This question has been discussed anew in the last few years as the result
of the publication of two important papers by Albert Bürk on Das Āpastama-
Sulba-Sütra in the Zeitschrift der deutschen morgenländischen Gesellschaft
(lv., 1901, pp. 543–591, and lvi., 1902, pp. 327–391). The first of the
two papers contains the introduction and the text, the second the trans-
lation with notes. A selection of the most important parts of the material
was made and issued by G. Thibaut in the Journal of the Asiatic Soci-
ety of Bengal, xliv., 1875, Part 1. (reprinted also at Calcutta, 1875, as The
Śulvasūtras, by G. Thibaut). Thibaut in this work gave a most valuable com-
parison of extracts from the three Śulvasūtras by Bāudhāyana, Āpastamba
and Kātyāyana respectively, with a running commentary and an estimate of
the date and originality of the geometry of the Indians. Bürk has however
done good service by making the Āpastamba-Ś-S. accessible in its entirety
and investigating the whole subject afresh. With the natural enthusiasm of
an editor for the work he is editing, he roundly maintains, not only that
the Pythagorean theorem was known and proved in all its generality by the
Indians long before the date of Pythagoras (about 580–500 b.c.), but that
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they had also discovered the irrational; and further that, so far from In-
dian geometry being indebted to the Greek, the much-travelled Pythagoras
probably obtained his theory from India (loc. cit. lv., p. 575 note). Three
important notices and criticisms of Bürk’s work have followed, by H. G.
Zeuthen (“Théorème de Pythagore,” Origine de la Géométrie scientifique,
1904, already quoted), by Moritz Cantor (Über die älteste indische Math-
ematik in the Archiv der Mathematik und Physik, viii., 1905, pp. 63–72)
and by Heinrich Vogt (Haben die alten Inder den Pythagoreischen Lehrsatz
und das Irrationale gekannt? in the Bibliotheca Mathematica, vii3, 1906, pp.
6–23. See also Cantor’s Geschichte der Mathematik, i3, pp. 635–645.

The general effect of the criticisms is, I think, to show the necessity for
the greatest caution, to say the least, in accepting Bürk’s conclusions.

I proceed to give a short summary of the portions of the contents of
the Āpastamba-Ś.-S. which are important in the present connexion. It may
be premised that the general object of the book is to show how to construct
altars of certain shapes, and to vary the dimensions of altars without altering
the form. It is a collection of rules for carrying out certain constructions.
There are no proofs, the nearest approach to a proof being in the rule for
obtaining the area of an isosceles trapezium, which is done by drawing a
perpendicular from one extremity of the smaller of the two parallel sides to
the greater, and then taking away the triangle so cut off and placing it, the
other side up, adjacent to the other equal side of the trapezium, thereby
transforming the trapezium into a rectangle. It should also be observed
that Āpastamba does not speak of right-angled triangles, but of two adjacent
sides and the diagonal of a rectangle. For brevity, I shall use the expression
“rational rectangle” to denote a rectangle the two sides and the diagonal
of which can be expressed in terms of rational numbers. The references in
brackets are to the chapters and numbers of Āpastamba’s work.

(1) Constructions of right angles by means of cords of the following rela-
tive lengths respectively:

3, 4, 5 (i. 3, v. 3)
12, 16, 20 (v. 3)
15, 20, 25 (v. 3){
5, 12, 13 (v. 4)

15, 36, 39 (i. 2, v. 2, 4)

8, 15, 17 (v. 5)

12, 35, 37 (v. 5)
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(2) A general enunciation of the Pythagorean theorem thus: “The diag-
onal of a rectangle produces [i.e. the square on the diagonal is equal to] the
sum of what the longer and shorter sides separately produce [i.e. the squares
on the two sides].” (i. 4)

(3) The application of the Pythagorean theorem to a square instead of
a rectangle [i.e., to an isosceles right-angled triangle]: “The diagonal of a
square produces an area double [of the original square].” (i. 5)

(4) An approximation to the value of
√

2; the diagonal of a square is(
1 +

1

3
+

1

3 . 4
− 1

3 . 4 . 34

)
times the side. (i. 6)

(5) Application of this approximate value to the construction of a square
with side of any length. (ii. 1)

(6) The construction of a
√

3, by means of the Pythagorean theorem, as
the diagonal of a rectangle with sides a and a

√
2. (ii. 2)

(7) Remarks equivalent to the following:

(a) a
√

1
3

is the side of 1
9
(a
√

3)2. or a
√

1
3

= 1
3
a
√

3. (ii. 3)

(b)
A square on length of 1 unit gives 1 unit square (iii. 4)

” ” 2 units gives 4 unit squares (iii. 6)

” ” 3 ” 9 ” (iii. 6)

” ” 11
2

” 21
4

” (iii. 8)

” ” 21
2

” 61
4

” (iii. 8)

” ” 1
2

” 1
4

” (iii. 10)

” ” 1
3

” 1
9

” (iii. 10)

(c) Generally, the square on any length contains as many rows (of small,
unit, squares) as the length contains units. (iii. 7)

(8) Constructions, by means of the Pythagorean theorem, of

(a) the sum of two squares as one square, (ii. 4)

(b) the difference of two squares as one square, (ii. 5)

(9) A transformation of a rectangle into a square. (ii. 7)
[This is not directly done as by Euclid in ii. 14, but the rectangle is first

transformed into a gnomon, i.e., into the difference between two squares,
which difference is then transformed into one square by the preceding rule.
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If ABCD be the given rectangle of which BC is the longer side, cut off the
square ABEF , bisect the rectangle DE left over by HG parallel to FE,
move the upper half DG and place it on AF as base in the position AK.
Then the rectangle ABCD is equal to the gnomon which is the difference

A B

CD

E
F

G
H

K
L

between the square LB and the square LF . In other words, Āpastamba

transforms the rectangle ab into the difference between the squares

(
a+ b

2

)2

and

(
a− b

2

)2

.]

(10) An attempt at a transformation of a square (a2) into a rectangle
which shall have one side of a given length (b). (iii. 1)

[This shows no sign of such a procedure as that of Eucl. i. 44, and indeed
does no more than say that we must subtract ab from a2 and then adapt the
remainder a2−ab so that it may “fit on” to the rectangle ab. The problem is
therefore only reduced to another of the same kind, and presumably it was
only solved arithmetically in the case where a, b are given numerically. The
Indian was therefore far from the general, geometrical, solution.]

(11) Increase of a given square into a larger square. (iii. 9)
[This amounts to saying that you must add two rectangles (a, b) and

anther square (b2) in order to transform a square (a2) into a square (a+ b)2.
The formula is therefore that of Eucl. ii. 4, a2 + 2ab+ b2 = (a+ b)2.]

The first important question in relation to the above is that of date. Bürk
assigns to the Āpastamba-Śulva-Sūtra a date at least as early as the 5th or 4th
century b.c. He observes however (what is likely enough) that the matter of
it must have been much older than the book itself. Further, as regards on of
the constructions for right angles, that by means of cords of lengths 15, 36,
39, he shows that it was known at the time of the Tāittirīya-Samhitā and the
Satapatha-Brāhmana, still older works belonging to the 8th century b.c. at
latest. It may be that (as Bürk maintains) the discovery that triangles with
sides (a, b, c) in rational numbers such as a2 + b2 = c2 are right-angled was
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nowhere made so early as in India. We find however in two ancient Chinese
treatises (1) a statement that the diagonal of the rectangle (3, 4) is 5 and (2)
a rule for finding the hypotenuse of a “right triangle” from the sides, while
tradition connects both works with the name of Chou Kung who died 1105
b.c. (D. E. Smith, History of Mathematics, i. pp. 30–33, ii. p. 288).

As regards the various “rational rectangles” used by Apastamba, it is to
be observed that two of the seven, viz. 8, 15, 17 and 12, 35, 37, do not
belong to the Pythagorean series, the others consist of two which belong to
it, viz. 3, 4, 5 and 5, 12, 13, and multiples of these. It is true, as remarked
by Zeuthen (op. cit. p. 842), that the rules of ii. 7 and iii. 9 numbered (9)
and (11) above respectively, would furnish the means of finding any number
of “rational rectangles.” But it would not appear that the Indians had been
able to formulate any general rule: otherwise their list of such rectangles
would hardly have been so meagre. Āpastamba mentions seven only, really
reducible to four (though one other, 7, 24, 25, appears in the Bāudhāyana-
Ś.-S., supposed to be older than Āpastamba). These are all that Āpastamba
knew of, for he adds (v. 6): “So many recognisable (erkennbare) constructions
are there,” implying that he knew of no other “rational rectangles” that could
be employed. But the words also imply that the theorem of the square on
the diagonal is also true of other rectangles not of the “recognisable” kind,
i.e., rectangles in which the sides and the diagonal are not in the ratio of
integers; this is indeed implied by the constructions for

√
2,
√

3 etc. up to√
6 (c.f. ii. 2, viii. 5). This is all that can be said. The theorem is, it is true,

enunciated as a general proposition, but there is no sign of anything like a
general proof; there is nothing to show that the assumption of its universal
truth was founded on anything better than an imperfect induction from a
certain number of cases, discovered empirically, of triangles with sides in the
ratio of whole numbers in which the property (1) that the square on the
longest side is equal to the sum of the squares on the other two sides was
found to be always accompanied by the property (2) that the latter two sides
include a right angle.

It remains to consider Bürk’s claim that the Indians had discovered the
irrational. This is based on the approximate value of

√
2 given by Āpastamba

in his rule i. 6 numbered (4) above. There is nothing to show how this
was arrived at, but Thibaut’s suggestion certainly seems the best and most
natural. The Indians may have observed that 172 = 289 is nearly double of
122 = 144. If so, the next question would would naturally occur to them
would be, by how much the side 17 must be diminished in order that the
square on it may be 288 exactly. If, in accordance with the Indian fashion, a
gnomon with unit area were to be subtracted from a square with 17 as side,
this would approximately be secured by giving the gnomon the breadth 1

34
,
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for 2× 17× 1
34

= 1. The side of the smaller square thus arrived at would be
17− 1

34
= 12 + 4 + 1− 1

34
, whence, dividing out by 12, we have

√
2 = 1 +

1

3
+

1

3 . 4
− 1

3 . 4 . 34
, approximately.

But it is a far cry from this calculation of an approximate value to the
discovery of the irrational. First, we ask, is there any sign that this value
was known to be inexact? It comes directly after the statement (i. 6) that
the square on the diagonal of a square is double that of that square, and
the rule is quite boldly stated without any qualification: “lessen the unit
by one-third and the latter by one-quarter of itself less one-thirty-fourth of
this part.” Further the approximate value is actually used for the purpose
of constructing a square when the side is given (ii. 1). So familiar was the
formula that it was apparently made the basis of a sub-division of measures
of length. Thibaut observes (Journal of the Asiatic Society of Bengal, xlix.,
p. 241) that, according to Bāudhāyana, the unit of length was divided into
12 fingerbreadths, and that one of the two divisions of the fingerbreadth was
into 34 sesame-corns, and he adds that he has no doubt that this division,
which he has not elsewhere met, owes its origin to the formula for

√
2. The

result of using this subdivision would be that, in a square with side equal to
12 fingerbreadths, the diagonal would be 17 fingerbreadths less 1 sesame-corn.
Is it conceivable that a sub-division of a measure of length would be based
on an evaluation known to be inexact? No doubt the first discover would
be aware that the area of a gnomon with breadth 1

34
and outer side 17 is

not exactly equal to 1 but less than it by the square of 1
34

or by 1
1156

; as,
however, the object of the whole proceeding was purely practical, he would,
without hesitation, ignore this as being of no practical importance, and,
thereafter, the formula would be handed down and taken as a matter of course
without arousing suspicion as to its accuracy. This supposition is confirmed
by reference to the sort of rules which the Indians allowed themselves to
regard as accurate. Thus Āstamba himself gives a construction for a circle
equal in area to a given square, which is equivalent to taking π = 3˙09,
and yet observes that it gives the required circle “exactly” (iii. 2), while his
construction of a square equal to a circle, which he equally calls “exact,”
makes the side of the square equal to 13

15
ths of the diameter of the circle

(iii. 3), and is equivalent to taking π = 3.004̇. But, even if some who used
the approximation for

√
2 were conscious that it was not quite accurate (of

which there is no evidence), there is an immeasurable difference between
arrival at this consciousness and the discovery of the irrational. As Vogt
says, three stages had to be passed through before the irrationality of the
diagonal of a square was discovered in any real sense. (1) All values found by
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direct measurement or calculations based thereon have to be recognised as
being inaccurate. Next (2) must supervene the conviction that it is impossible
to arrive at an accurate arithmetical expression of the value. And lastly (3)
the impossibility must be proved. Now there is no real evidence that the
Indians, at the date in question, had even reached the first stage, still less
the second or third.

The net results then of Bürk’s papers and of the criticisms to which they
have given rise appear to be these. (1) It must be admitted that Indian
geometry had reached the stage at which we find it in Āpastamba quite
independently of Greek influence. But (2) the old Indian geometry was purely
empirical and practical, far removed from abstractions such as the irrational.
The Indians had indeed by trial in particular cases, persuaded themselves of
the truth of the Pythagorean theorem and enunciated it in all its generality;
but they had not established it by scientific proof.

Alternative proofs.

I. The well-known proof of i. 47 obtained by putting two squares side by
side, with their bases continuous, and cutting off right-angled triangles which
can then be put on again in different positions, is attributed by an-Nair̄ız̄ı to
Thābit b. Qurra (826–901 a.d.).

His actual construction proceeds thus.
Let ABC be the given triangle right-angled at A.
Construct on AB the square AD;

produce AC to F so that EF may be equal to AC.
Construct on EF the square EG, and produce DH to K so that DK

may be equal to AC.

A

B

C

D

EF

G H

K

L

It is then proved that, in the triangles BAC, CFG, KHG, BDK,
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the sides BA, CF , KH, BD are all equal, and
the sides AC, FG, HG, DK are all equal.

The angles included by the equal sides are all right angles; hence the four
triangles are equal in all respects. [i. 4]

Hence BC, CG, GK, KB are all equal.
Further the angles DBK, ABC are equal;

hence, if we add to each the angle DBC,
the angle KBC is equal to the angle ABD and is therefore a right angle.

In the same way the angle CGK is right;
therefore BCGK is a square, i.e. the square on BC.

Now the sum of the quadrilateral GCLH and the triangle LDB together
with two of the equal triangles make the squares on AB, AC, and together
with the other two make the square on BC.

Therefore etc.

II. Another proof is easily arrived at by taking the particular case of
Pappus’ more general proposition given below in which the given triangle is
right-angled and the parallelograms on the sides containing the right angles
are squares. If the figure is drawn, it will be seen that, with no more than one
additional line inserted, it contains Thābit’s figure, so that Thābit’s proof
may have been practically derived from that of Pappus.

III. The most interesting of the remaining proofs seems to be that shown
in the accompanying figure. It is given by J. W. Müller, Systematische Zu-
sammenstellung der wichtigsten bisher bekannten Beweise des Pythag. Lehr-
satzes (Nürnberg, 1819), and in the second edition (Mainz, 1821) of Ign. Hoff-
mann, Der Pythag. Lehrsatz mit 32 theils bekannten theils neuen Beweisen [3
more in second edition]. It appears to come from one of the scientific papers
of Leonardo da Vinci (1452–1519).

The triangle HKL is constructed on the base KH with the side KL equal
to BC and the side LH equal to AB.

Then the triangle HLK is equal in all respects to the triangle ABC, and
to the triangle EBF .

Now DB, BG, which bisect the angles ABE, CBF respectively, are in a
straight line. Join BL.

It is easily proved that the four quadrilaterals ADGC, EDGF , ABLK,
HLBC are all equal.

Hence the hexagons ADEFGC, ABCHLK are equal.
Subtracting from the former the two triangles ABC, EBF , and from the

latter the two equal triangles ABC, HLK, we prove that
the square CK is equal to the sum of the squares AE, CF .
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Pappus’ extension of I. 47.

In this elegant extension the triangle may be any triangle (not necessarily
right-angled), and any parallelograms take the place of squares on two of the
sides.

Pappus (iv. 177) enunciates the theorem as follows:
If ABC be a triangle, and any parallelograms whatever ABED, BCFG be

described on AB, BC, and if DE, FG be produced to H, and HB be joined,
the parallelograms ABED, BCFG are equal to the parallelogram contained by
AC, HB in an angle which is equal to the sum of the angles BAC, DHB.

Produce HB to K; through A, C draw AL, CM parallel to HK, and
join LM .

A

B

C

D

E

F

G

H

K

L M
N

Then, since ALHB is a parallelogram, AL, HB are equal and parallel.
Similarly MC, HB are equal and parallel.
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Therefore AL, MC are equal and parallel;
whence LM , AC are also equal and parallel,

and ALMC is a parallelogram.
Further, the angle LAC of this parallelogram is equal to the sum of the

angles BAC, DHB, since the angle DHB is equal to the angle LAB.
Now, since the parallelogram DABE is equal to the parallelogram LABH

(for they are on the same base AB and in the same parallels AB, DH),
and likewise LABH is equal to LAKN (for they are on the same base LA
and in the same parallels LA, HK),

the parallelogram DABE is equal to the parallelogram LAKN .
For the same reason,
the parallelogram BGFC is equal to the parallelogram NKCM .

Therefore the sum of the parallelograms DABE, BGFC is equal to the
parallelogram LACM , that is, to the parallelogram which is contained by
AC, HB in an angle LAC which is equal to the sum of the angles BAC,
BHD.

“And this is far more general than what is proved in the Elements about
squares in the case of right-angled (triangles).”

Heron’s proof that AL, BK, CF in Euclid’s figure meet in a
point.

The final words of Proclus’s note on i. 47 (p. 429, 9–15) are historically
interesting. He says: “The demonstration by the writer of the Elements being
clear, I consider that it is unnecessary to add anything further, and that we
may be satisfied with what has been written, since in fact those who have
added anything more, like Pappus and Heron, were obliged to draw upon
what is proved in the sixth Book, for no really useful object.” Those words
cannot of course refer to the extension of i. 47 given by Pappus; but the
key to them, so far as Heron is concerned, is to be found in the commentary
of an-Nair̄ız̄ı (pp. 175–185, ed. Besthorn-Heiberg; pp. 78–84, ed. Curtze) on
i. 47, wherein he gives Heron’s proof that the lines AL, FC, BK in Euclid’s
figure meet in a point. Heron proved this by means of three lemmas which
would most naturally be proved from the principle of similitude as laid down
in Book vi., but which Heron, as a tour de force, proved on the principles of
Book i only. The first lemma is to the following effect.

If, in a triangle ABC, DE be drawn parallel to the base BC, and if AF
be drawn from the vertex A to the middle point F of BC, then AF will also
bisect DE.

This is proved by drawing HK through A parallel to DE or BC, and
HDL, KEM through D, E respectively parallel to AGF , and lastly joining
DF , EF .
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Then the triangles ABF , AFC are equal (being on equal bases), and the
triangles DBF , EFC are also equal (being on equal bases and between the
same parallels).

Therefore, by subtraction, the triangles ADF , AEF are equal, and hence
the parallelograms AL, AM are equal.

These parallelograms are between the same parallels LM , HK; therefore
LF , FM are equal, whence DG, GE are also equal.

The second lemma is an extension of this to the case where DE meets
BA, CA produced beyond A.

The third lemma proves the converse of Euclid i. 43, that, If a parallel-
ogram AB is cut into four others ADGE, DF, FGCB, CE, so that DF, CE
are equal, the common vertex G will be on the diagonal AB.

Heron produces AG till it meets CF in H. Then, if we join HB, we have
to prove that AHB is one straight line. The proof is as follows. Since the
areas DF , EC are equal, the triangles DFG, ECG are equal.

A

BC

D

E F
G

H

K

If we add to each the triangle CGF ,
the triangles ECF , DCF are equal;

therefore ED, CF are parallel.
Now it follows from i. 34, 29 and 26 that the triangles AKE, GKD are

equal in all respects;
therefore EK is equal to KD.
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Hence, by the second lemma,
CH is equal to HF .

Therefore, in the triangles FHB, CHG,
the two sides BF , FH are equal to the two sides GC, CH,

and the angle BFH is equal to the angle GCH;
hence the triangles are equal in all respects.
and the angle BHF is equal to the angle GHC.

Adding to each the angle GHF , we find that the angles BHF , FHG are
equal to the angles CHG, GHF ,

and therefore to two right angles.
Therefore AHB is a straight line.

Heron now proceeds to prove the proposition that, in the accompanying
figure, if AKL perpendicular to BC meet EC in M , and if BM , MG be
joined,

BM , MG are in one straight line.
Parallelograms are completed as shown in the figure, and the diagonals

OA, FH of the parallelogram FH are drawn.

A
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Then the triangles FAH, BAC are clearly equal in all respects;
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therefore the angle HFA is equal to the angle ABC, and therefore to
the angle CAK (since AK is perpendicular to BC).

But, the diagonals of the rectangle FH cutting one another in Y ,
FY is equal to Y A,

and the angle HFA is equal to the angle OAF .
Therefore the angles OAF , CAK are equal, and accordingly

OA, AK are in a straight line.
Hence OM is the diagonal of SQ;

therefore AS is equal to AQ,
and, if we add AM to each,

FM is equal to MH.
But, since EC is the diagonal of the parallelogram FN ,

FM is equal to MN .
Therefore MH is equal to MN ;

and, by the third lemma, BM , MG are in a straight line.

27


