
[Sir Thomas L. Heath, The Thirteen Books of Euclid’s Elements (2nd
edition), pp. 202–220 (1925).]

[Heath’s commentary on Euclid, Elements, Book I, Postulate 5.]

Postulate 5.

Καὶ ἐὰν εἰς δύο εὐθείας εὐθεῖα ἐμπίπτουσα τὰς ἐντὸς καὶ ἐπὶ τὰ αὐτὰ μέρη

γωνίας δύο ὀρθω̂ν ἐλάσσονας ποιῇ, ἐκβαλλομένας τὰς δύο ευθείας ἐπ᾿ ἄπειρον

συμπίπτειν ἐφ᾿ ἃ μέρη εἰσὶν αἱ τῶν δύο ὀρθῶν ἐλάσσονες.

That, if a straight line falling on two straight lines make the interior
angles on the same side less than two right angles, the two straight lines, if
produced indefinitely, meet on that side on which are the angles less than the
two right angles.

Although Aristotle gives a clear idea of what he understood by a postulate,
he does not give any instances from geometry; still less has he any allusion
recalling the particular postulates found in Euclid. We naturally infer that
the formulation of these postulates was Euclid’s own work. There is a more
positive indication of the originality of Postulate 5, since in the passage (Anal.
prior. ii. 16, 65 a 4) quoted above in the note on the definition of parallels he
alludes to some petito principii involved in the theory of parallels current in
his time. This reproach was removed by Euclid when he laid down this epoch-
making Postulate. When we consider the countless successive attempts made
through more than twenty centuries to prove the Postulate, many of them
by geometers of ability, we cannot but admire the genius of the man who
concluded that such a hypothesis, which he found necessary to the validiy of
his whole system of geometry, was really indemonstrable.

From the very beginning, as we know from Proclus, the Postulate was
attacked as such, and attempts were made to prove it as a theorem or to get
rid of it by adopting some other definition of parallels; while in modern times
the literature of the subject is enormous. Riccardi (Saggio di una bibliograp-
fia Euclidea, Part iv., Bologna, 1890) has twenty quarto pages of titles of
monographs relating to Post 5 between the dates 1607 and 1887. Max Simon
(Ueber di Entwicklung der Elementar-geometrie im XIX. Jahrhundert, 1906)
notes that he has seen three new attempts as late as 1891 (a century after
Gauss laid the foundation of non-Euclidean geometry), to prove the theory
of parallels independently of the Postulate. Max Simon himself (pp. 53–61)
gives a large number of references to books or articles on the subject and
refers to the copious information, as to contents as well as names, contained
in Schotten’s Inhalt und Methode des planimetrischen Unterrichts, ii. pp.
183–332.
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This note will include some account of or allusion to a few of the most
noteworthy attempts to prove the Postulate. Only those of ancient times, as
being less generally accessible, will be described at any length; shorter ref-
erences must suffice in the case of the modern geometers who have made
the most important contributions to the discussion of the Postulate and
have thereby, in particular, contributed most towards the foundation of the
non-Euclidean geometries, and here I shall make use principally of the valu-
able Article 8, Sulla teoria delle parallele e sulle geometrie non-euclidee (by
Roberto Bonola), in Questioni riguardanti le matematiche elementari, i. pp.
247–363.

Proclus (p. 191, 21 sqq.) states very clearly the nature of the first objec-
tions taken to the Postulate.

“This ought even to be struck out of the Postulates altogether; for it
is a theorem involving many difficulties, which Ptolemy, in a certain book,
set himself to solve, and it requires for the demonstration of it a number of
definitions as well as theorems. And the converse of it is actually proved
by Euclid himself as a theorem. It may be that some would be deceived
and would think it proper to place even the assumption in question among
the postulates as affording, in the lessening of the two right angles, ground
for an instantaneous belief that the straight lines converge and meet. To
such as these Geminus correctly replied that we have learned from the very
pioneers of this science not to have any regard to mere plausible imaginings
when it is a question of the reasonings to be included in our geometrical
doctrine. For Aristotle says that it is as justifiable to ask scientific proofs of
a rhetorician as to accept mere plausibilities from a geometer; and Simmias
is made by Plato to say that he recognises as quacks those who fashion for
themselves proofs from probabilities. So in this case the fact that, when the
right angles are lessened, the straight lines converge is true and necessary; but
the statement that, since they converge more and more as they are produced,
they will sometimes meet is plausible but not necessary, in the absence of
some argument showing that this is true in the case of straight lines. For
the fact that some lines exist which approach indefinitely, but yet remain
non-secant (ἀσύμπτωτοι), although it seems improbable and paradoxical, is
nevertheless true and fully ascertained with regard to other species of lines.
May not then the same thing be possible in the case of straight lines which
happens in the case of the lines referred to? Indeed, until the statement in
the Postulate is clinched by proof, the facts shown in the case of other lines
may direct our imagination the opposite way. And, though the controversial
arguments against the meeting of the straight lines should contain much that
is surprising, is there not all the more reason why we should expel from our
body of doctrine this merely plausible and unreasoned (hypothesis)?
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“It is then clear from this that we must seek a proof of the present the-
orem, and that it is alien to the special character of postulates. But how
it should be proved, and by what sort of arguments the objections taken
to it should be removed, we must explain at the point where the writer of
the Elements is actually about to recall it and use it as obvious. It will be
necessary at that stage to show that its obvious character does not appear
independently of proof, but is turned by proof into matter of knowledge.”

Before passing to the attempts of Ptolemy and Proclus to prove the Pos-
tulate, I should note here that Simplicius says (in an-Nair̄ız̄ı, ed. Besthorn-
Heiberg, p. 119, ed. Curtze, p. 65) that this Postulate is by no means man-
ifest, but requires proof, and accordingly “Abthiniathus” and Diodorus had
already proved it by means of many different propositions, while Ptolemy
also had explained and proved it, using for the purpose Eucl. i. 13, 15 and 16
(or 18). The Diodorus here mentioned may be the author of the Analemma
on which Pappus wrote a commentary. It is difficult even to frame a conjec-
ture as to who “Abthiniathus” is. In one place in the Arabic text the name
appears to be written “Anthisathus” (H. Suter in Zeitschrift für Math. und
Physik, xxxviii., hist. litt. Abth. p. 194). It has occurred to me whether he
might be Peithon, a friend of Serenus of Antinoeia (Antinoupolis) who was
long known as Serenus of Antissa. Serenus says (De sectione cylindri, ed.
Heiberg, p. 96): “Peithon the geometer, explaining parallels in a work of his,
was not satisfied with what Euclid said, but showed their nature more clev-
erly by an example; for he says that parallel straight lines are such a thing
as we see on walls or on the ground in the shadows of pillars which are made
when either a torch or a lamp is burning behind them. And, although this
has only been matter of merriment to every one, I at least must not deride
it, for the respect I have for the author, who is my friend.” If Peithon was
known as “of Antinoeia” or “of Antissa,” the two forms of the mysterious
name might perhaps be an attempt at an equivalent; but this is no more
than a guess.

Simplicius adds in full and word for word the attempt of his “friend” or
his “master Aganis” to prove the Postulate.

Proclus returns to the subject (p. 365, 5) in his note on Eucl. i. 29. He
says that before his time a certain numbr of geometers had classed as a
theorem this Euclidean postulate and thought it matter for proof, and he
then proceeds to give an account of Ptolemy’s argument.

Noteworthy attempts to prove the Postulate.

Ptolemy.

We learn from Proclus (p. 365, 7–11) that Ptolemy wrote a book on the
proposition that “straight lines drawn from angles less than two right angles

3



meet if produced,” and that he used in his “proof” many of the theorems
in Euclid preceding i. 29. Proclus excuses himself from reproducing the
early part of Ptolemy’s argument, only mentioning as one of the propositions
proved in it the theorem of Eucl. i. 28 that, if two straight lines meeting a
transversal make the two interior angles on the same side equal to two right
angles, the straight lines do not meet, however far produced.

I. From Proclus’ note on i. 28 (p. 362, 14 sq.) we know that Ptolemy
proved this somewhat as follows.

Suppose that there are two straight lines AB, CD, and that EFGH,
meeting them, makes the angles BFG, FGD equal to two right angles. I say
that AB, CD are parallel, that is, they are non-secant.

For, if possible, let FB, GD meet at K.

A B

C D

E

F

G

H

KL

Now, since the angles BFG, FGD are equal to two right angles, while
the four angles AFG, BFG, FGD, FGC are together equal to four right
angles, the angles AFG, FGC are equal to two right angles.

“If therefore FB, GD, when the interior angles are equal to two right
angles, meet at K, the straight lines FA, GC will also meet if produced; for
the angles AFG, CGF are also equal to two right angles.

“Therefore, the straight lines will either meet in both directions or in
neither direction, if the two pairs of interior angles are both equal to two
right angles.

“Let, then, FA, GC meet at L.
“Therefore the straight lines LABK LCDK enclose a space: which is

impossible.
“Therefore it is not possible for two straight lines to meet when the inte-

rior angles are equal to two right angles. Therefore they are parallel.”
[The argument in the words italicised would be clearer if it had been

shown that the two interior angles on one side of EH are severally equal to
the two interior angles on the other, BFG to CGF and FGD to AFG; when,
assuming FB, GD to meet in K, we can take the triangle KFG and place it
(e.g. by rotating it in the plane about O the middle point of FG) so that FG
falls where GF is in the figure and GD falls on FA, in which case FB must
also fall on GC; hence, since FB, GD meet at K, GC and FA must meet at a
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corresponding point L. Or, as Mr Frankland does, we may substitute for FG
a straight line MN through O the middle point of FG drawn perpendicular
to one of the parallels, say AB. Then, since the two triangles OMF , ONG
have two angles equal respectively, namely FOM to GON (i. 15) and OFM
to OGN , and one side OF equal to one side OG, the triangles are congruent,
the angle ONG is a right angle, and MN is perpendicular to both AB and
CD. Then, by the same method of application, MA, NC are shown to form
with MN a triangle MALCN congruent with the triangle NDKBM , and
MA, NC meet at a point L corresponding to K. Thus the two straight
lines would meet at the two points K, L. This is what happens under the
Riemann hypothesis, where the axiom that two stright lines cannot enclose a
space does not hold, but all straight lines meeting in one point have another
point common also, and e.g. in the particular figure just used K, L are
points common to all perpendiculars to MN . If we suppose that K, L are
not distinct points, but one point, the axiom that two straight lines cannot
enclose a space is not contradicted.]

II. Ptolemy now tries to prove i. 29 without using our Postulate, and then
deduces the Postulate from it (Proclus, pp. 365, 14—367, 27).

The argument to prove i. 29 is as follows.
The straight line which cuts the parallels must make the sum of the

interior angles on the same side equal to greater than, or less than, two right
angles.

“Let AB, CD be parallel, and let FG meet them. I say (1) that FG does
not make the interior angles on the same side greater than two right angles.

A B

C D

F

G

“For, if the angles AFG, CGF are greater than two right angles, the
remaining angles BFG, DGF are less than two right angles.

“But the same two angles are also greater than two right angles; for AF,
CG are no more parallel than FB, GD, so that, if the straight line falling on
AF , CG makes the interior angles greater than two right angles, the straight
line falling on FB, GD will also make the interior angles greater than two
right angles.

“But the same angles are also less than two right angles; for the four
angles AFG, CGF , BFG, DGF are equal to four right angles: which is
impossible.
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“Similarly (2) we can show that the straight line falling on the parallels
does not make the interior angles on the same side less than two right angles.

“But (3), if it makes them neither greater nor less than two right angles, it
can only make the interior angles on the same side equal to two right angles.”

III. Ptolemy deduces Post. 5 thus:
Suppose that the straight lines making angles with a transversal less than

two right angles do not meet on the side on which those angles are.
Then, a fortiori, they will not meet on the other side on which are the

angles greater than two right angles.
Hence the straight lines will not meet in either direction; they are there-

fore parallel.
But, if so, the angles made by them with the transversal are equal to two

right angles, by the preceding proposition (= i. 29).
Therefore the same angles will be both equal to and less than two right

angles:
which is impossible.

Hence the straight lines will meet.

IV. Ptolemy lastly enforces his conclusion that the straight lines will meet
on the side on which are the angles less than two right angles by recurring
to the a fortiori step in the foregoing proof.

Let the angles AFG, CGF in the accompanying figure be together less
than two right angles.

A

B

C D

E

F

G

H

K

Therefore the angles BFG, DGF are greater than two right angles.
We have proved that the straight lines are not non-secant.
If they meet, they must meet either towards A, C, or towards B, D.
(1) Suppose they meet towards B, D, at K.
Then, since the angles AFG, CGF are less than two right angles, and

the angles AFG, GFB are equal to two right angles, take away the common
angle AFG, and the angle CGF is less than the angle BFG; that is, the
exterior angle of the triangle KFG is less than the interior and opposite
angle BFG: which is impossible.

Therefore AB, CD do not meet before B, D.
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(2) But they do meet, and therefore they must meet in one direction or
the other: therefore they meet towards A, B, that is, on the side where are
the angles less than two right angles.

The flaw in Ptolemy’s argument is of course in the part of his proof of
i. 29 which I have italicised. As Proclus says, he is not entitled to assume
that, if AB, CD are parallel, whatever is true of the interior angles on one
side of FG (i.e. that they are together equal to, greater than, or less than,
two right angles) is necessarily true at the same time of the interior angles
on the other side. Ptolemy justifies this by saying that FA, GC are no more
parallel in one direction than FB, GD are in the other: which is equivalent
to the assumption that through any point only one parallel can be drawn to a
given straight line. That is, he assumed an equivalent of the very Postulate
he is endeavouring to prove.

Proclus.

Before passing to his own attempt at a proof, Proclus (p. 368, 26 sqq.)
examines an ingenious argument (recalling somewhat the famous one about
Achilles and the tortoise) which appeared to show that it was impossible for
the lines described in the Postulate to meet.

Let AB, CD make with AC the angles BAC, ACD together less than
two right angles.

Bisect AC at E and along AB, CD respectively measure AF , CG so that
each is equal to AE.

Bisect FG at H and mark off FK, GL each equal to FH; and so on.

A
B

C
D

E

F

G

H

K

L

Then AF , CG will not meet at any point on FG; for, if that were the
case, two sides of a triangle would be together equal to the third: which is
impossible.

Similarly, AB, CD will not meet at any point on KL; and “proceeding
like this indefinitely, joining the non-coincident points, bisecting the lines so
drawn, and cutting off from the straight lines portions equal to the half of
these, they say they thereby prove that the straight lines AB, CD will not
meet anywhere.”

It is not surprising that Proclus does not succeed in exposing the fallacy
here (the fact being that the process will indeed be endless, and yet the
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straight lines will intersect within a finite distance). But Proclus’ criticism
contains nevertheless something of value. He says that the argument will
prove too much, since we have only to join AG in order to see that straight
lines making some angles which are together less than two right angles do in
fact meet, namely AG, CG. “Therefore it is not possible to assert, without
some definite limitation, that the straight lines produced from angles less
than two right angles do not meet. On the contrary, it is manifest that some
straight lines, when produced from angles less than two right angles, do meet,
although the argument seems to require it to be proved that this property
belongs to all such straight lines. For one might say that, the lessening of
the two right angles being subject to no limitatation, with such and such an
amount of lessening the striaght lines remain non-secant, but with an amount
of lessening in excess of this they meet (p. 371, 2–10).”

[Here then we have the germ of such an idea as that worked out by
Lobachewsky, namely that the straight lines issuing from a point in the plane
can be divided with reference to a straight line lying in that plane into two
classes, “secant” and “non-secant,” and that we may define as parallel the
two straight lines which divide the secant from the non-secant class.]

Proclus goes on (p. 371, 10) to base his own argument upon “an axiom
such as Aristotle too used in arguing that the universe is finite. For, if
from one point two straight lines forming an angle be produced indefinitely
will exceed any finite magnitude. Aristotle at all events showed that, if the
straight lines drawn from the centre to the circumference are infinite, the
interval between them is infinite. For, if it is finite, it is impossible to increase
the distance, so that the straight lines (the radii) are not infinite. Hence the
straight lines, which when produced indefinitely, will be at a distance from
one another greater than any assumed finite magnitude.”

This is a fair representation of Aristotle’s argument in De caelo i. 5, 271 b
28, although of course it is not a proof of what Proclus assumes as an axiom.

This being premised, Proclus proceeds (p. 371, 24):

I. “I say that, if any straight line cuts one of two parallels, it will cut the
other also.

“For let AB, CD be parallel, and let EFG cut AB; I say that it will cut
CD also.

A B

C D

E

F
G

“For, since BF , FG are two straight lines from one point F , they have,
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when produced indefinitely, a distance greater than any magnitude, so that
it will also be greater than the interval between the parallels. Whenever
therefore they are at a distance from one another greater than the distance
between the parallels, FG will cut CD.

“Therefore etc.”

II. “Having prove this, we shall prove, as a deduction from it, the theorem
in question.

“For let AB, CD be two straight lines, and let EF falling on them make
the angles BEF , DFE less than two right angles.

“I say that the straight lines will meet on that side on which are the
angles less than two right angles.

A

B

C D

E

F

H
K

“For, since the angles BEF , DFE are less than two right angles, let the
angle HEB be equal to the excess of two right angles (over them), and let
HE be produced to K.

“Since then EF falls onKH, CD and makes the two interior anglesHEF ,
DFE equal to two right angles, the straight lines HK, CD are parallel.

“And AB cuts KH; therefore it will also cut CD, but what was before
shown.

“Therefore AB, CD will meet on that side on which are the angles less
than two right angles.

“Hence the theorem is proved.”
Clavius criticised this proof on the ground that the axiom from which it

starts, taken from Aristotle, itself requires proof. He points out that, just as
you cannot assume that two lines which continually approach one another
will meet (witness the hyperbola and its asymptote), so you cannot assume
that two lines which continually diverge will ultimately be so far apart that
a perpendicular from a point on one let fall on the other will be greater than
any assigned distance; and he refers to the conchoid of Nicomedes, which
continally approaches its asymptote, and therefore continually gets farther
away from the tangent at the vertex; yet the perpendicular from any point
on the curve to that tangent will always be less than the distance between
the tangent and the asymptote. Saccheri supports the objection.

Proclus’ first proposition is open to the objection that it assumes that
two “parallels” (in the Euclidean sense) or, as we may say, two straight lines
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which have a common perpendicular, are (not necessarily equidistant, but)
so related that, when they are produced indefinitely, the perpendicular from
a point of one upon the other remains finite.

This last assumption is incorrect on the hyperbolic hypothesis; the “ax-
iom” taken from Aristotle does not hold on the elliptic hypothesis.

Nas.̄ıradd̄ın at.-T. ūs̄ı

The Persian-born editor of Euclid, whose date is 1201–1274, has three
lemmas leading up to the final proposition. Their content is substantially as
follows, the first lemma being apparently assumed as evident.

I. (a) If AB, CD be two straight lines such that successive perpendicu-
lars, as EF , GH, KL, from points AB to CD always make with AB unequal
angles, which are always acute on the side towards B and always obtuse on
the side towards A, then the lines AB, CD, so long as they do not cut,
approach continually nearer in the direction of the obtuse angles, and the
perpendiculars diminish towards B, D, and increase towards A, C.

(b) Conversely, if the perpendiculars so drawn continually become
shorter in the direction of B, D, and longer in the direction of A, C, the
straight lines AB, CD approach continually nearer in the direction of B, D
and diverge continually in the other direction; also each perpendicular will
make with AB two angles one of which is acute and the other is obtuse, and
all the acute angles will lie in the direction towards B, D, and the obtuse
angles in the opposite direction.

A

B

CD

E

F

G

H

K

L

[Saccheri points out that even the first part (a) requires proof. As regards
the converse (b) he asks, why would not the successive acute angles made
by the perpendiculars with AB, while remaining acute, become greater and
greater as the perpendiculars become smaller until we arrive at last at a per-
pendicular which is a common perpendicular to both lines? If that happens,
all the author’s efforts are in vain. And, if you are to assume the truth of
the statement in the lemma without proof, would it not, as Wallis said, be
as easy to assume as axiomatic the statement in Post. 5 without more ado?]

II. If AC, BD be drawn from the extremities of AB at right angles to it
and on the same side, and if AC, BD be made equal to one another and CD
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be joined, each of the angles ACD, BDC will be right, and CD will be equal
to AB.

AB

CD

The first part of this lemma is proved by reductio ad absurdum from the
preceding lemma. If, e.g., the angle ACD is not right, it must either be acute
or obtuse.

Suppose it is acute; then, by lemma i, AC is greater than BD, which is
contrary to the hypothesis. And so on.

The angles ACD, BDC being proved to be right angles, it is easy to
prove that AB, CD are equal.

[It is of course assumed in this “proof” that, if the angle ACD is acute,
the angle BDC is obtuse, and vice versa.]

III. In any triangle the three angles are together equal to two right angles.
This is proved for a right-angled triangle by means of the foregoing lemma,
the four angles of the quadrilateral ABCD of that lemma being all right
angles. The proposition is then true for any triangle, since any triangle can
be divided into two right-angled triangles.

IV. Here we have the final “proof” of Post. 5. Three cases are distin-
guished, but it is enough to show the case where one of the interior angles is
right and the other acute.

Suppose AB, CD to be two straight lines met by FCE making the angle
ECD a right angle and the angle CEB an acute angle.

Take any point G on EB, and draw GH perpendicular to EC.

A

B

C

D

EF

G

HKLM

N
O

P

QR
S

Since the angle CEG is acute, the perpendicular GH will fall on the side
of E towards D, and will either coincide with CD or not coincide with it. In
the former case the proposition is proved.
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If GH does not coincide with CD but falls on the side of it towards F ,
CD, being within the triangle formed by the perpendicular and by CE, EG,
must cut EG. [An axiom is here used, namely that, if CD be produced far
enough, it must pass outside the triangle and therefore cut some side, which
must be EB, since it cannot be the perpendicular (i. 27), or CE.]

Lastly, let GH fall on the side of CD towards E.
Along HC set off HK, KL etc., each equal to EH, until we get the first

point of division, as M , beyond C.
Along GB set off GN , NO etc., each equal to EG, until EP is the same

multiple of EG that EM is of EH.
Then we can prove that the perpendiculars from N , O, P on EC fall on

the points K, L, M respectively.
For take the first perpendicular, that from N , and call it NS.
Draw EQ at right angles to EH and equal to GH, and set off SR along

SN also equal to GH. Join QG, GR.
Then (second lemma) the angles EQG, QGH are right, and QG = EH.
Similarly the angles SRG, RGH are right, and RG = SH.
Thus RGQ is one straight line, and the vertically opposite angles NGR,

EGQ are equal. The angles NRG, EQG are both right, and NG = GE, by
construction.

Therefore (i. 26) RG = GQ; whence SH = HE = KH, and S coincides
with K.

We may proceed similarly with the other perpendiculars.
Thus PM is perpendicular to FE. Hence CD, being parallel to MP and

within the triangle PME, must cut EP , if produced far enough.

John Wallis.

As is well known, the argument of Wallis (1616–1703) assumed as a pos-
tulate that, given a figure, another figure is possible which is similar to the
given one and of any size whatever. In fact Wallis assumed this for triangles
only. He first proved (1) that, if a finite straight line is placed on an infinite
straight line, and is then moved in its own direction as far as we please, it
will always line on the same infinite straight line, (2) that, if an angle be
moved so that one leg always slides along an infinite stright line, the angle
will remain the same, or equal, (3) that, if two straight lines, cut by a third,
make the interior angles on the same side less than two right angles, each
of the exterior angles is greater than the opposite interior angle (proved by
means of i. 13).

(4) If AB, CD make, with AC, the interior angles less than two right
angles, suppose AC (with AB rigidly attached to it) to move along AF to
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the position αγ, such that α coincides with C. If AB then takes the position
αβ, αβ lies entirely outside CD (proved by means of (3) above).

A

B

C

D

EF
α

β

γ

(5) With the same hypotheses, the straight line αβ, or AB, during its
motion, and before α reaches C must cut the straight line CD.

(6) Here is enunciated the postulate stated above.
(7) Postulate 5 is now proved thus.
Let AB, CD be the straight lines which make, with the infinite straight

line ACF meeting them, the interior angles BAC, DCA together less than
two right angles.

Suppose AC (with AB rigidly attached to it) to move along ACF until
AB takes the position of αβ cutting CD in π.

A

B

C

D

EF α

β

γ

P

π

Then αCπ being a triangle, we can, by the above postulate, suppose a
triangle drawn on the base CA similar to the triangle αCπ.

Let it be ACP .
[Wallis here interposes a defence of the hypothetical construction.]
Thus CP and AP meet at P ; and as by the definition of similar figures

the angles of the trinagles PCA, πCα are respectively equal, the angle PCA
being equal to the angle πCα and the angle PAC to the angles παC or BAC,
it follows that CP , AP lie on CD, AB produced respectively.

Hence AB, CD meet on the side on which are the angles less than two
right angles.

[The whole gist of this proof lies in the assumed postulate as to the exis-
tence of similar figures; and, as Saccheri points out, this is equivalent to un-
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conditionally assuming the “hypothesis of the right angle,” and consequently
Euclid’s Postulate 5.]

Gerolamo Saccheri.

The book Euclides ab omni naevo vindicatus (1733) by Gerolamo Saccheri
(1667–1733), a Jesuit, and professor at the University of Pavia, is now accessi-
ble (1) edited in German by Engle and Stäckel, Die Theorie der Parallellinien
von Euklid bis auf Gauss, 1895, pp. 41–136, and (2) in an Italian version,
abridged but annotated, L’Euclide emendato del P. Gerolamo Saccheri, by
G. Boccardini (Hoepli, Milan, 1904). It is of much greater importance than
all the earlier attempts to prove Post. 5 because Saccheri was the first to
contemplate the possibility of hypotheses other than that of Euclid, and to
work out a number of consequences of those hypotheses. He was therefore
a true precursor of Legendre and of Lobachewsky, as Beltrami called him
(1889), and, it might be added, of Riemann also. For, as Veronese observes
(Fondamenti di geometria, p. 570), Saccheri obtained a glimpse of the theory
of parallels in all its generality, while Legendre, Lobachewsky and G. Bolyai,
excluded a priori, without knowing it, the “hypothesis of the obtuse angle,”
or the Riemann hypothesis. Saccheri, however, was the victim of the precon-
ceived notion of his time that the sole possible geometry was the Euclidean,
and he presents the curious spectacle of a man laboriously erecting a struc-
ture upon new foundations for the very purpose of demolishing it afterwards;
he sought for contradictions in the heart of the systems which he constructed,
in order to prove thereby the falsity of his hypotheses.

For the purpose of formulating his hypotheses he takes a plane quadri-
lateral ABDC, two opposite sides of which AC, BD, are equal and perpen-
dicular to a third AB. Then the angles at C and D are easily proved to be
equal. On the Euclidean hypothesis they are both right angles; but apart
from this hypothesis they might be both obtuse or both acute. To the three
possibilities, which Saccheri distinguishes by the names (1) the hypothesis of
the right angle, (2) the hypothesis of the obtuse angle and (3) the hypothesis of
the acute angle respectively, there corresponds a certain group of theorems;
and Saccheri’s point of view is the Postulate will be completely proved if
the consequences which follow from the last two hypotheses comprise results
inconsistent with one another.

A B

C D
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Among the most important of his propositions are the following:
(1) If the hypothesis of the right angle, or of the obtuse angle, or of the

acute angle is proved true in a single case, it is true in every other case.
(Props. v., vi., vii.)

(2) According as the hypothesis of the right angle, the obtuse angle, or
the acute angle is true, the sum of the three angles of a triangle is equal to,
greater than, or less than two right angles. (Prop. ix.)

(3) From the existence of a single triangle in which the sum of the angles
is equal to, greater than, or less than two right angles the truth of the hy-
pothesis of the right angle, obtuse angle, or acute angle respectively follows.
(Prop. xv.)

These propositions involve the following: If in a single triangle the sum
of the angles is equal to, greater than, or less than two right angles, then any
triangle has the sum of its angles equal to, greater than, or less than two right
angles respectively, which was proved about a century later by Legendre for
the two cases only where the sum is equal to or less than two right angles.

The proofs are not free from imperfections, as when, in the proofs of
Prop. xii. and the part of Prop. xiii. relating to the hypothesis of the obtuse
angle, Saccheri uses Eucl. i. 18 depending on i. 16, a proposition which is
only valid on the assumtion that straight lines are infinite in length; for this
assumption itself does not hold under the hypothesis of the obtuse angle (the
Riemann hypothesis).

The hypothesis of the acute angle takes Saccheri much longer to dispose
of, and this part of the book is less satisfactory; but it contains the following
propositions established anew by Lobachewsky and Bolyai, viz.:

(4) Two straight lines in a plane (even on the hypothesis of the acute an-
gle) either have a common perpendicular, or must, if produced in one and the
same direction, either intersect once at a finite distance or at least continually
approach one another. (Prop. xxiii.)

(5) In a cluster of rays issuing from a point there exist always (on the
hypothesis of the acute angle) two determinate straight lines which separate
the straight lines which intersect a fixed straight line from those which do not
intersect it, ending with and including the straight line which has a common
perpendicular with the fixed straight line. (Props. xxx., xxxi., xxxii.)

Lambert.

A dissertation by G.S. Klügel, Conatuum praecipuorum theoriam par-
allelarum demonstrandi recensio (1763), contained an examination of some
thirty “demonstrations” of Post. 5 and is remarkable for its conclusion ex-
pressing, apparently for the first time, doubt as to its demonstrability and
observing that the certainty which we have in us of the truth of the Eu-

15



clidean hypothesis is not the result of a series of rigorous deductions but
rather of experimental observations. It also had the greater merit that it
called the attention of Johann Heinrich Lambert (1728–1777) to the theory
of parallels. His Theory of Parallels was written in 1766 and published after
his death by G. Bernoulli and C.F. Hindenburg; it is reproduced by Engel
and Stäckel (op. cit. pp. 152–208).

The third part of Lambert’s tract is devoted to the discussion of the
same three hypotheses as Saccheri’s, the hypothesis of the right angle being
for Lambert the first, that of the obtuse angle the second, and that of the
acute angle the third, hypothesis; and, with reference to a quadrilateral with
three right angles from which Lambert starts (that is, one of the halves into
which the median divides Saccheri’s quadrilateral), the three hypotheses are
the assumptions that the fourth angle is a right angle, an obtuse angle, or
an acute angle respectively.

Lambert goes much further than Saccheri in the deduction of new propo-
sitions from the second and third hypotheses. The most remarkable is the
following.

The area of a plane triangle, under the second and third hypotheses, is
proportional to the difference betweeen the sum of the three angles and two
right angles.

Thus the numerical expression for the area of a triangle is, under the third
hypothesis

∆ = k(π − A−B − C) . . . . . . (1),

and under the second hypothesis

∆ = k(A+B + C − π) . . . . . . (2),

where k is a positive constant.
A remarkable observation is appended (§ 82): “In connexion with this it

seems to be remarkable that the second hypothesis holds if spherical instead
of plane triangles are taken, because in the former also the sum of the angles
is greater than two right angles, and the excess is proportional to the area of
the triangle.

“It appears still more remarkable that what I here assert of spherical
triangles can be proved independently of the difficulty of parallels.”

This discovery that the second hypothesis is realised on the surface of
a sphere is important in view of the development, later, of the Riemann
hypothesis (1854).

Still more remarkable is the following prophetic sentence: “I am almost
inclined to draw the conclusion that the third hypothesis arises with an imag-
inary spherical surface” (cf. Lobachewsky’s Géométrie imaginaire, 1837).
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No doubt Lamber was confirmed in this by the fact that, in the formula
(2) above, which for k = r2 represents the area of a spherical triangle, if
r
√
−1 is substituted for r, and r2 = k, we obtain the formula (1).

Legendre.

No account of our present subject would be complete without a full ref-
erence to what is of permanent value in the investigations of Adrien Marie
Legendre (1752–1833) relating to the theory of parallels, which extended over
the space of a generation. His different attempts to prove the Euclidean hy-
pothesis appeared in the successive editions of his Élements de Géométrie
from the first (1794) to the twelfth (1823), which last may be said to contain
his last word on the subject. Later, in 1833, he published, in the Mémoires
de l’Académie Royale des Sciences, xii. p. 367 sqq., a collection of his differ-
ent proofs under the title Réflexions sur différentes manières de démontrer
la théorie des parallèles. His exposition brought out clearly, as Saccheri had
done, and kept steadily in view, the essential connexion between the theory
of parallels and the sum of the angles of a triangle. In the first edition of the
Élements the proposition that the sum of the angles of a triangle is equal to
two right angles was proved analytically on the basis of the assumption that
the choice of a unit of length does not affect the correctness of the proposi-
tion to be proved, which is of course equivalent to Wallis’ assumption of the
existence of similar figures. A similar analytical proof is given in the notes
to the twelfth edition. In his second edition Legendre proved Postulate 5
by means of the assumption that, given three points not in a straight line,
there exists a circle passing through all three. In the third edition (1800) he
gave the proposition that the sum of the angles of a trinagle is not greater
than two right angles ; this proof, which was geometrical, was replaced later
by another, the best known, depending on a construction like that of Euclid
i. 16, the continued application of which enables any number of successive
triangles to be evolved in which, while the sum of the angles in each remains
always equal to the sum of the angles of the original triangle, one of the
angles increases and the sum of the other two diminishes continually. But
Legendre found the proof of the equally necessary proposition that the sum
of the angles of a triangle is not less than two right angles to present great
difficulties. He first observed that, as in the case of spherical triangles (in
which the sum of the angles is greater than two right angles) the excess of
the sum of the angles over two right angles is proportional to the area of the
triangle, so in the case of rectilineal triangles, if the sum of the angles is less
than two right angles by a certain deficit, the deficit will be proportional to
the area of the triangle. Hence if, starting from a given triangle, we could
construct another triangle in which the original triangle is contained at least
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m times, the deficit of this new triangle will be equal to at least m times
that of the original triangle, so that the sum of the angles of the greater
triangles will diminish progressively as m increases, until it becomes zero or
negative: which is absurd. The whole difficulty was thus reduced to that
of the construction of a triangle containing the given triangle at least twice;
but the solution of even this simple problem requires it to be assumed (or
proved) that through a given point within a given angle less than two-thirds
of a right angle, we can always draw a straight line which shall meet both
sides of the angle. The proof in the course of which the necessity for the
assumption appeared is as follows.

It is required to prove that the sum of the angles of a triangle cannot be
less than two right angles.

Suppose A is the least of the three angles of a triangle ABC. Apply to
the opposite side BC a triangle DBC, equal to the triangle ACB, and such
that the angle DBC is equal to the angle ACB, and the angle DCB to the
angle ABC; and draw any straight line through D cutting AB, AC produced
in E, F .

A

B

C

D

E

F

If now the sum of the angles of the triangle ABC is less than two right
angles, being equal to 2R−δ, say, the sum of the angles of the triangle DBC,
equal to the triangle ABC, is also 2R− δ.

Since the sum of the three angles of the remaining triangles DEB, FDC
respectively cannot at all events be greater than two right angles [for Leg-
endre’s proofs of this see below], the sum of the twelve angles of the four
triangles in the figure cannot be greater than

4R + (2R− δ) + (2R− δ), i.e. 8R− 2δ.

Now the sum of the three angles at each of the points B, C, D is 2R.
Subtracting these nine angles, we have the result that the three angles of the
triangle AEF cannot be greater than 2R− 2δ.

Hence, if the sum of the angles of the triangle ABC is less than two right
angles by δ, the sum of the angles of the larger triangle AEF is less than two
right angles by at least 2δ.
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We can continue the construction, making a still larger triangle from
AEF , and so on.

But, however small δ is, we can arrive at a multiple 2nδ which shall exceed
any given angle and therefore 2R itselff; so that the sum of the three angles
of a triangle sufficiently large would be zero or even less than zero: which is
absurd.

Therefore etc.
The difficultly caused by the necessity of making the above-mentioned

assumption made Legendre abandon, in his ninth edition, the method of the
editions from the third to the eighth and return to Euclid’s method pure and
simple.

But again, in the twelfth, he returned to the plan of constructing any
number of successive triangles such that the sum of the three angles in all of
them remains equal to the sum of the three angles of the original triangle,
but two of the angles of the new triangles become smaller and smaller, while
the third becomes larger and larger; and this time he claims to prove in one
proposition that the sum of the three angles of the original triangle is equal to
two right angles by continuing the construction of new triangles indefinitely
and compressing the two smaller angles of the ultimate triangle into nothing,
while the third angle is made to become a flat angle at the same time. The
construction and attempted proof are as follows.

Let ABC be the given triangle; let AB be the greatest side and BC the
least; therefore C is the greatest angle and A the least.

From A draw AD to the middle point of BC, and produce AD to C ′,
making AC ′ equal to AB.

Produce AB to B′, making AB′ equal to twice AD.
The triangle AB′C ′ is then such that the sum of its three angles is equal

to the sum of the three angles of the triangle ABC.

A B

C

D

E

K B′

C ′

D′

K ′ B′′

C ′′

For take AK along AB equal to AD, and join C ′K.
Then the triangles ABD, AC ′K have two sides and the included angles

respectively equal, and are therefore equal in all respects; and C ′K is equal
to BD or DC.

Next, in the triangles B′C ′K, ACD, the angles B′KC ′, ADC are equal,
being respectively supplementary to the equal angles AKC ′, ADB; and the
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two sides about the equal angles are respectively equal; therefore the triangles
B′C ′K, ACD are equal in all respects.

Thus the angle AC ′B′ is the sum of two angles respectively equal to the
angles B, C of the original triangle; and the angle A in the original triangle
is the sum of two angles respectively equal to the angles at A and B′ in the
triangle AB′C ′.

It follows that the sum of the three angles of the new triangle AB′C ′ is
equal to the sum of the angles of the triangle ABC.

Moreover, the side AC ′, being equal to AB, and therefore greater than
AC, is greater than B′C ′ which is equal to AC.

Hence the angle C ′AB′ is less than the angle AB′C ′; so that the angle
C ′AB′ is less than 1

2
A, where A denotes the angle CAB of the original

triangle.
[It will be observed that the triangle AB′C ′ is really the same triangle as

the triangle AEB obtained by the construction of Eucl. i. 16, but differently
placed so that the longest side lies along AB.]

But taking the middle point D′ of the side B′C ′ and repeating the same
construction, we obtain a triangle AB′′C ′′ such that (1) the sum of its three
angles is equal to the sum of the three angles of ABC, (2) the sum of the two
angles C ′′AB′′, AB′′C ′′ is equal to the angle C ′AB′ in the preceding triangle,
and is therefore less than 1

2
A, and (3) the angle C ′′AB′′ is less than half the

angle C ′AB′, and therefore less than 1
4
A.

Continuing in this way, we shall obtain a triangle Abc such that the sum

of two angles, those at A and b, is less than
1

2n
A, and the angle at c is greater

than the corresponding angle in the preceding triangle.
If, Legendre argues, the construction be continued indefinitely so that

1

2n
A becomes smaller than any assigned angle, the point c ultimately lies on

Ab, and the sum of the three angles of the triangle (which is equal to the
sum of the three angles of the original triangle) becomes identical with the
angle at c, which is then a flat angle, and therefore equal to two right angles.

This proof was however shown to be unsound (in respect of the final
inference) by J. P. W. Stein in Gergonne’s Annales de Mathématiques xv.,
1824, pp. 77–79.

We will now reproduce shortly the substance of the theorems of Legendre
which are of the most permanent value as not depending on a particular
hypothesis as regards parallels.

I. The sum of the three angles of a triangle cannot be greater than two
right angles.

This Legendre proved in two ways.
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(1) First proof (in the third edition of the Éléments).
Let ABC be the given triangle, and ACJ a straight line.
Make CE equal to AC, the angle DCE equal to the angle BAC, and DC

equal to AB. Join DE.
Then the triangle DCE is equal to the triangle BAC in all respects.

A

B

C

D

E

F

G

H

J

K

If then the sum of the three angles of the triangle ABC is greater than
2R, the said sum must be greater than the sum of the angles BCA, BCD,
DCE, which sum is equal to 2R.

Subtracting the equal angles on both sides, we have the result that the
angle ABC is greater than the angle BCD.

But the two sides AB, BC of the triangle ABC are respectively equal to
the two sides DC, CB of the triangle BCD.

Therefore the base AC is greater than the base BD (Eucl. i. 24).
Next, make the triangle FEG (by the same construction) equal in all

respects to the triangle BAC or DCE; and we prove in the same way that
CE (or AC) is greater than DF .

And, at the same time, BD is equal to DF , because the angles BCD,
DEF are equal.

Continuing the construction of further triangles, however small the dif-
ference between AC and BD is, we shall ultimately reach some multiple of
this difference, represented in the figure by (say) the difference between the
straight line AJ and the composite line BDFKH, which will be greater than
any assigned length, and greater therefore than the sum of AB and JK.

Hence, on the assumption that the sum of the angles of the triangle ABC
is greater than 2R, the broken line ABDFHKJ may be less than the straight
line AJ : which is impossible.

Therefore etc.
(2) Proof substituted later.
If possible, let 2R+α be the sum of the three anglse of the triangle ABC,

of which A is not greater than either of the others.
Bisect BC at H, and produce AH to D, making HD equal to AH; join

BD.
Then the triangles AHC, DHB are equal in all respects (i. 4); and the

angles CAH, ACH are respectively equal to the angles BDH, DBH.
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A B

C D

H

It follows that the sum of the angle of the triangle ABD is equal to the
sum of the angles of the original triangle, i.e. to 2R + α.

And one of the angles DAB, ADB is either equal to or less than half the
angle CAB. Proceeding in this way, we arrive at a triangle in which the sum
of the angles is 2R + α, and only of them is not greater than (∠CAB)/2n.

And if n is sufficiently large, this will be less than α; in which case we
should have a triangle in which two angles are together greater than two right
angles: which is absurd.

Therefore α is equal to or less than zero.
(It will be noted that in both these proofs, as in Euclid. i. 16, it is taken

for granted that a straight line is infinite in length and does not return into
itself, which is not true under the Riemann hypothesis.)

II. On the assumption that the sum of the angles of a triangle is less than
two right angles, if a triangle is made up of two others, the “deficit” of the
former is equal to the sum of the “deficits” of the others..

In fact, if the sums of the angles of the component triangles are 2R− α,
2R− β respectively, the sum of the angles of the whole triangle is

(2R− α) + (2R− β)− 2R = 2R− (α + β).

III. If the sum of the three angles of a triangle is equal to two right angles,
the same is true of all triangles obtained by subdividing it by straight lines
drawn from a vertex to meet the opposite side.

A

B C
D

Since the sum of the angles of the triangle ABC is equal to 2R, if the
sum of the angles of the triangle ABD were 2R−α, it would follow that the
sum of the angles of the triangle ADC must be 2R + α, which is absurd by
I. above).
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IV. If in a triangle the sum of the three angles is equal to two right angles,
a quadrilateral can always be constructed with four right angles and four equal
sides exceeding in length any assigned rectilineal segment.

Let ABC be a triangle in which the sum of the angles is equal to two
right angles. We can assume ABC to be an isosceles right-angled triangle
because we can reduce the case to this by making subdivisions of ABC by
straight lines through vertices (as in Prop. iii. above).

Taking two equal triangles of this kind and placing their hypotenuses
together, we obtain a quadrilateral with four right angles and four equal
sides.

Putting four of these quadrilaterals together, we obtain a new quadrilat-
eral of the same kind but with its sides double of those of the first quadrilat-
eral.

After n such operations we have a quadrilateral with four right angles
and four equal sides, each being equal to 2n times the side AB.

The diagonal of this quadrilateral divides it into two equal isosceles right-
angled triangles in each of which the sum of the angles is equal to two right
angles.

Consequently, from the existence of one triangle in which the sum of
the three angles is equal to two right angles, if follows that there exists an
isosceles right-angled triangle with sides greater than any assigned rectilineal
segment and such that the sum of its three angles is also equal to two right
angles.

V. If the sum of the three angles of one triagle is equal to two right angles,
the sum of the three angles of any other triangle is also equal to two right
angles.

It is enough to prove this for a right-angled triangle, since any triangle
can be divided into two right-angled triangles.

Let ABC be any right-angled triangle.
If then the sum of the angles of any one triangle is equal to two right

angles, we can construct (by the preceding Prop.) an isosceles right-angled
triangle with the same property and with its perpendicular sides greater than
those of ABC.

Let A′B′C ′ be such a triangle, and let it be applied to ABC as in the
figure.

Applying then Prop. iii. above, we deduce first that the sum of the three
angles of the triangle AB′C ′ is equal to two right angles, and next, for the
same reason, that the sum of the three angles of the original triangle ABC
is equal to two right angles.

If in any one triangle the sum of the three angles is less than two right
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A B(B′)

C

A′

C ′

angles, the sum of the three angles of any other triangle is also less than two
right angles.

This follows from the preceding theorem.
(It will be observed that the last two theorems are included amongst those

of Saccheri, which contain however in addition the corresponding theorem
touching the case where the sum of the angles is greater than two right
angles.)

We come now the the bearing of these propositions upon Euclid’s Postu-
late 5; and the next theorem is

VII. If the sum of the three angles of a triangle is equal to two right angles,
through any point in a plane there can only be drawn one parallel to a given
straight line.

For the proof of this we require the following
Lemma. It is always possible, through a point P, to draw a straight

line which shall make, with a given straight line (r), an angle less than any
assigned angle.

Let Q be the foot of the perpendicular from P upon r.
Let a segment QR be taken on r, on either side of Q, such that QR is

equal to PQ.
Join PR, and mark off the segment RP ′ equal to PR; join PR′.

P s

Q R R′

ω

ω
r

If ω represents the angle QPR or the angle QRP , each of the equal angles
RPR′, RR′P is not greater than ω/2.
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Continuing the construction, we obtain, after the requisite number of
operations, a triangle PRn−1Rn in which each of the equal angles is equal to
or less than ω/2n.

Hence we shall arrive at a straight line PRn which, starting from P and
meeting r, makes with r an angle as small as we please.

To return now to the Proposition. Draw from P the straight line s per-
pendicular to PQ.

Then any straight line drawn from P which meets r in R will form equal
angles with r and s, since, by hypothesis, the sum of the angles of the triangle
PQR is equal to two right angles.

And since, by the Lemma, it is always possible to draw through P straight
lines which form with r angles as small as we please, it follows that all the
straight lines through P , except s will meet r. Hence s is the only parallel
to r that can be drawn through P .

The history of the attempts to prove Postulate 5 or something equivalent
has now been brought down to the parting of the ways. The further devel-
opments on lines independent of the Postulate, beginning with Schweikart
(1780–1857), Taurinus (1794–1874), Gauss (1777-1855), Lobachewsky (1793–
1856), J. Bolyai (1802–1860), Riemann (1826–1866), belong to the history
of non-Euclidean geometry, which is outside the scope of this work. I may
refer the reader to the full article Sulla teoria delle parallele e sulle geome-
trie non-euclidee by R. Bonola in Questioni riguardanti le mathematiche
elementari, i., of which I have made considerable use in the above, to the
same author’s La geometria non-euclidea, Bologna, 1906, to the first vol-
ume of Killing’s Einführung in die Grundlagen der Geometrie, Paderborn,
1893, to P. Mansion’s Premiers principes de métagéometrie, and P. Bar-
barin’s La géometrie non-Euclidienne, Paris, 1902, to the historical summary
in Veronese’s Fondamenti di geometria, 1891, p. 565 sqq., and (for original
sources) to Engel and Stäckel, Die Theorie der Parallellinien von Euklid bis
auf Gauss, 1895, and Urkunden zur Geschichte der nicht-Euklidischen Ge-
ometrie, i. (Lobachewsky), 1899, and ii. (Wolfgang und Johann Bolyai). I
will only add that it was Gauss who first expressed a conviction that the Pos-
tulate could never be proved; he indicated this in reviews in the Göttingische
gelehrte Anzeigen, 20 Apr. 1816 and 28 Oct. 1822, and affirmed it in a letter
to Bessel of 27 January, 1829. The actual indemonstrability of the Postu-
late was proved by Beltrami (1868) and by Hoüel (Note sur l’impossibilité de
démontrer par une construction plane le principe de la théorie des parallèles
dit Postulatum d’Euclide in Battaglini’s Giornale di matematiche, viii., 1870,
pp. 84–89).
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Alternatives for Postulate 5.

It may be convenient to collect here a few of the more noteworthy sub-
stitutes which have from time to time been formally suggested or tacitly
assumed.

(1) Through a given point only one parallel can be drawn to a given straight
line or, Two straight lines which intersect one another cannot both be parallel
to one and the same straight line.

This is commonly known as “Playfair’s Axiom,” but it was of course not
a new discovery. It is distinctly stated in Proclus’ note to Eucl. i. 31.

(1 a) If a straight line intersect one of two parallels, it will intersect the
other also (Proclus).

(1 b) Straight lines parallel to the same straight line are parallel to one
another.

The forms (1 a) and (1 b) are exactly equivalent to (1).

(2) There exist straight lines everywhere equidistant from one another
(Posidonus and Geminus); with which may be compared Proclus’ tacit as-
sumption that Parallels remain, throughout their length, at a finite distance
from one another.

(3) There exists a triangle in which the sum of the three angles is equal
to two right angles (Legendre).

(4) Given any figure, there exists a figure similar to it of any size we
please (Wallis, Carnot, Laplace).

Saccheri points out that it is not necessary to assume so much, and that
it is enough to postulate that there exist two unequal triangles with equal
angles.

(5) Through any point within an angle less than two-thirds of a right
angle a straight line can always be drawn which meets both sides of the angle
(Legendre).

With this may be compared the similar axiom of Lorenz (Grundriss der
reinen und andgewandten Mathematik, 1791): Every straight line through a
point within an angle must meet one of the sides of the angle.

(6) Given any three points not in a straight line, there exists a circle
passing through them (Legendre, W. Bolyai).

(7) “If I could prove that a rectilineal triangle is possible the content of
which is greater than any given area, I am in a position to prove perfectly
rigorously the whole of geometry” (Gauss, in a letter to W. Bolyai, 1799).

Cf. the proposition of Legendre numbered iv. above, and the axiom of
Worpitzky: There exists no triangle in which every angle is as small as we
please.
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(8) If in a quadrilateral three angles are right angles, the fourth angel is
a right angle also (Clairaut, 1741).

(9) if two straight lines are parallel, they are figures opposite to (or the
reflex of) one another with respect to the middle points of all their transversal
segments (Veronese, Elementi, 1904).

Or, two parallel straight lines intercept, on every transversal which passes
through the middle point of a segment included between them, another seg-
ment the middle point of which is the middle point of the first (Ingrami,
Elementi, 1904).

Veronese and Ingrami deduce immediately Playfair’s Axiom.
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