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4. Simplicial Complexes

4. Simplicial Complexes

4.1. Simplical Complexes in Euclidean Spaces

Definition

A finite collection K of simplices in Rk is said to be a simplicial
complex if the following two conditions are satisfied:—

if σ is a simplex belonging to K then every face of σ also
belongs to K ,

if σ1 and σ2 are simplices belonging to K then either
σ1 ∩ σ2 = ∅ or else σ1 ∩ σ2 is a common face of both σ1 and
σ2.



4. Simplicial Complexes (continued)

Definition

The dimension of a simplicial complex K is the greatest
non-negative integer n with the property that K contains an
n-simplex.

Definition

The polyhedron of a simplicial complex K is the union of all the
simplices of K .

The polyhedron |K | of a simplicial complex K is a subset of a
Euclidean space that is both closed and bounded. It is therefore a
compact subset of that Euclidean space.



4. Simplicial Complexes (continued)

Example
Let Kσ consist of some n-simplex σ together with all of its faces.
Then Kσ is a simplicial complex of dimension n, and |Kσ| = σ.



4. Simplicial Complexes (continued)

Lemma 4.1

Let K be a simplicial complex, and let X be a subset of some
Euclidean space. A function f : |K | → X is continuous on the
polyhedron |K | of K if and only if the restriction of f to each
simplex of K is continuous on that simplex.

Proof
Each simplex of the simplicial complex K is a closed subset of the
polyhedron |K | of the simplicial complex K . The numbers of
simplices belonging to the simplicial complex is finite. The result
therefore follows from a straightforward application of
Lemma 1.18.



4. Simplicial Complexes (continued)

We shall denote by VertK the set of vertices of a simplicial
complex K (i.e., the set consisting of all vertices of all simplices
belonging to K ). A collection of vertices of K is said to span a
simplex of K if these vertices are the vertices of some simplex
belonging to K .

Definition

Let K be a simplicial complex in Rk . A subcomplex of K is a
collection L of simplices belonging to K with the following
property:—

if σ is a simplex belonging to L then every face of σ also
belongs to L.

Note that every subcomplex of a simplicial complex K is itself a
simplicial complex.
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Proposition 4.2

Let K be a finite collection of simplices in some Euclidean
space Rk , and let |K | be the union of all the simplices in K. Then
K is a simplicial complex (with polyhedron |K |) if and only if the
following two conditions are satisfied:—

K contains the faces of its simplices,

every point of |K | belongs to the interior of a unique simplex
of K.
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Proof
Suppose that K is a simplicial complex. Then K contains the faces
of its simplices. We must show that every point of |K | belongs to
the interior of a unique simplex of K . Let x ∈ |K |. Then x ∈ ρ for
some simplex ρ of K . It follows from Lemma 3.3 that there exists
a unique face σ of ρ such that the point x belongs to the interior
of σ. But then σ ∈ K , because ρ ∈ K and K contains the faces of
all its simplices. Thus x belongs to the interior of at least one
simplex of K .
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Suppose that x were to belong to the interior of two distinct
simplices σ and τ of K . Then x would belong to some common
face σ ∩ τ of σ and τ (since K is a simplicial complex). But this
common face would be a proper face of one or other of the
simplices σ and τ (since σ ̸= τ), contradicting the fact that x
belongs to the interior of both σ and τ . We conclude that the
simplex σ of K containing x in its interior is uniquely determined.



4. Simplicial Complexes (continued)

Conversely, we must show that if K is some finite collection of
simplices in some Euclidean space, if K contains the faces of all its
simplices, and if every point of the union |K | of those simplices
belongs the the interior of a unique simplex in the collection, then
that collection is a simplicial complex. To achieve this, we must
prove that if σ and τ are simplices belonging to the collection K ,
and if σ ∩ τ ̸= ∅, then σ ∩ τ is a common face of σ and τ .
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Let x ∈ σ ∩ τ . Then x belongs to the interior of a unique simplex
ω belonging to the collection K . However any point of σ or τ
belongs to the interior of a unique face of that simplex, and all
faces of σ and τ belong to K . It follows that ω is a common face
of σ and τ , and thus the vertices of ω are vertices of both σ and τ .
It follows that the simplices σ and τ have vertices in common.
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Let ρ be the simplex whose vertex set is the intersection of the
vertex sets of σ and τ . Then ρ is a common face of both σ and τ ,
and therefore ρ ∈ K . Moreover if x ∈ σ ∩ τ and if ω is the unique
simplex of K whose interior contains the point x, then (as we have
already shown), all vertices of ω are vertices of both σ and τ . But
then the vertex set of ω is a subset of the vertex set of ρ, and thus
ω is a face of ρ. Thus each point x of σ ∩ τ belongs to ρ, and
therefore σ ∩ τ ⊂ ρ. But ρ is a common face of σ and τ and
therefore ρ ⊂ σ ∩ τ . It follows that σ ∩ τ = ρ, and thus σ ∩ τ is a
common face of σ and τ . This completes the proof that the
collection K of simplices satisfying the given conditions is a
simplicial complex.



4. Simplicial Complexes (continued)

4.2. Barycentric Subdivision of a Simplicial Complex

Let σ be a q-simplex in Rk with vertices v0, v1, . . . , vq. The
barycentre of σ is defined to be the point

σ̂ =
1

q + 1
(v0 + v1 + · · ·+ vq).

Let σ and τ be simplices in some Euclidean space. If σ is a proper
face of τ then we denote this fact by writing σ < τ .
A simplicial complex K1 is said to be a subdivision of a simplicial
complex K if |K1| = |K | and each simplex of K1 is contained in a
simplex of K .
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Definition

Let K be a simplicial complex in some Euclidean space Rk . The
first barycentric subdivision K ′ of K is defined to be the collection
of simplices in Rk whose vertices are σ̂0, σ̂1, . . . , σ̂r for some
sequence σ0, σ1, . . . , σr of simplices of K with σ0 < σ1 < · · · < σr .
Thus the set of vertices of K ′ is the set of all the barycentres of all
the simplices of K .

Note that every simplex of K ′ is contained in a simplex of K .
Indeed if σ0, σ1, . . . , σr ∈ K satisfy σ0 < σ1 < · · · < σr then the
simplex of K ′ spanned by σ̂0, σ̂1, . . . , σ̂r , is contained in the
simplex σr of K .
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Example
Let K be the simplicial complex consisting of two triangles a b d
and b c d that intersect along a common edge bd, together with
all the edges and vertices of the two triangles, as depicted in the
following diagram:
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The barycentric subdivision K ′ of this simplicial complex is then as
depicted in the following diagram:
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4. Simplicial Complexes (continued)

We see that K ′ consists of 12 triangles, together with all the edges
and vertices of those triangles. Of the 11 vertices of K ′, the
vertices a, b, c and d are the vertices of the original complex K ,
the vertices e, f, g, h and i are the barycentres of the edges a b,
b c, c d, a d and bd respectively, and are located at the midpoints
of those edges, and the vertices j and k are the barycentres of the
triangles a b d and b c d of K . Thus e = 1

2a+
1
2b, f =

1
2b+ 1

2c,
etc., and j = 1

3a+
1
3b+ 1

3d and k = 1
3b+ 1

3c+
1
3d.
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Proposition 4.3

Let K be a simplicial complex in some Euclidean space, and let K ′

be the first barycentric subdivision of K. Then K ′ is itself a
simplicial complex, and |K ′| = |K |.

Proof
We prove the result by induction on the number of simplices in K .
The result is clear when K consists of a single simplex, since that
simplex must then be a point and therefore K ′ = K . We prove the
result for a simplicial complex K , assuming that it holds for all
complexes with fewer simplices.

It is clear from the definition of the barycentric subdivision K ′ that
any face of a simplex of K ′ must itself belong to K ′. We must
verify that any two simplices of K ′ are disjoint or else intersect in a
common face.
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Choose a simplex σ of K for which dimσ = dimK , and let
L = K \ {σ}. Then L is a subcomplex of K , since σ is not a proper
face of any simplex of K . Now L has fewer simplices than K . It
follows from the induction hypothesis that L′ is a simplicial
complex and |L′| = |L|. Also it follows from the definition of K ′

that K ′ consists of the following simplices:—

the simplices of L′,

the barycentre σ̂ of σ,

simplices σ̂ρ whose vertex set is obtained by adjoining σ̂ to
the vertex set of some simplex ρ of L′, where the vertices of ρ
are barycentres of proper faces of σ.
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By checking all possible intersections of simplices of the above
types, it is easy to verify that any two simplices of K ′ intersect in a
common face. Indeed any two simplices of L′ intersect in a
common face, since L′ is a simplicial complex. If ρ1 and ρ2 are
simplices of L′ whose vertices are barycentres of proper faces of σ,
then ρ1 ∩ ρ2 is a common face of ρ1 and ρ2 which is of this type,
and σ̂ρ1 ∩ σ̂ρ2 = σ̂(ρ1 ∩ ρ2). Thus σ̂ρ1 ∩ σ̂ρ2 is a common face of
σ̂ρ1 and σ̂ρ2. Also any simplex τ of L′ is disjoint from the
barycentre σ̂ of σ, and σ̂ρ ∩ τ = ρ ∩ τ . We conclude that K ′ is
indeed a simplicial complex.
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It remains to verify that |K ′| = |K |. Now |K ′| ⊂ |K |, since every
simplex of K ′ is contained in a simplex of K . Let x be a point of
the chosen simplex σ. Then there exists a point y belonging to a
proper face of σ and some t ∈ [0, 1] such that x = (1− t)σ̂ + t y.
But then y ∈ |L|, and |L| = |L′| by the induction hypothesis. It
follows that y ∈ ρ for some simplex ρ of L′ whose vertices are
barycentres of proper faces of σ. But then x ∈ σ̂ρ, and therefore
x ∈ |K ′|. Thus |K | ⊂ |K ′|, and hence |K ′| = |K |, as required.

We define (by induction on j) the jth barycentric subdivision K (j)

of K to be the first barycentric subdivision of K (j−1) for each j > 1.
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Lemma 4.4

Let σ be a q-simplex and let τ be a face of σ. Let σ̂ and τ̂ be the
barycentres of σ and τ respectively. If all the 1-simplices (edges) of
σ have length not exceeding d for some d > 0 then

|σ̂ − τ̂ | ≤ qd

q + 1
.

Proof
Let v0, v1, . . . , vq be the vertices of σ. Let x and y be points of σ.

We can write y =
q∑

j=0
tjvj , where 0 ≤ ti ≤ 1 for i = 0, 1, . . . , q and

q∑
j=0

tj = 1. Now
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|x− y| =

∣∣∣∣∣
q∑

i=0

ti (x− vi )

∣∣∣∣∣ ≤
q∑

i=0

ti |x− vi |

≤ maximum (|x− v0|, |x− v1|, . . . , |x− vq|) .

Applying this result with x = σ̂ and y = τ̂ , we find that

|σ̂ − τ̂ | ≤ maximum (|σ̂ − v0|, |σ̂ − v1|, . . . , |σ̂ − vq|) .
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But

σ̂ =
1

q + 1
vi +

q

q + 1
zi

for i = 0, 1, . . . , q, where zi is the barycentre of the (q − 1)-face of
σ opposite to vi , given by

zi =
1

q

∑
j ̸=i

vj .

Moreover zi ∈ σ. It follows that

|σ̂ − vi | =
q

q + 1
|zi − vi | ≤

qd

q + 1

for i = 1, 2, . . . , q, and thus

|σ̂ − τ̂ | ≤ maximum (|σ̂ − v0|, |σ̂ − v1|, . . . , |σ̂ − vq|) ≤
qd

q + 1
,

as required.
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Definition

The mesh µ(K ) of a simplicial complex K is the length of the
longest edge of K .

Lemma 4.5

Let K be a simplicial complex, and let n be the dimension of K.
Let K ′ be the first barycentric subdivision of K. Then

µ(K ′) ≤ n

n + 1
µ(K ).
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Proof
A 1-simplex of K ′ is of the form (τ̂ , σ̂), where σ is a q-simplex of
K for some q ≤ n and τ is a proper face of σ. Then

|τ̂ − σ̂| ≤ q

q + 1
µ(K ) ≤ n

n + 1
µ(K )

by Lemma 4.4, as required.
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Lemma 4.6

Let K be a simplicial complex, let K (j) be the jth barycentric
subdivision of K for all positive integers j , and let µ(K (j)) be the
mesh of K (j). Then lim

j→+∞
µ(K (j)) = 0.

Proof
The dimension of all barycentric subdivisions of a simplicial
complex is equal to the dimension of the simplicial complex itself.
It therefore follows from Lemma 4.5 that

µ(K (j)) ≤
(

n

n + 1

)j

µ(K ).

The result follows.
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4.3. Piecewise Linear Maps on Simplicial Complexes

Definition

Let K be a simplicial complex in n-dimensional Euclidean space. A
function f : |K | → Rm mapping the polyhedron |K | of K into
m-dimensional Euclidean space Rm is said to be piecewise linear on
each simplex of K if

f

(
q∑

i=0

tivi

)
=

q∑
i=0

ti f (vi )

for all vertices v0, v1, . . . , vq of K that span a simplex of K , and

for all non-negative real numbers t0, t1, . . . , tq satisfying
q∑

i=0
ti = 1.
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Lemma 4.7

Let K be a simplicial complex in n-dimensional Euclidean space,
and let f : |K | → Rm be a function mapping the polyhedron |K | of
K into m-dimensional Euclidean space Rm that is piecewise linear
on each simplex of K. Then f : |K | → Rm is continuous.

Proof
The definition of piecewise linear functions ensures that the
restriction of f : |K | → Rm to each simplex of K is continuous on
that simplex. The result therefore follows from Lemma 4.1.
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Proposition 4.8

Let K be a simplicial complex in n-dimensional Euclidean space
and let α : Vert(K ) → Rm be a function mapping the set Vert(K )
of vertices of K into m-dimensional Euclidean space Rm. Then
there exists a unique function f : |K | → Rm defined on the
polyhedron |K | of K that is piecewise linear on each simplex of K
and satisfies f (v) = α(v) for all vertices v of K.
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Proof
Given any point x of K , there exists a unique simplex of K whose
interior contains the point x (Proposition 4.2). Let the vertices of
this simplex be v0, v1, . . . , vp, where p ≤ n. Then there exist
uniquely-determined strictly positive real numbers t0, t1, . . . , tp

satisfying
∑p

i=0 ti = 1 for which x =
p∑

i=0
tivi . We then define f (x)

so that

f (x) =

p∑
i=0

tiα(vi ).

Defining f (x) in this fashion at each point x of |K |, we obtain a
function f : |K | → Rm mapping |K | into Rm.



4. Simplicial Complexes (continued)

Now let x ∈ σ for some q-simplex of K . We can order the vertices
v0, v1, . . . , vq of σ so that the point x belongs to the interior of the
face of σ spanned by v0, v1, . . . , vp where p ≤ q. Let t1, t2, . . . , tq
be the barycentric coordinates of the point x with respect to the

simplex σ. Then x =
q∑

i=0
tivi , where ti > 0 for those integers i

satisfying 0 ≤ i ≤ p, ti = 0 for those integers i (if any) satisfying

p < i ≤ q, and
p∑

i=0
ti =

q∑
i=0

ti = 1. Then

f

(
q∑

i=0

tivi

)
= f (x) =

p∑
i=0

tiα(vi ) =

q∑
i=0

ti f (vi ).

The result follows.
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Corollary 4.9

Let K be a simplicial complex in Rn and let L be simplicial
complexes in Rm, where m and n are positive integers, and let
φ : Vert(K ) → Vert(L) be a function mapping vertices of K to
vertices of L. Suppose that

φ(v0), φ(v1), . . . , φ(vq)

span a simplex of L for all vertices v0, v1, . . . , vq of K that span a
simplex of K. Then there exists a unique continuous map
φ : |K | → |L| mapping the polyhedron |K | of K into the
polyhedron |L| of L that is piecewise linear on each simplex of K
and satisfies φ(v) = φ(v) for all vertices v of K. Moreover this
function maps the interior of a simplex of K spanned by vertices
v0, v1, . . . , vq into the interior of the simplex of L spanned by
φ(v0), φ(v1), . . . , φ(vq).
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Proof
It follows from Proposition 4.8 that there is a unique piecewise
linear function f : |K | → Rm that satisfies f (v) = φ(v) for all
v ∈ Vert(K ). We show that f (|K |) ⊂ |L|.
Let

v0, v1, . . . , vq

be vertices of a simplex σ of K , and let t0, t1, . . . , tq be

non-negative real numbers satisfying
q∑

j=0
tj = 1. Then

φ(v0), φ(v1), . . . , φ(vq)

span a simplex of L. Let τ be the simplex of L spanned by these
vertices of L, and let w0,w1, . . . ,wr be the vertices of τ . Then, for
each integer j between 1 and r , let uj be the sum of those ti for
which φ(vi ) = wj .
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Then

f

(
q∑

i=0

tivi

)
=

q∑
i=0

tiφ(vi ) =
r∑

j=0

ujwj

and
r∑

j=0
uj = 1. It follows that f (σ) ⊂ τ . Moreover, given any

integer j between 1 and r , there exists at least one integer i
between 1 and q for which φ(vi ) = wj . It follows that if
t0, t1, t2, . . . , tq are all strictly positive then u0, u1, . . . , ur are also
all strictly positive. Therefore the piecewise linear function f maps
the interior of σ into the interior of τ .

We have already shown that f : |K | → Rm maps each simplex of K
into a simplex of L. Therefore there exists a uniquely-determined
linear function φ : |K | → |L| satisfying φ(x) = f (x) for all x ∈ |K |.
The result follows.
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4.4. Simplicial Maps

Definition

A simplicial map φ : K → L between simplicial complexes K and L
is a function φ : VertK → Vert L from the vertex set of K to that
of L such that φ(v0), φ(v1), . . . , φ(vq) span a simplex belonging
to L whenever v0, v1, . . . , vq span a simplex of K .

Note that a simplicial map φ : K → L between simplicial complexes
K and L can be regarded as a function from K to L: this function
sends a simplex σ of K with vertices v0, v1, . . . , vq to the simplex
φ(σ) of L spanned by the vertices φ(v0), φ(v1), . . . , φ(vq).
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It follows from Corollary 4.9 that simplicial map φ : K → L also
induces in a natural fashion a continuous map φ : |K | → |L|
between the polyhedra of K and L, where

φ

 q∑
j=0

tjvj

 =

q∑
j=0

tjφ(vj)

whenever 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q,
q∑

j=0
tj = 1, and

v0, v1, . . . , vq span a simplex of K . Moreover it also follows from
Corollary 4.9 that the interior of a simplex σ of K is mapped into
the interior of the simplex φ(σ) of L.
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There are thus three equivalent ways of describing a simplicial map:
as a function between the vertex sets of two simplicial complexes,
as a function from one simplicial complex to another, and as a
continuous map between the polyhedra of two simplicial complexes.
In what follows, we shall describe a simplicial map using the
representation that is most appropriate in the given context.
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4.5. Simplicial Approximations

Definition

Let f : |K | → |L| be a continuous map between the polyhedra of
simplicial complexes K and L. A simplicial map s : K → L is said
to be a simplicial approximation to f if, for each x ∈ |K |, s(x) is
an element of the unique simplex of L which contains f (x) in its
interior.

Definition

Let X and Y be subsets of Euclidean spaces. Continuous maps
f : X → Y and g : X → Y from X to Y are said to be homotopic
if there exists a continuous map H : X × [0, 1] → Y such that
H(x , 0) = f (x) and H(x , 1) = g(x) for all x ∈ X .



4. Simplicial Complexes (continued)

Lemma 4.10

Let K and L be simplicial complexes, let f : |K | → |L| be a
continuous map between the polyhedra of K and L, and let
s : K → L be a simplicial approximation to the map f . Then there
is a well-defined homotopy H : |K | × [0, 1] → |L|, between the
maps f and s, where

H(x, t) = (1− t)f (x) + ts(x)

for all x ∈ |K | and t ∈ [0, 1].
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Proof
Let x ∈ |K |. Then there is a unique simplex σ of L such that the
point f (x) belongs to the interior of σ. Then s(x) ∈ σ. But, given
any two points of a simplex embedded in some Euclidean space,
the line segment joining those two points is contained within the
simplex. It follows that (1− t)f (x) + ts(x) ∈ |L| for all x ∈ K and
t ∈ [0, 1]. Thus the homotopy H : |K | × [0, 1] → |L| is a
well-defined map from |K | × [0, 1] to |L|. Moreover it follows
directly from the definition of this map that H(x, 0) = f (x) and
H(x, 1) = s(x) for all x ∈ |K | and t ∈ [0, 1]. The map H is thus a
homotopy between the maps f and s, as required.
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Definition

Let K be a simplicial complex, and let x ∈ |K |. The star
neighbourhood stK (x) of x in K is the union of the interiors of all
simplices of K that contain the point x.

Lemma 4.11

Let K be a simplicial complex and let x ∈ |K |. Then the star
neighbourhood stK (x) of x is open in |K |, and x ∈ stK (x).
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Proof
Every point of |K | belongs to the interior of a unique simplex of K
(Proposition 4.2). It follows that the complement |K | \ stK (x) of
stK (x) in |K | is the union of the interiors of those simplices of K
that do not contain the point x. But if a simplex of K does not
contain the point x, then the same is true of its faces. Moreover
the union of the interiors of all the faces of some simplex is the
simplex itself. It follows that |K | \ stK (x) is the union of all
simplices of K that do not contain the point x. But each simplex
of K is closed in |K |. It follows that |K | \ stK (x) is a finite union
of closed sets, and is thus itself closed in |K |. We deduce that
stK (x) is open in |K |. Also x ∈ stK (x), since x belongs to the
interior of at least one simplex of K .
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Proposition 4.12

A function s : VertK → Vert L between the vertex sets of
simplicial complexes K and L is a simplicial map, and a simplicial
approximation to some continuous map f : |K | → |L|, if and only if
f (stK (v)) ⊂ stL (s(v)) for all vertices v of K.

Proof
Let s : K → L be a simplicial approximation to f : |K | → |L|, let v
be a vertex of K , and let x ∈ stK (v). Then x and f (x) belong to
the interiors of unique simplices σ ∈ K and τ ∈ L. Moreover v
must be a vertex of σ, by definition of stK (v). Now s(x) must
belong to τ (since s is a simplicial approximation to the map f ),
and therefore s(x) must belong to the interior of some face of τ .
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But s(x) must belong to the interior of s(σ), because x is in the
interior of σ (see Corollary 4.9). It follows that s(σ) must be a
face of τ , and therefore s(v) must be a vertex of τ . Thus
f (x) ∈ stL(s(v)). We conclude that if s : K → L is a simplicial
approximation to f : |K | → |L|, then f (stK (v)) ⊂ stL (s(v)).
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Conversely let s : VertK → Vert L be a function with the property
that f (stK (v)) ⊂ stL (s(v)) for all vertices v of K . Let x be a
point in the interior of some simplex of K with vertices
v0, v1, . . . , vq. Then x ∈ stK (vj) and hence f (x) ∈ stL (s(vj)) for
j = 0, 1, . . . , q. It follows that each vertex s(vj) must be a vertex
of the unique simplex τ ∈ L that contains f (x) in its interior. In
particular, s(v0), s(v1), . . . , s(vq) span a face of τ , and s(x) ∈ τ .
We conclude that the function s : VertK → Vert L represents a
simplicial map which is a simplicial approximation to f : |K | → |L|,
as required.
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Corollary 4.13

If s : K → L and t : L → M are simplicial approximations to
continuous maps f : |K | → |L| and g : |L| → |M|, where K, L and
M are simplicial complexes, then t ◦ s : K → M is a simplicial
approximation to g ◦ f : |K | → |M|.



4. Simplicial Complexes (continued)

4.6. The Simplicial Approximation Theorem

Theorem 4.14

(Simplicial Approximation Theorem) Let K and L be simplicial
complexes, and let f : |K | → |L| be a continuous map. Then, for
some sufficiently large integer j , there exists a simplicial
approximation s : K (j) → L to f defined on the jth barycentric
subdivision K (j) of K.



4. Simplicial Complexes (continued)

Proof
The collection consisting of the stars stL(w) of all vertices w of L
is an open cover of |L|, since each star stL(w) is open in |L|
(Lemma 4.11) and the interior of any simplex of L is contained in
stL(w) whenever w is a vertex of that simplex. It follows from the
continuity of the map f : |K | → |L| that the collection consisting of
the preimages f −1(stL(w)) of the stars of all vertices w of L is an
open cover of |K |.



4. Simplicial Complexes (continued)

Now the set |K | is a closed bounded subset of a Euclidean space.
It follows that there exists a Lebesgue number δL for the open
cover consisting of the preimages of the stars of all the vertices of
L (see Proposition 1.19). This Lebesgue number δL is a positive
real number with the following property: every subset of |K | whose
diameter is less than δL is contained in the preimage of the star of
some vertex w of L. It follows that every subset of |K | whose
diameter is less than δL is mapped by f into stL(w) for some
vertex w of L.



4. Simplicial Complexes (continued)

Now the mesh µ(K (j)) of the jth barycentric subdivision of K
tends to zero as j → +∞ (see Lemma 4.6). Thus we can choose j
such that µ(K (j)) < 1

2δL. If v is a vertex of K (j) then each point of
stK (j)(v) is within a distance 1

2δL of v, and hence the diameter of
stK (j)(v) is at most δL. We can therefore choose, for each vertex v
of K (j) a vertex s(v) of L such that f (stK (j)(v)) ⊂ stL(s(v)). In
this way we obtain a function s : VertK (j) → Vert L from the
vertices of K (j) to the vertices of L. It follows directly from
Proposition 4.12 that this is the desired simplicial approximation
to f .
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