
MAU34804—Fixed Point Theorems and
Economic Equilibria

School of Mathematics, Trinity College
Hilary Term 2024

Section 3: Simplices and Convexity

David R. Wilkins
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3. Simplices and Convexity

3.1. Affine Independence

Definition

Points v0, v1, . . . , vq in some Euclidean space Rk are said to be
affinely independent (or geometrically independent) if the only
solution of the linear system

q∑
j=0

sjvj = 0,

q∑
j=0

sj = 0

is the trivial solution s0 = s1 = · · · = sq = 0.
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Lemma 3.1

Let v0, v1, . . . , vq be points of Euclidean space Rk of dimension k.
Then the points v0, v1, . . . , vq are affinely independent if and only
if the displacement vectors v1 − v0, v2 − v0, . . . , vq − v0 are linearly
independent.
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Proof
Suppose that the points v0, v1, . . . , vq are affinely independent.
Let s1, s2, . . . , sq be real numbers which satisfy the equation

q∑
j=1

sj(vj − v0) = 0.

Then
q∑

j=0
sjvj = 0 and

q∑
j=0

sj = 0, where s0 = −
q∑

j=1
sj , and therefore

s0 = s1 = · · · = sq = 0.

It follows that the displacement vectors
v1 − v0, v2 − v0, . . . , vq − v0 are linearly independent.
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Conversely, suppose that these displacement vectors are linearly
independent. Let s0, s1, s2, . . . , sq be real numbers which satisfy

the equations
q∑

j=0
sjvj = 0 and

q∑
j=0

sj = 0. Then s0 = −
q∑

j=1
sj , and

therefore

0 =

q∑
j=0

sjvj = s0v0 +

q∑
j=1

sjvj =

q∑
j=1

sj(vj − v0).

It follows from the linear independence of the displacement vectors
vj − v0 for j = 1, 2, . . . , q that

s1 = s2 = · · · = sq = 0.

But then s0 = 0 also, because s0 = −
q∑

j=1
sj . It follows that the

points v0, v1, . . . , vq are affinely independent, as required.
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It follows from Lemma 3.1 that any set of affinely independent
points in Rk has at most k + 1 elements. Moreover if a set
consists of affinely independent points in Rk , then so does every
subset of that set.
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3.2. Simplices in Euclidean Spaces

Definition

A q-simplex in Rk is defined to be a set of the form
q∑

j=0

tjvj : 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q and

q∑
j=0

tj = 1

 ,

where v0, v1, . . . , vq are affinely independent points of Rk . These
points are referred to as the vertices of the simplex. The
non-negative integer q is referred to as the dimension of the
simplex. (Thus a simplex of dimension q has q + 1 vertices.)
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Example
A 0-simplex in a Euclidean space Rk is a single point of that space.

Example
A 1-simplex in a Euclidean space Rk of dimension at least one is a
line segment in that space. Indeed let λ be a 1-simplex in Rk with
vertices v and w. Then

λ = {s v + t w : 0 ≤ s ≤ 1, 0 ≤ t ≤ 1 and s + t = 1}
= {(1− t)v + t w : 0 ≤ t ≤ 1},

and thus λ is a line segment in Rk with endpoints v and w.
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Example
A 2-simplex in a Euclidean space Rk of dimension at least two is a
triangle in that space. Indeed let τ be a 2-simplex in Rk with
vertices u, v and w. Then

τ = {r u+ s v + t w : 0 ≤ r , s, t ≤ 1 and r + s + t = 1}.

Let x ∈ τ . Then there exist r , s, t ∈ [0, 1] such that
x = r u+ s v + t w and r + s + t = 1. If r = 1 then x = u.
Suppose that r < 1. Then

x = r u+ (1− r)
(
(1− p)v + pw

)
where p =

t

1− r
. Moreover 0 ≤ r < 1 and 0 ≤ p ≤ 1. Also the

above formula determines a point of the 2-simplex τ for each pair
of real numbers r and p satisfying 0 ≤ r ≤ 1 and 0 ≤ p ≤ 1.
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Thus

τ =
{
r u+ (1− r)

(
(1− p)v + pw

)
: 0 ≤ p, r ≤ 1.

}
.

Now the point (1− p)v + pw traverses the line segment vw from
v to w as p increases from 0 to 1. It follows that τ is the set of
points that lie on line segments with one endpoint at u and the
other at some point of the line segment vw. This set of points is
thus a triangle with vertices u, v and w.
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Example
A 3-simplex in a Euclidean space Rk of dimension at least three is
a tetrahedron on that space. Indeed let x be a point of a
3-simplex σ in R3 with vertices a, b, c and d. Then there exist
non-negative real numbers s, t, u and v such that

x = s a+ t b+ u c+ v d,

and s + t + u + v = 1. These real numbers s, t, u and v all have
values between 0 and 1, and moreover 0 ≤ t ≤ 1− s,
0 ≤ u ≤ 1− s and 0 ≤ v ≤ 1− s. Suppose that x ̸= a. Then
0 ≤ s < 1 and x = s a+ (1− s)y, where

y =
t

1− s
b+

u

1− s
c+

v

1− s
d.
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Moreover y is a point of the triangle b c d, because

0 ≤ t

1− s
≤ 1, 0 ≤ u

1− s
≤ 1, 0 ≤ v

1− s
≤ 1

and
t

1− s
+

u

1− s
+

v

1− s
= 1.

It follows that the point x lies on a line segment with one endpoint
at the vertex a of the 3-simplex and the other at some point y of
the triangle b c d. Thus the 3-simplex σ has the form of a
tetrahedron (i.e., it has the form of a pyramid on a triangular base
b c d with apex a).
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A simplex of dimension q in Rk determines a subset of Rk that is a
translate of a q-dimensional vector subspace of Rk . Indeed let the
points v0, v1, . . . , vq be the vertices of a q-dimensional simplex σ
in Rk . Then these points are affinely independent. It follows from
Lemma 3.1 that the displacement vectors

v1 − v0, v2 − v0, . . . , vq − v0

are linearly independent. These vectors therefore span a
q-dimensional vector subspace V of Rk . Now, given any point x of
σ, there exist real numbers t0, t1, . . . , tq such that 0 ≤ tj ≤ 1 for

j = 0, 1, . . . , q,
q∑

j=0
tj = 1 and x =

q∑
j=0

tjvj . Then

x =

 q∑
j=0

tj

 v0 +

q∑
j=1

tj(vj − v0) = v0 +

q∑
j=1

tj(vj − v0).
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It follows that

σ =

{
v0 +

q∑
j=1

tj(vj − v0) : 0 ≤ tj ≤ 1 for j = 1, 2, . . . , q

and

q∑
j=1

tj ≤ 1

}
,

and therefore σ ⊂ v0 + V . Moreover the q-dimensional vector
subspace V of Rk is the unique q-dimensional vector subspace of
Rk that contains the displacement vectors between each pair of
points belonging to the simplex σ.
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3.3. Faces of Simplices

Definition

Let σ and τ be simplices in Rk . We say that τ is a face of σ if the
set of vertices of τ is a subset of the set of vertices of σ. A face of
σ is said to be a proper face if it is not equal to σ itself. An
r -dimensional face of σ is referred to as an r -face of σ. A
1-dimensional face of σ is referred to as an edge of σ.

Note that any simplex is a face of itself. Also the vertices and
edges of any simplex are by definition faces of the simplex.
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3.4. Barycentric Coordinates on a Simplex

Let σ be a q-simplex in Rk with vertices v0, v1, . . . , vq. If x is a
point of σ then there exist real numbers t0, t1, . . . , tq such that

q∑
j=0

tjvj = x,

q∑
j=0

tj = 1 and 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q.

Moreover t0, t1, . . . , tq are uniquely determined: if
q∑

j=0
sjvj =

q∑
j=0

tjvj and
q∑

j=0
sj =

q∑
j=0

tj = 1, then
q∑

j=0
(tj − sj)vj = 0

and
q∑

j=0
(tj − sj) = 0, and therefore tj − sj = 0 for j = 0, 1, . . . , q,

because the points v0, v1, . . . , vq are affinely independent.
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Definition

Let σ be a q-simplex in Rk with vertices v0, v1, . . . , vq, and let
x ∈ σ. The barycentric coordinates of the point x (with respect to
the vertices v0, v1, . . . , vq) are the unique real numbers
t0, t1, . . . , tq for which

q∑
j=0

tjvj = x and

q∑
j=0

tj = 1.

The barycentric coordinates t0, t1, . . . , tq of a point of a q-simplex
satisfy the inequalities 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q.
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Example
Consider the triangle τ in R3 with vertices at i, j and k, where

i = (1, 0, 0), j = (0, 1, 0) and k = (0, 0, 1).

Then

τ = {(x , y , z) ∈ R3 : 0 ≤ x , y , z ≤ 1 and x + y + z = 1}.

The barycentric coordinates on this triangle τ then coincide with
the Cartesian coordinates x , y and z , because

(x , y , z) = x i+ y j+ zk

for all (x , y , z) ∈ τ .
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Example
Consider the triangle in R2 with vertices at (0, 0), (1, 0) and (0, 1).
This triangle is the set

{(x , y) ∈ R2 : x ≥ 0, y ≥ 0 and x + y ≤ 1.}.

The barycentric coordinates of a point (x , y) of this triangle are t0,
t1 and t2, where

t0 = 1− x − y , t1 = x and t2 = y .
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Example
Consider the triangle in R2 with vertices at (1, 2), (3, 3) and (4, 5).
Let t0, t1 and t2 be the barycentric coordinates of a point (x , y) of
this triangle. Then t0, t1, t2 are non-negative real numbers, and
t0 + t1 + t2 = 1. Moreover

(x , y) = (1− t1 − t2)(1, 2) + t1(3, 3) + t2(4, 5),

and thus

x = 1 + 2t1 + 3t2 and y = 2 + t1 + 3t2.

It follows that

t1 = x − y + 1 and t2 =
1
3(x − 1− 2t1) =

2
3y − 1

3x − 1,

and therefore

t0 = 1− t1 − t2 =
1
3y − 2

3x + 1.
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In order to verify these formulae it suffices to note that
(t0, t1, t2) = (1, 0, 0) when (x , y) = (1, 2), (t0, t1, t2) = (0, 1, 0)
when (x , y) = (3, 3) and (t0, t1, t2) = (0, 0, 1) when (x , y) = (4, 5).
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3.5. The Interior of a Simplex

Definition

The interior of a simplex σ is defined to be the set consisting of all
points of σ that do not belong to any proper face of σ.

Lemma 3.2

Let σ be a q-simplex in some Euclidean space with vertices
v0, v1, . . . , vq. Let x be a point of σ, and let t0, t1, . . . , tq be the
barycentric coordinates of the point x with respect to

v0, v1, . . . , vq, so that tj ≥ 0 for j = 0, 1, . . . , q, x =
q∑

j=0
tjvj , and

q∑
j=0

tj = 1. Then the point x belongs to the interior of σ if and only

if tj > 0 for j = 0, 1, . . . , q.
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Proof
The point x belongs to the face of σ spanned by vertices

vj0 , vj1 , . . . , vjr ,

where 0 ≤ j0 < j1 < · · · < jr ≤ q, if and only if tj = 0 for all
integers j between 0 and q that do not belong to the set
{j0, j1, . . . , jr}. Thus the point x belongs to a proper face of the
simplex σ if and only if at least one of the barycentric
coordinates tj of that point is equal to zero. The result follows.
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Example
A 0-simplex consists of a single vertex v. The interior of that
0-simplex is the vertex v itself.

Example
A 1-simplex is a line segment. The interior of a line segment in a
Euclidean space Rk with endpoints v and w is

{(1− t) v + t w : 0 < t < 1}.

Thus the interior of the line segment consists of all points of the
line segement that are not endpoints of the line segment.
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Example
A 2-simplex is a triangle. The interior of a triangle with vertices u,
v and w is the set

{r u+ s v + t w : 0 < r , s, t < 1 and r + s + t = 1}.

The interior of this triangle consists of all points of the triangle
that do not lie on any edge of the triangle.
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Remark
Let σ be a q-dimensional simplex in some Euclidean space Rk ,
where k ≥ q. If k > q then the interior of the simplex (defined
according to the definition given above) will not coincide with the
topological interior determined by the usual topology on Rk .
Consider for example a triangle embedded in three-dimensional
Euclidean space R3. The interior of the triangle (defined according
to the definition given above) consists of all points of the triangle
that do not lie on any edge of the triangle. But of course no
three-dimensional ball of positive radius centred on any point of
that triangle is wholly contained within the triangle. It follows that
the topological interior of the triangle is the empty set when that
triangle is considered as a subset of three-dimensional space R3.
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Lemma 3.3

Any point of a simplex belongs to the interior of a unique face of
that simplex.

Proof
let v0, v1, . . . , vq be the vertices of a simplex σ, and let x ∈ σ.

Then x =
q∑

j=0
tjvj , where t0, t1, . . . , tq are the barycentric

coordinates of the point x. Moreover 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q

and
q∑

j=0
tj = 1. The unique face of σ containing x in its interior is

then the face spanned by those vertices vj for which tj > 0.
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3.6. Convex Subsets of Euclidean Spaces

Definition

A subset X of n-dimensional Euclidean space Rn is said to be
convex if (1− t)u+ tv ∈ X for all points u and v of X and for all
real numbers t satisfying 0 ≤ t ≤ 1.

It follows from the above definition that a subset X of R⋗ is a
convex subset of Rm if and only if, given any two points of X , the
line segment joining those two points is wholly contained in X .



3. Simplices and Convexity (continued)

Lemma 3.4

An simplex in a Euclidean space is a convex subset of that
Euclidean space.

Proof
Let σ be a q-simplex in n-dimensional Euclidean space with
vertices w0,w1, . . . ,wq, and let u and v be points of σ. Then
there exist non-negative real numbers y0, y1, . . . , yq and

z0, z1, . . . , zq, where
q∑

i=0
yi = 1 and

q∑
i=0

zi = 1, such that

u =

q∑
i=0

yiwi , v =

q∑
i=0

ziwi .

Then

(1− t)u+ tv =

q∑
i=0

((1− t)yi + tzi )wi .
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Moreover (1− t)yi + tzi ≥ 0 for i = 0, 1, . . . , q and for all real
numbers t satisfying 0 ≤ t ≤ 1. Also

q∑
i=0

((1− t)yi + tzi ) = (1− t)

q∑
i=0

yi + t

q∑
i=0

zi = 1.

It follows that (1− t)u+ tv ∈ σ. Thus σ is a convex subset of
Rn.
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Lemma 3.5

Let X be a convex subset of n-dimensional Euclidean space Rn,
and let σ be a simplex contained in Rn. Suppose that the vertices
of σ belong to X . Then σ ⊂ X.

Proof
We prove the result by induction on the dimension q of the
simplex σ. The result is clearly true when q = 0, because in that
case the simplex σ consists of a single point which is the unique
vertex of the simplex.
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Thus let σ be a q-dimensional simplex, and suppose that the result
is true for all (q − 1)-dimensional simplices whose vertices belong
to the convex set X . Let w0,w1, . . . ,wq be the vertices of σ. Let
x be a point of σ. Then there exist non-negative real numbers

t0, t1, . . . , tq satisfying
q∑

i=0
ti = 1 such that x =

q∑
i=0

tiwi . If t0 = 1

then x = w0, and therefore x ∈ X .



3. Simplices and Convexity (continued)

It remains to consider the case when t0 < 1. In that case let
si = ti/(1− t0) for i = 1, 2, . . . , q, and let

v =

q∑
i=1

siwi .

Now si ≥ 0 for i = 1, 2, . . . , q, and

q∑
i=1

si =
1

1− t0

q∑
i=1

ti =
1

1− t0

(
q∑

i=0

ti − t0

)
= 1,

It follows that v belongs to the proper face of σ that is spanned by
the vertices w1, . . . ,wq. The induction hypothesis then ensures
that v ∈ X . But then

x = t0w0 + (1− t0)v,

where w0 ∈ X and v ∈ X and 0 ≤ t0 ≤ 1. It follows from the
convexity of X that x ∈ X , as required.
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Let X be a convex set in n-dimensional Euclidean space R⋉. A
point x of X is said to belong to the topological interior of X if
there exists some δ > 0 such that B(x, δ) ⊂ X , where

B(x, δ) = {x′ ∈ Rn : |x′ − x| < δ}.
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Lemma 3.6

Let X be a convex set in n-dimensional Euclidean space Rn, and
let x = (1− t)u+ tv where u, v ∈ X and 0 < t < 1. Suppose that
either u or v belongs to the topological interior of X . Then x
belongs to the topological interior of X .

Proof
Suppose that v belongs to the topological interior of X . Then
there exists δ > 0 such that B(v, δ) ⊂ X , where

B(v, δ) = {x′ ∈ Rn : |x′ − v| < δ}.

We claim that B(x, tδ) ⊂ X .
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Let x′ ∈ B(x, tδ), and let

z =
1

t
(x′ − x).

Then v + z ∈ B(v, δ) and

x′ = (1− t)u+ t(v + z),

and therefore x′ ∈ X . This proves the result when v belongs to the
topological interior of X . The result when u belongs to the
topological interior of X then follows on interchanging u and v and
replacing t by 1− t. The result follows.
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Proposition 3.7

Let X be a closed bounded convex subset of n-dimensional
Euclidean space Rn whose topological interior contains the origin,
let Sn−1 be the unit sphere in Rn, defined such that

Sn−1 = {u ∈ Rn : |u| = 1},

and let λ : Sn−1 → R be the real-valued function on Sn−1 defined
such that

λ(u) = sup{t ∈ R : tu ∈ X}

for all u ∈ Sn−1. Then the function λ : Sn−1 → R is continuous.
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Proof
Let u0 ∈ Sn−1, let t0 = λ(u0), and let some positive real number ε
be given, where 0 < ε < t0. It follows from Lemma 3.6 that
(t0 − ε)u0 belongs to the topological interior of X . It then follows
from the continuity of the function sending u ∈ Sn−1 to (t0 − ε)u
that there exists some positive real number δ1 such that
(t0 − ε)u ∈ X for all u ∈ Sn−1 satisfying |u− u0| < δ1. Therefore
λ(u) ≥ t0 − ε whenever |u− u0| < δ1.



3. Simplices and Convexity (continued)

Next we note that (t0 + ε)u0 ̸∈ X . Now X is closed in Rn, and
therefore the complement Rn \ X of X in Rn is open. It follows
that there exists an open ball of positive radius about the point
(t0 + ε)u0 that is wholly contained in the complement of X . It
then follows from the continuity of the function sending u ∈ Sn−1

to (t0 + ε)u that there exists some positive real number δ2 such
that (t0 + ε)u ̸∈ X for all u ∈ Sn−1 satisfying |u− u0| < δ2. It
then follows from the convexity of X that tu ̸∈ X for all positive
real numbers t satisfying t ≥ t0 + ε. Therefore λ(u) ≤ t0 + ε
whenever |u− u0| < δ2. Let δ be the minimum of δ1 and δ2. Then
δ > 0, and

λ(u0)− ε ≤ λ(u) ≤ λ(u0) + ε

for all u ∈ Sn−1 satisfying |u− u0| < δ. The result follows.
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Proposition 3.8

Let X be a closed bounded convex subset of n-dimensional
Euclidean space Rn. Then there exists a continuous map
r : Rn → X such that r(Rn) = X and r(x) = x for all x ∈ X.

Proof
We first prove the result in the special case in which the convex
set X has non-empty topological interior. Without loss of
generality, we may assume that the origin of Rn belongs to the
topological interior of X . Let

Sn−1 = {u ∈ Rn : |u| = 1},
and let λ : Sn−1 → R be the real-valued function on Sn−1 defined
such that

λ(u) = sup{t ∈ R : tu ∈ X}
for all u ∈ Sn−1. Then the function λ : Sn−1 → R is continuous
(Proposition 3.7).
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We may therefore define a function r : Rn → X such that

r(x) =

{
x if x ∈ X ;
|x|−1λ(|x|−1x)x if x ̸∈ X .

Let x ∈ X and let u = |x|−1x. Then x = |x|u, |x| ≤ λ(u) and
λ(u)u ∈ X . It follows from Lemma 3.6 that if |x| < λ(u) then the
point x belongs to the topological interior of u. Thus if the point x
of X belongs to the closure of the complement Rn \X of X then it
does not belong to the topological interior of X , and therefore
|x| = λ(|x|−1x), and therefore

x = |x|−1λ(|x|−1x)x.
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The function r defined above is therefore continuous on the closure
of Rn \ X . It is obviously continuous on X itself. It follows that
r : Rn → X is continuous. This proves the result in the case when
the topological interior of the set X is non-empty.
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We now extend the result to the case where the topological interior
of X is empty. Now the number of points in an affinely
independent list of points of Rn cannot exceed n + 1. It follows
that there exists an integer q not exceeding n such that the convex
set X contains a q + 1 affinely independent points but does not
contain q + 2 affinely independent points. Let w0,w1, . . . ,wq be
affinely independent points of X . Let V be the q-dimensional
subspace of Rn spanned by the vectors

w1 −w0,w2 −w0, . . . ,wq −w0.

Now if there were to exist a point x of X for which x−w0 ̸∈ V
then the points w0,w1, . . . ,wq, x would be affinely independent.
The definition of q ensures that this is not the case. Thus if

XV = {x−w0 : x ∈ X}.

then XV ⊂ V . Moreover XV is a closed convex subset of V .
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Now it follows from Lemma 3.5 that the convex set XV contains
the q-simplex with vertices

0, w1 −w0, w2 −w0, . . . wq −w0.

This q-simplex has non-empty topological interior with respect to
the vector space V . It follows that XV has non-empty topological
interior with respect to V . It therefore follows from the result
already proved that there exists a continuous function
rV : V → XV that satisfies rV (x) = x for all x ∈ XV . Basic linear
algebra ensures the existence of a linear transformation
T : Rn → V satisfying T (x) = x for all x ∈ V . Let

r(x) = rV (T (x−w0)) +w0

for all x ∈ Rn. Then the function r : Rn → X is continuous, and
r(x) = x for all x ∈ X , as required.
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3.7. Convex Sets and Supporting Hyperplanes

Lemma 3.9

Let m be a positive integer, let F be a non-empty closed set in
Rm, and let b be a vector in Rm. Then there exists an element g
of F such that |x− b| ≥ |g − b| for all x ∈ F .

Proof
Let R be a positive real number chosen large enough to ensure
that the set F0 is non-empty, where

F0 = F ∩ {x ∈ Rm : |x− b| ≤ R}.

Then F0 is a closed bounded subset of Rm. Let f : F0 → R be
defined such that f (x) = |x− b| for all x ∈ F . Then f : F0 → R is
a continuous function on F0.



3. Simplices and Convexity (continued)

Now it is a standard result of real analysis that any continuous
real-valued function on a closed bounded subset of a
finite-dimensional Euclidean space attains a minimum value at
some point of that set. It follows that there exists an element g of
F0 such that

|x− b| ≥ |g − b|

for all x ∈ F0. If x ∈ F \ F0 then

|x− b| ≥ R ≥ |g − b|.

It follows that
|x− b| ≥ |g − b|

for all x ∈ F , as required.



3. Simplices and Convexity (continued)

3.8. A Separating Hyperplane Theorem

Theorem 3.10

Let m be a positive integer, let X be a non-empty closed convex
set in Rm, and let b be point of Rm, where b ̸∈ X. Then there
exists a linear functional φ : Rm → R and a real number c such
that φ(x) > c for all x ∈ X and φ(b) < c.

Proof
It follows from Lemma 3.9 that there exists a point g of X such
that |x− b| ≥ |g − b| for all x ∈ X . Let x ∈ X . Then
(1− t)g + tx ∈ X for all real numbers t satisfying 0 ≤ t ≤ 1,
because the set X is convex, and therefore

|(1− t)g + tx− b| ≥ |g − b|

for all real numbers t satisfying 0 ≤ t ≤ 1.



3. Simplices and Convexity (continued)

Now
(1− t)g + tx− b = g − b+ t(x− g).

It follows by a straightforward calculation from the definition of the
Euclidean norm that

|g − b|2 ≤ |(1− t)g + tx− b|2

= |g − b|2 + 2t(g − b) . (x− g)

+ t2|x− g|2

for all real numbers t satisfying 0 ≤ t ≤ 1. In particular, this
inequality holds for all sufficiently small positive values of t, and
therefore

(g − b) . (x− g) ≥ 0

for all x ∈ X .



3. Simplices and Convexity (continued)

Let
φ(x) = (g − b) . x

for all x ∈ Rm. Then φ : Rm → R is a linear functional on Rm, and
φ(x) ≥ φ(g) for all x ∈ X . Moreover

φ(g)− φ(b) = |g − b|2 > 0,

and therefore φ(g) > φ(b). It follows that φ(x) > c for all x ∈ X ,
where c = 1

2φ(b) +
1
2φ(g), and that φ(b) < c . The result

follows.



3. Simplices and Convexity (continued)

Let X be a subset of n-dimensional Euclidean space Rn. A point b
lies on the boundary of X if every open ball of positive radius
centred on the point b intersects both the set X itself and the
complement Rn \ X of X in Rn.
If a subset X of Rn is open in Rn then every point belonging to
the boundary of the set X belongs to the complement of X . If the
subset X of Rm is closed in Rm then every point belonging to the
boundary of the set X belongs to the set X itself.



3. Simplices and Convexity (continued)

Theorem 3.11 (Supporting Hyperplane Theorem)

Let m be a positive integer, let X be a non-empty closed convex
set in Rm, and let b be point of Rm that belongs to the boundary
of the closed convex set X . Then there exists a linear functional
φ : Rm → R and a real number c such that φ(x) ≥ c for all x ∈ X
and φ(b) = c.

Proof
We may assume without loss of generality, that b = (0, 0, . . . , 0).
We must then prove the existence of a linear functional
φ : Rm → R with the property that φ(x) ≥ 0 for all x ∈ X .



3. Simplices and Convexity (continued)

Now, because the b is located on the boundary of the set X , there
exists an infinite sequence b1,b2,b3, . . . of points of the
complement Rm \ X of the set X that converges to b. It follows
from basic linear algebra that, given any linear functional
ψ : Rm → R on Rm, there exists a vector w in Rm such that
ψ(x) = w . x for all x ∈ Rm. It therefore follows from
Theorem 3.10, that there exists an infinite sequence v1, v2, v3, . . .
of non-zero vectors in Rm such that vj . bj < 0 and vj . x ≥ 0 for all
x ∈ X . We may assume, without loss of generality, that |vj | = 1
for all positive integers j .



3. Simplices and Convexity (continued)

It follows from the Bolzano-Weierstrass Theorem (Theorem 1.2)
that the infinite sequence v1, v2, v3, . . . has a convergent
subsequence vk1 , vk2 , vk3 , . . ., where

k1 < k2 < k3 < · · · .

Let v = lim
j→+∞

vkj . Then |v| = 1. Let φ(x) = v . x for all x ∈ Rm.

Then
φ(x) = lim

j→+∞
vkj . x ≥ 0

for all x ∈ X . The result follows.
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