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5. Fixed Point Theorems

5.1. Sperner’s Lemma

Definition

Let K be a simplicial complex which is a subdivision of some
n-dimensional simplex ∆. We define a Sperner labelling of the
vertices of K to be a function, labelling each vertex of K with an
integer between 0 and n, with the following properties:—

for each j ∈ {0, 1, . . . , n}, there is exactly one vertex of ∆
labelled by j ,

if a vertex v of K belongs to some face of ∆, then some
vertex of that face has the same label as v.
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Lemma 5.1 (Sperner’s Lemma)

Let K be a simplicial complex which is a subdivision of an
n-simplex ∆. Then, for any Sperner labelling of the vertices of K,
the number of n-simplices of K whose vertices are labelled by
0, 1, . . . , n is odd.

Proof
Given integers i0, i1, . . . , iq between 0 and n, let N(i0, i1, . . . , iq)
denote the number of q-simplices of K whose vertices are labelled
by i0, i1, . . . , iq (where an integer occurring k times in the list
labels exactly k vertices of the simplex). We must show that
N(0, 1, . . . , n) is odd.
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We prove the result by induction on the dimension n of the
simplex ∆; it is clearly true when n = 0. Suppose that the result
holds in dimensions less than n. For each simplex σ of K of
dimension n, let p(σ) denote the number of (n − 1)-faces of σ
labelled by 0, 1, . . . , n − 1. If σ is labelled by 0, 1, . . . , n then
p(σ) = 1; if σ is labelled by 0, 1, . . . , n − 1, j , where j < n, then
p(σ) = 2; in all other cases p(σ) = 0. Therefore

∑
σ∈K

dimσ=n

p(σ) = N(0, 1, . . . , n) + 2
n−1∑
j=0

N(0, 1, . . . , n − 1, j).

Now the definition of Sperner labellings ensures that the only
(n − 1)-face of ∆ containing simplices of K labelled by
0, 1, . . . , n − 1 is that with vertices labelled by 0, 1, . . . , n − 1.
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Thus if M is the number of (n − 1)-simplices of K labelled by
0, 1, . . . , n − 1 that are contained in this face, then
N(0, 1, . . . , n − 1)−M is the number of (n − 1)-simplices labelled
by 0, 1, . . . , n − 1 that intersect the interior of ∆. It follows that∑

σ∈K
dimσ=n

p(σ) = M + 2
(
N(0, 1, . . . , n − 1)−M

)
,

since any (n− 1)-simplex of K that is contained in a proper face of
∆ must be a face of exactly one n-simplex of K , and any
(n − 1)-simplex that intersects the interior of ∆ must be a face of
exactly two n-simplices of K . On combining these equalities, we
see that N(0, 1, . . . , n)−M is an even integer. But the induction
hypothesis ensures that Sperner’s Lemma holds in dimension n− 1,
and thus M is odd. It follows that N(0, 1, . . . , n) is odd, as
required.
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5.2. Proof of Brouwer’s Fixed Point Theorem

Proposition 5.2

Let ∆ be an n-simplex with boundary ∂∆. Then there does not
exist any continuous map r : ∆ → ∂∆ with the property that
r(x) = x for all x ∈ ∂∆.

Proof
Suppose that such a map r : ∆ → ∂∆ were to exist. It would then
follow from the Simplicial Approximation Theorem (Theorem 4.14)
that there would exist a simplicial approximation s : K → L to the
map r , where L is the simplicial complex consisting of all of the
proper faces of ∆, and K is the jth barycentric subdivision, for
some sufficiently large j , of the simplicial complex consisting of the
simplex ∆ together with all of its faces.
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If v is a vertex of K belonging to some proper face Σ of ∆ then
r(v) = v, and hence s(v) must be a vertex of Σ, since s : K → L is
a simplicial approximation to r : ∆ → ∂∆. In particular s(v) = v
for all vertices v of ∆. Thus if v 7→ m(v) is a labelling of the
vertices of ∆ by the integers 0, 1, . . . , n, then v 7→ m(s(v)) is a
Sperner labelling of the vertices of K . Thus Sperner’s Lemma
(Lemma 5.1) guarantees the existence of at least one n-simplex σ
of K labelled by 0, 1, . . . , n. But then s(σ) = ∆, which is
impossible, since ∆ is not a simplex of L. We conclude therefore
that there cannot exist any continuous map r : ∆ → ∂∆ satisfying
r(x) = x for all x ∈ ∂∆.
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Theorem 5.3 (Brouwer Fixed Point Theorem)

(Brouwer Fixed Point Theorem) Let X be a subset of a Euclidean
space that is homeomorphic to the closed n-dimensional ball En,
where

En = {x ∈ Rn : |x| ≤ 1}.

Then any continuous function f : X → X mapping the set X into
itself has at least one fixed point x∗ for which f (x∗) = x∗.
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Proof
The closed n-dimensional ball En is itself homeomorphic to an
n-dimensional simplex ∆. Therefore there exists a homeomorphism
h : X → ∆ mapping the set X onto the simplex ∆. Then the
continuous map f : X → X determines a continuous map
g : ∆ → ∆, where g(h(x)) = h(f (x)) for all x ∈ X . Suppose that
it were the case that f (x) ̸= x for all x ∈ X . Then g(z) ̸= z for all
z ∈ ∆. There would then exist a well-defined continuous map
r : ∆ → ∂∆ mapping each point z of ∆ to the unique point r(z)
of the boundary ∂∆ of ∆ at which the half line starting at g(z)
and passing through z intersects ∂∆. Then r : ∆ → ∂∆ would be
continuous, and r(z) = z for all z ∈ ∂∆. However Proposition 5.2
guarantees that there does not exist any continuous
map r : ∆ → ∂∆ with these properties. Therefore the map f must
have at least one fixed point, as required.
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5.3. The Kakutani Fixed Point Theorem

Theorem 5.4 (Kakutani’s Fixed Point Theorem)

Let X be a non-empty, compact and convex subset of
n-dimensional Euclidean space Rn, and let Φ: X ⇒ X be a
correspondence mapping X into itself. Suppose that the graph of
the correspondence Φ is closed and that Φ(x) is non-empty and
convex for all x ∈ X. Then there exists a point x∗ of X that
satisfies x∗ ∈ Φ(x∗).
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Proof
There exists a continuous map r : Rn → X from Rn to X with the
property that r(x) = x for all x ∈ X . (see Proposition 3.8). Let ∆
be an n-dimensional simplex chosen such that X ⊂ ∆, and let
Ψ(x) = Φ(r(x)) for all x ∈ ∆. If x∗ ∈ ∆ satisfies x∗ ∈ Ψ(x∗) then
x∗ ∈ X and r(x∗) = x∗, and therefore x ∈ Φ(x∗). It follows that
the result in the general case follows from that in the special case
in which the closed bounded convex subset X of Rn is an
n-dimensional simplex.

Thus let ∆ be an n-dimensional simplex contained in Rn, and let
Φ: ∆ ⇒ ∆ be a correspondence with closed graph, where Φ(x) is
a non-empty closed convex subset of ∆ for all x ∈ X . We must
prove that there exists some point x∗ of ∆ with the property that
x∗ ∈ Φ(x∗).
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Let K be the simplicial complex consisting of the n-simplex ∆
together with all its faces, and let K (j) be the jth barycentric
subdivision of K for all positive integers j . Then |K (j)| = ∆ for all
positive integers j . Now Φ(v) is non-empty for all vertices v of
K (j). Now any function mapping the vertices of a simplicial
complex into a Euclidean space extends uniquely to a piecewise
linear map defined over the polyhedron of that simplicial complex
(Proposition 4.8). Therefore there exists a sequence f1, f2, f3, . . . of
continuous functions mapping the simplex ∆ into itself such that,
for each positive integer j , the continuous map fj : ∆ → ∆ is
piecewise linear on the simplices of K (j) and satisfies fj(v) ∈ Φ(v)
for all vertices v of K (j).
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Now it follows from the Brouwer Fixed Point Theorem
(Theorem 5.3) that, for each positive integer j , there exists zj ∈ ∆
for which fj(zj) = zj . For each positive integer j , there exist
vertices

v0,j , v1,j , . . . , vn,j

of K (j) spanning a simplex of K and non-negative real numbers

t0,j , t1,j , . . . , tn,j satisfying
n∑

i=0
ti ,j = 1 such that

zj =
n∑

i=0

ti ,jvi ,j

for all positive integers j . Let yi ,j = fj(vi ,j) for i = 0, 1, . . . , n and
for all positive integers j . Then yi ,j ∈ Φ(vi ,j) for i = 0, 1, . . . , n and
for all positive integers j .
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The function fj is piecewise linear on the simplices of K (j). It
follows that

n∑
i=0

ti ,jvi ,j = zj = fj(zj) = fj

(
n∑

i=0

ti ,jvi ,j

)

=
n∑

i=0

ti ,j fj(vi ,j) =
n∑

i=0

ti ,jyi ,j

for all positive integers j . Also |vi ,j − v0,j | ≤ µ(K (j)) for
i = 0, 1, . . . , n and for all positive integers j , where µ(K (j)) denotes
the mesh of the simplicial complex K (j) (i.e., the length of the
longest side of that simplicial complex). Moreover µ(K (j)) → 0 as
j → +∞ (see Lemma 4.6). It follows that

lim
j→+∞

|vi ,j − v0,j | = 0.
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Now the multidimensional Bolzano-Weierstrass Theorem
(Theorem 1.2) ensures the existence of points

x∗, y0, y1, . . . , yn

of the simplex ∆, non-negative real numbers t0, t1, . . . , tn and an
infinite sequence m1,m2,m3, . . . of positive integers, where

m1 < m2 < m3 < · · · ,

such that

x∗ = lim
j→+∞

v0,mj ,

yi = lim
j→+∞

yi ,mj
(0 ≤ i ≤ n),

ti = lim
j→+∞

ti ,mj
(0 ≤ i ≤ n).
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Now
|vi ,mj

− x∗| ≤ |vi ,mj
− v0,mj |+ |v0,mj − x∗|

for i = 0, 1, . . . , n and for all positive integers j . Moreover
lim

j→+∞
|vi ,mj

− v0,mj | = 0 and lim
j→+∞

|v0,mj − x∗| = 0. It follows that

lim
j→+∞

vi ,mj
= x∗ for i = 0, 1, . . . , n. Also

n∑
i=0

ti = lim
j→+∞

(
n∑

i=0

ti ,mj

)
= 1.

It follows that

lim
j→+∞

(
n∑

i=0

ti ,mj
vi ,mj

)
=

n∑
i=0

(
lim

j→+∞
ti ,mj

)(
lim

j→+∞
vi ,mj

)

=
n∑

i=0

tix
∗ = x∗.
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But we have also shown that
n∑

i=0
ti ,jyi ,j =

n∑
i=0

ti ,jvi ,j for all positive

integers j . It follows that

n∑
i=0

tiyi = lim
j→+∞

(
n∑

i=0

ti ,mj
yi ,mj

)
= lim

j→+∞

(
n∑

i=0

ti ,mj
vi ,mj

)
= x∗.
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Next we show that yi ∈ Φ(x∗) for i = 0, 1, . . . , n. Now

(vi ,mj
, yi ,mj

) ∈ Graph(Φ)

for all positive integers j , and the graph Graph(Φ) of the
correspondence Φ is closed. It follows that

(x∗, yi ) = lim
j→+∞

(vi ,mj
, yi ,mj

) ∈ Graph(Φ)

and thus yi ∈ Φ(x∗) for i = 0, 1, . . . ,m (see Proposition 2.6).
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It follows from the convexity of Φ(x∗) that

n∑
i=0

tiyi ∈ Φ(x∗).

(see Lemma 3.5). But
n∑

i=0
tiyi = x∗. It follows that x∗ ∈ Φ(x∗), as

required.
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