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2. Correspondences and Hemicontinuity

2.1. Correspondences

Let X and Y be subsets of R” and R™ respectively. A
correspondence ®: X =3 Y assigns to each point x of X a subset
®(x) of Y.

The power set P(Y) of Y is the set whose elements are the
subsets of Y. A correspondence ®: X = Y may be regarded as a
function from X to P(Y).
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Let X and Y be subsets of R” and R respectively, and let
®: X 2 Y be a correspondence from X to Y. Then the following
definitions apply:—
@ the correspondence ¢: X — Y is said to be non-empty-valued
if ®(x) is a non-empty subset of Y for all x € X;

@ the correspondence ®: X — Y is said to be closed-valued if
®(x) is a closed subset of Y for all x € X;

@ the correspondence ®: X — Y is said to be compact-valued if
®(x) is a compact subset of Y for all x € X.

The multidimensional Heine-Borel Theorem (Theorem 1.21)
ensures that the correspondence ®: X — Y is compact-valued if
and only if ®(x) is a closed bounded subset of R™ for all x € X.
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Definition

Let X and Y be subsets of R” and R™ respectively. A
correspondence ®: X == Y is said to be upper hemicontinuous at
a point p of X if, given any set V in Y that is open in Y and
satisfies ®(p) C V/, there exists some positive real number § such
that ®(x) C V for all x € X satisfying |x — p| < d. The
correspondence @ is upper hemicontinuous on X if it is upper
hemicontinuous at each point of X.

.




2. Correspondences and Hemicontinuity (continued)

Example
Let F: R =R and G: R = R be the correspondences from R to
R defined such that

[ [L,2] ifx<0,
F(X)_{ [0,3] if x>0,

and
[1,2] ifx <0,

a”:{mﬂiu>a

The correspondences F and G are upper hemicontinuous at x for

all non-zero real numbers x. The correspondence F is also upper

hemicontinuous at 0, for if V is an open set in R and if F(0) C V
then [0, 3] C V and therefore F(x) € V for all real numbers x.
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However the correspondence G is not upper hemicontinuous at O.
Indeed let

V={yeR:3<y<3}
Then G(0) C V, but G(x) is not contained in V for any positive

real number x. Therefore there cannot exist any positive real
number § such that G(x) C V whenever |x| < .

Let

Graph(F) = {(x,y) € R? : y € F(x)}
and

Graph(G) = {(x,y) € R? : y € G(x)}.

Then Graph(F) is a closed subset of R? but Graph(G) is not a
closed subset of R?.
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Example
Let ST be the unit circle in R2, defined such that

St ={(u,v) eRZ: 1?2 +v? =1},

let Z be the closed square with corners at (1,1), (-1,1), (-1,—1)
and (1,—1), so that

Z={(x,y)eR*: -1<x<1land —1<y<1}.
Let g(u,v): R? — R be defined for all (u,v) € S! such that
8uw) (X, ) = ux + vy,

and let ®: S = R2? be defined such that, for all (u,v) € S1,
®(u, v) is the subset of R? consisting of the point or points of Z at
which the linear functional g, ) attains its maximum value on Z.
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Thus a point (x,y) of Z belongs to ®(u, v) if and only if
8(uv) (X, ¥) Z 8u) (X', y') for all (x',y') € Z. Then

{(1,1)} if u>0andv>0;

{(x,1): =1<x<1} ifu=0andv >0;

{(-1,1)} if u<0andv>0;
{(-1,y):—1<y <1} ifu<Oandv=0;

P(wv) =93 {(-1.-1) if u<0andv<0;
{(x,-1): =1<x<1} ifu=0and v <O0;

{(1,-1)} if u>0and v <O0;

( {(1,y):-1<y <1} ifu>0andv=0.

It is a straightforward exercise to verify that the correspondence
¢: ST = R? is upper hemicontinuous.
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Let X and Y be subsets of R” and R™ respectively, and let
®: X =2 Y be a correspondence between X and Y. Given any
subset V of Y, we denote by ®* (V) the subset of X defined such

that
dT(V)={xe X:d(x)c V5.
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Let X and Y be subsets of R" and R™ respectively. A
correspondence ®: X =2 Y is upper hemicontinuous on X if and
only if, given any set V in Y that is open in Y, the set ®+ (V) is
open in X.

Proof

First suppose that ®: X == Y is upper hemicontinuous at each
point of X. Let V be an open set in Y and let p € ®*(V). Then
®(p) C V. It then follows from the definition of upper
hemicontinuity that there exists some positive real number § such
that ®(x) C V for all x € X satisfying |x — p| < J. But then

x € dT(V) for all x € X satisfying [x — p| < J. It follows that
d*(V) is open in X.
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Conversely suppose that ¢: X == Y is a correspondence with the
property that, for all subsets V of Y that are open in Y, &+ (V) is
open in X. Let p € X, and let V be an open set in Y satisfying
®(p) C V. Then (V) is open in X and p € &+ (V), and
therefore there exists some positive number § such that

{xeX:|x—p| <} CcodT(V).

Then ®(x) C V for all x € X satisfying [x — p| < J. Thus
®: X = Y is upper hemicontinuous at p. The result follows. |}
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Definition

Let X and Y be subsets of R” and R™ respectively. A
correspondence ®: X = Y is said to be lower hemicontinuous at a
point p of X if, given any set V in Y that is open in Y and
satisfies ®(p) N V # (), there exists some positive real number &
such that ®(x) NV # 0 for all x € X satisfying [x — p| < 4. The
correspondence @ is lower hemicontinuous on X if it is lower
hemicontinuous at each point of X.

.
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Example
Let F: R =R and G: R = R be the correspondences from R to
R defined such that

[ [L,2] ifx<0,
F(X)_{ [0,3] if x>0,

and
(L2 fx<o,
a”—{nﬂiu>a

The correspondences F and G are lower hemicontinuous at x for
all non-zero real numbers x. The correspondence G is also lower
hemicontinuous at 0, for if V is an open set in R and if

G(0)N V # 0 then [1,2] NV # 0 and therefore G(x) NV # () for
all real numbers x.
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However the correspondence F is not lower hemicontinuous at 0.
Indeed let
: 1
V={yeR:0<y<3}

Then F(0) NV # 0, but F(x) NV = 0 for all negative real
numbers x. Therefore there cannot exist any positive real
number 0 such that F(x) NV # () whenever |x| < 4.

Let X and Y be subsets of R” and R™ respectively, and let
®: X =2 Y be a correspondence between X and Y. Given any
subset V of Y, we denote by @~ (V) the subset of X defined such
that

P (V)={xe X:d(x)NV £0}.
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Let X and Y be subsets of R" and R™ respectively. A
correspondence ®: X =2 Y is lower hemicontinuous on X if and
only if, given any set V in Y that is open in Y, the set &~ (V) is
open in X.

Proof

First suppose that ®: X == Y is lower hemicontinuous at each
point of X. Let V be an open setin Y and let p € &~ (V). Then
®(p) N V is non-empty. It then follows from the definition of lower
hemicontinuity that there exists some positive real number § such
that ®(x) N V is non-empty for all x € X satisfying [x — p| < 9.
But then x € &~ (V) for all x € X satisfying |[x — p| < 4. It follows
that @~ (V) is open in X.
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Conversely suppose that ¢: X == Y is a correspondence with the
property that, for all subsets V of Y that are openin Y, ®~(V)is
open in X. Let p € X, and let V be an open set in Y satisfying
d(p)NV #£). Then d— (V) is open in X and p € ®(V), and
therefore there exists some positive number § such that

{xeX:|x—p|<d}Cd (V).

Then ®(x) NV # 0 for all x € X satisfying [x — p| < d. Thus
®: X = Y is lower hemicontinuous at p. The result follows. |}



2. Correspondences and Hemicontinuity (continued)

Definition

Let X and Y be subsets of R” and R™ respectively. A
correspondence ®: X = Y is said to be continuous at a point p of
X if it is both upper hemicontinuous and lower hemicontinuous at
p. The correspondence @ is continuous on X if it is continuous at
each point of X.
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Let X and Y be subsets of R" and R™ respectively, let p: X — Y
be a function from X to Y, and let ®: X = Y be the
correspondence defined such that ®(x) = {¢(x)} for all x € X.
Then ®: X =2 Y is upper hemicontinuous if and only if p: X =Y
is continuous. Similarly ®: X = Y is lower hemicontinuous if and
only if op: X — Y s continuous.

.
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Proof
The function ¢: X — Y is continuous if and only if

{x e X:p(x)e V}

is open in X for all subsets V of Y that are open in Y (see
Proposition 1.14). Let V be a subset of Y that is open in Y.
Then ®(x) C V if and only if p(x) € V. Also ®(x) NV # 0 if and
only if p(x) € V. The result therefore follows from the definitions
of upper and lower hemicontinuity. |
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2.2. The Graph of a Correspondence

Let m and n be integers. Then the Cartesian product R” x R™ of
the Euclidean spaces R” and R™ of dimensions n and m is itself a
Euclidean space of dimension n + m whose Euclidean norm is
characterized by the property that

(x,y)[> = [x|* + |y[?

forall x e R” and y € R™.
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Let x1,X2,X3,... and y1,¥2,Y3, ... be infinite sequences of points
in R" and R™ respectively, and let p € R" and q € R™. Then the
infinite sequence

(Xl, Y1), (X2, Y2)’ (X3, Y3); s

converges in R" x R™ to the point (p, q) if and only if the infinite
sequence Let x1,X2,X3, ... converges to the point p and the
infinite sequence y1,Y2,Y3, ... converges to the point q.
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Proof
Suppose that the infinite sequence

(Xl, y1)7 (X2, Y2), (X3, Y3)7 cee

converges in R” x R™ to the point (p,q). Let some strictly
positive real number £ be given. Then there exists some positive
integer N such that

xj —pl* + |y; — a* < &
whenever j > N. But then
xj—p|l<e and |y;—q|<e

whenever j > N. It follows that x; — p and y; — q as j — +00.
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Conversely suppose that x; — p and y; — q as j — +o00. Let
some positive real number £ be given. Then there exist positive
integers Ny and N> such that |x; — p| < £/v/2 whenever j > N,
and |y; — q| < &/v/2 whenever j > Ny. Let N be the maximum of
Ny and N>. Then

x; — pl> + ly; —af* < &

whenever j > N. It follows that (x;,y;) — (p,q) as j — +o0, as
required. |}
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Let X and Y be subsets of R" and R™ respectively, and let V' be a
subset of X X Y. Then V is open in X x Y if and only if, given
any point (p,q) of V, where p € X and q € Y, there exist subsets
Wx and Wy of X and Y respectively such that p € Wx, q € Wy,
Wx is open in X, Wy is open in' Y and Wx x Wy C V.

v

Proof

Let V be a subset of X x Y and let (p,q) € V, where p € X and
gevy.

Suppose that V is open in X x Y. Then there exists a positive real
number ¢ such that (x,y) € V for all x € X and y € Y satisfying

x—pl>+ly —qf* <&
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Let

Wx—{XEXi‘X—p’<\j§}

and

B
Wy = cY:|ly— < —=
v {y ly —q| ﬁ}

If x € Wx and y € Wy then

5 2
Ix—p!2+|y—q!2<2(ﬁ> = 0°

and therefore (x,y) € V. It follows that Wx x Wy C V.
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Conversely suppose that there exist open sets Wx and Wy in X
and Y respectively such that p € Wx, q € Wy and

Wx x Wy C V. Then there exists some positive real number ¢
such that x € Wx for all x € X satisfying [x — p| < ¢ and also

y € Wy for all y € Y satisfying |y — q| < J. If (x,y) is a point of
X X Y that lies within a distance § of (p,q) then |[x — p| < ¢ and
ly — q| < 6, and therefore (x,y) € Wx x Wy. But

Wx x Wy C V. It follows that the open ball of radius § about the
point (p, q) is wholly contained within the subset V of X x Y.
The result follows. |}
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Proposition 2.6

Let X and Y be subsets of R" and R™ respectively, and let G be a
subset of X X Y. Then G is closed in X x Y if and only if

(lim x;, limy;)e G

Jj—00 j—o0

for all convergent infinite sequences X1, X2,X3, ... in X and for all
convergent infinite sequences y1,Y2,Y3, ... in Y with the property
that (xj,y;) € G for all positive integers j.
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Proof

Suppose that G is closed in X x Y. Let x1,Xp,X3,... be an infinite
sequence in X converging to some point p of X and let

Y1,¥2,Y3, ... be an infinite sequence in Y converging to a point q
of Y, where (x;,y;) € G for all positive integers j. We must prove
that (p,q) € G. Now the infinite sequence consisting of the
ordered pairs (x;,y;) converges in X x Y to (p,q) (see

Lemma 2.4). Now every infinite sequence contained in G that
converges to a point of X X Y must converge to a point of G,
because G is closed in X x Y (see Lemma 1.8). It follows that

(p.q) € G.
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Now suppose that G is not closed in X x Y. Then the
complement of G in X X Y is not open, and therefore there exists
a point (p,q) of X x Y that does not belong to G though every
open ball of positive radius about the point (p, q) intersects G. It
follows that, given any positive integer j, the open ball of radius
1/j about the point (p,q) intersects G and therefore there exist
x; € X and y; € Y for which |x; —p| < 1/j, |yj —q| < 1/j and
(xj,yj) € G. Then lim x; =pand lim y; =q and therefore
J—+o00 J—+o0

(lim x;, Igr;oyj) ZG.

J—00 J

The result follows. |
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Definition

Let X and Y be subsets of R” and R™ respectively, and let

@: X — Y be a function from X and Y. The graph Graph(y) of
the function ¢ is the subset of R” x R™ defined so that

Graph(p) = {(x,y) e R" xR™:x € X and y = p(x)}.

.

Definition

Let X and Y be subsets of R” and R™ respectively, and let

®: X =2 Y be a correspondence between X and Y. The graph
Graph(®) of the correspondence @ is the subset of R” x R™
defined so that

Graph(®) = {(x,y) e R" xR™:x € X and y € ®(x)}.
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Let X and Y be subsets of R" and R™ respectively, and let

p: X = Y be a function from X to Y. Suppose that p: X —Y
is continuous. Then the graph Graph(y) of the function ¢ is
closed in X x Y.

Proof
Let ¢: X X Y — Y be the function defined such that

Y(x,y) =y —p(x)

for all x € X and y € Y. Then Graph(p) = ¢~({0}), and {0} is
closed in R™. It follows that Graph(y) is closed in X x Y (see
Corollary 1.15). |}
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Example
Let f: R — R be defined such that

1 .
F(x) = - if x > 0;

0 ifx<O.

Then the graph Graph(f) of the function f satisfies
Graph(f) = Z U H, where

Z={(x,y)€eR*:x<0and y =0}

and
H={(x,y) €R?:x>0and xy = 1}.

Each of the sets Z and H is a closed set in R2. It follows that
Graph(f) is a closed set in R2. However the function f: R — R is
not continuous at 0.
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Lemma 2.8

Let X be a subset of n-dimensional Euclidean space R", let S be a
non-empty subset of X, and let

d(x,S) =inf{|x —s|:s € S}

for all x € X. Then the function sending x to d(x, S) for all x € X
is a continuous function on X.

v
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Proof
Let f(x) = d(x,S) = inf{|x —s| : s € S} for all x € X.
Let x and x’ be points of X. It follows from the Triangle Inequality
that
f(x) <|x—s|<|x—=x|+[x -5

for all s € S, and therefore
X" — s[> f(x) — [x = X|

for alls € S. Thus f(x) — |[x — x| is a lower bound for the
quantities |x’ — s| as s ranges over the set S, and therefore cannot
exceed the greatest lower bound of these quantities. It follows that

f(x’) - inf{lx, _ S| Y= S} > f(X) _ |X _ X/|,

and thus
f(x)—f(x) <|x—=X|.
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Interchanging x and x/, it follows that

f(xX') = f(x) <|x—x|.
Thus

f(x) — F(x)] < [x — x|

for all x,x’ € X. It follows that the function f: X — R is
continuous, as required. |}

The multidimensional Heine-Borel Theorem (Theorem 1.21)
ensures that a subset of a Euclidean space is compact if and only if
it is both closed and bounded.
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Proposition 2.9

Let X be a subset of n-dimensional Euclidean space R", let V' be a
subset of X that is open in X, and let K be a compact subset of
R" satisfying K C V. Then there exists some positive real
number ¢ with the property that Bx(K,e) C V, where Bx(K,¢)
denotes the subset of X consisting of those points of X that lie
within a distance less than e of some point of K.
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Proof of Proposition 2.9 using the Extreme Value Theorem
Let f: K — R be defined such that

f(x)=inf{lz—x|:z€ X\ V}.

for all x € K. It follows from Lemma 2.8 that the function f is
continuous on K.

Now K C V and therefore, given any point x € K, there exists
some positive real number § such that the open ball of radius ¢
about the point x is contained in V/, and therefore f(x) > 4. It
follows that f(x) > 0 for all x € K.
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It follows from the Extreme Value Theorem for continuous
real-valued functions on closed bounded subsets of Euclidean
spaces (Theorem 1.17) that the function f: K — R attains its
minimum value at some point of K. Let that minimum value be ¢.
Then f(x) > e > 0 for all x € K, and therefore [x — z| > & > 0 for
all x € K and z € X'\ V. It follows that Bx(K,e) C V, as
required. |
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Example
Let
F={(x,y)€R?:x>0, y>0andxy >1}.

and let

V ={(x,y) €R?:y > 0}.
Note that if (x,y) € F then x > 0 and y > 0, because xy = 1. It
follows that F C V. Also F is a closed set in R? and V is an open
set in R?. However F is not a compact subset of R? because F is
not bounded.
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We now show that there does not exist any positive real number &
with the property that Bg2(F,e) C V, where Bg:(F,¢) denotes
the set of points of R? that lie within a distance ¢ of some point of
F. Indeed let some positive real number ¢ be given, let x be a
positive real number satisfying x > 2c71, and let y = x~1 — %5.
Then y < 0, and therefore (x,y) € V. But (x,y + 3¢) € F, and
therefore (x, y) € Brz2(F,€). This shows that there does not exist
any positive real number ¢ for which Bg2(F,g) C V.
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Proposition 2.10

Let X and Y be subsets of R" and R™ respectively, let K be a
non-empty compact subset of Y, and let U be a subset in X X Y
that is open in X x Y. Let

dy(y,K) =inf{ly —z| : z € K}

for ally € Y. Let p be a point of X with the property that

(p,z) € U for all z € K. Then there exists some positive number §
such that (x,y) € U for allx € X andy € Y satisfying |x — p| < 0
and d(y, K) < é.

v
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Proof
Let y
K ={(p,z) :z€ K}.
Then K is a closed bounded subset of R” x R™. It follows from
Proposition 2.9 that there exists some positive real number ¢ such

that y
BXXy(K,E) cu

where BXXy(R,e) denotes that subset of X x Y consisting of
those points (x,y) of X x Y that lie within a distance ¢ of a point
of K. Now a point (x,y) of X x Y belongs to Bxxy(K,e) if and
only if there exists some point z of K for which

x—p|* +ly —2|* <%
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Let 6 =¢/v/2. If x € X and y € Y satisfy |x — p| < ¢ and
dy(y, K) < 0 then there exists some point z of K for which
ly —z| < d. But then

x —p* +y — 2> < 26° = &2,

and therefore (x,y) € U, as required. |}
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Proposition 2.11

Let X and Y be subsets of R" and R™ respectively, and let

®: X = Y be a correspondence from X to Y. Suppose that ®(x)
is closed in Y for every x € X. Suppose also that ®: X = Y is
upper hemicontinuous. Then the graph Graph(®) of ®: X = Y is
closed in X x Y.

4

Proof

Let (p,q) be a point of the complement X x Y \ Graph(®) of the
graph Graph(®) of ® in X x Y. Then ®(p) is closed in Y and

q & ®(p). It follows that there exists some positive real number dy
such that |y — q| > dy for all y € ®(p).
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Let
V={yeY:ly—qal >dv}

and
W={xeX:o(x)cC V}

Then V is open in Y and ®(p) C V. Now the correspondence

®: X = Y is upper hemicontinuous. It therefore follows from the
definition of upper hemicontinuity that the subset W of X is open
in X. Moreover p € W. It follows that there exists some positive
real number dx such that x € W for all points x of X satisfying
|x —p| < dx. Then ®(x) C V for all points x of X satisfying

‘X — p] < d0x.
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Let § be the minimum of dx and Jy, and let (x,y) be a point of
X XY whose distance from the point (p, q) is less than §. Then
|x — p| < dx and therefore ®(x) C V. Also |y — q| < dy, and
therefore y & V. It follows that y & ®(x), and therefore

(x,y) & Graph(®). We conclude from this that the complement of
Graph(®) is open in X x Y. It follows that Graph(®) itself is
closed in X x Y, as required. |}
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Proposition 2.12

Let X and Y be subsets of R" and R™ respectively, and let

®: X =2 Y be a correspondence from X to Y. Suppose that the
graph Graph(®) of the correspondence ® is closed in X x Y.
Suppose also that Y is a compact subset of R™. Then the
correspondence ®: X = Y is upper hemicontinuous.




2. Correspondences and Hemicontinuity (continued)

Proof of Proposition 2.12 using Proposition 2.10

Let p be a point of X, let V be an open set satisfying ®(p) C V,
and let K = Y\ V. The compact set Y is closed and bounded in
R™. Also K is closed in Y. It follows that K is a closed bounded
subset of R™ (see Lemma 1.16). Let U be the complement of
Graph(®) in X x Y. Then U is open in X x Y, because
Graph(®) is closed in X x Y. Also (p,y) € U for ally € K,
because ®(p) N K = (). It follows from Proposition 2.10 that there
exists some positive number § such that (x,y) € U for all x € X
and y € K satisfying |x — p| < 0. Thus if x € X satisfies

|x —p| < 6 theny & ®(x) for all y € K, and therefore ®(x) C V,
where V = Y \ K. Thus the correspondence @ is upper
hemicontinuous at p, as required. |}
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Corollary 2.13

Let X and Y be subsets of R" and R™ respectively, and let

p: X = Y be a function from X to Y. Suppose that the graph
Graph(y) of the function ¢ is closed in X x Y. Suppose also that
Y is a compact subset of R™. Then the function p: X — Y is
continuous.

.

Proof

Let ®: X = Y be the correspondence defined such that

d(x) = {¢(x)} for all x € X. Then Graph(®) = Graph(y), and
therefore Graph(®) is closed in X x Y. The subset Y of R™ is
compact. It therefore follows from Proposition 2.12 that the
correspondence @ is upper hemicontinuous. It then follows from
Lemma 2.3 that the function ¢: X — Y is continuous, as
required. |



2. Correspondences and Hemicontinuity (continued)

2.3. Compact-Valued Upper Hemicontinuous Correspondences

Let X and Y be subsets of R" and R respectively, and let
®: X = Y be a correspondence from X to Y. Suppose that
®: X =2 Y is upper hemicontinuous. Then

{x € X :d(x) # 0}

is closed in X.
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Proof
Given any open set V in Y, let

T (V)={xe X:d(x)C V}.

It follows from the upper hemicontinuity of ® that ®*(V) is open
in X for all open sets V in Y (see Lemma 2.1). Now the empty
set () is open in Y. It follows that ®*(() is open in X. But

PT(0) ={xe X :d(x)C B} ={xeX:d(x)=0}.

It follows that the set of point x in X for which ®(x) = () is open
in X, and therefore the set of points x € X for which ®(x) # () is
closed in X, as required. |}
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Let X and Y be subsets of R” and R respectively, and let

®: X 2 Y be a correspondence from X to Y. Given any subset S
of X, we define the image ®(S) of S under the correspondence ¢
to be the subset of Y defined such that

®(S) = |J ®(x)

x€S
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Let X and Y be subsets of R" and R™ respectively, and let

®: X = Y be a correspondence from X to Y that is
compact-valued and upper hemicontinuous. Let K be a compact
subset of X. Then ®(K) is a compact subset of Y.

Proof

Let V be collection of open sets in Y that covers ®(K). Given any
point p of K, there exists a finite subcollection W, of V that
covers the compact set ®(p). Let U, be the union of the open sets
belonging to this subcollection W,. Then ®(p) C Up. Now it
follows from the upper hemicontinuity of ®: X == Y that there
exists an open set N in X such that ®(x) C U, for all x € N,.
Moreover, given any p € K, the finite collection WV, of open sets in
Y covers ®(N,).
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It then follows from the compactness of K that there exist points

P1,P2,---,Pk

of K such that
K C Np, UNp, U---UNp,.

Let
W = Wp, UWp, U= UW,,.

Then W is a finite subcollection of V that covers ®(K). The result
follows. |}
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Proposition 2.16

Let X and Y be subsets of R" and R™ respectively, and let

®: X = Y be a compact-valued correspondence from X to Y. Let
p be a point of X for which ®(p) is non-empty. Then the
correspondence ®: X = Y is upper hemicontinuous at p if and
only if, given any positive real number €, there exists some positive
real number  such that

®(x) C By (®(p), ¢)

for all x € X satisfying |x — p| < 0, where By (®(p), &) denotes the
subset of Y consisting of all points of Y that lie within a
distance € of some point of ®(p).
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Proof
Let ¢: X = Y is a compact-valued correspondence, and let p be a
point of X for which ®(p) # 0.

First suppose that, given any positive real number g, there exists
some positive real number ¢ such that

®(x) C By (®(p), ¢)

for all x € X satisfying [x — p| < §. We must prove that
®: X = Y is upper hemicontinuous at p.
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Let V be an open set in Y that satisfies ®(p) C V. Now ®(p) is a
compact subset of Y, because ®: X — Y is compact-valued. It
follows that there exists some positive real number ¢ such that

By (®(p),e) C V (see Proposition 2.9). There then exists some
positive number § such that

®(x) C By(®(p),e) C V

whenever [x — p| < 4. Thus ®: X == Y is upper hemicontinuous
at p.
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Conversely suppose that the correspondence ®: X == Y is upper
hemicontinuous at the point p. Now ®(p) is a non-empty subset
of Y. Let some positive number ¢ be given. Then By (®(p),¢) is
open in Y and ®(p) C By(®(p),¢). It follows from the upper
hemicontinuity of ® at p that there exists some positive number ¢
such that ®(x) C By (P(p),c) whenever [x — p| < . The result
follows. |}
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Proposition 2.17

Let X and Y be subsets of R" and R™ respectively, and let

®: X = Y be a correspondence from X to Y. Then the
correspondence is both compact-valued and upper hemicontinuous
at a point p € X if and only if, given any infinite sequences

X1,X2, X3, ...
and

Y1,Y2,Y3,--.

in X and Y respectively, where y; € ®(x;) for all positive integers j

and lim x; = p, there exists a subsequence of
Jj—+oo

Y1,Y¥2,Y¥3,- ..

which converges to a point of ®(p).
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Proof

Throughout this proof, let us say that the correspondence ¢
satisfies the constrained convergent subsequence criterion if (and
only if), given any infinite sequences

X1,X2,X3, ...

and
Y1,Y¥2,Y3,. ..

in X and Y respectively, where y; € ®(x;) for all positive integers j
and lim x; = p, there exists a subsequence of
J—+oo

Y1,Y2,Y¥3,--.

which converges to a point of ®(p).
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We must prove that the correspondence ®: X =2 Y satisfies the
constrained convergent subsequence criterion if and only if it is
compact-valued and upper hemicontinuous.

Suppose first that the correspondence ®: X = Y satisfies the
constrained convergent subsequence criterion. Applying this
criterion when x; = p for all positive integers j, we conclude that
every infinite sequence (y; : j € N) of points of ®(p) has a
convergent subsequence, and therefore ®(x) is compact.
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Let
D={xeX:d(x)#0}.

We show that D is closed in X. Let
X1,X2,X3,...

be a sequence of points of D converging to some point of p of X.
Then ®(x;) is non-empty for all positive integers j, and therefore
there exists an infinite sequence

Y1,Y2,Y¥3,--.

of points of Y such that y; € ®(x;) for all positive integers j. The
constrained convergent subsequence criterion ensures that this
infinite sequence in Y must have a subsequence that converges to
some point of ®(p). It follows that ¢(p) is non-empty, and thus
peD.
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Let p be a point of the complement of D. Then ®(p) = (). There
then exists § > 0 such that ®(x) = () for all x € X satisfying

|x — p| < 6. But then ®(x) C V for all open sets V in Y. It
follows that the correspondence @ is upper hemicontinuous at
those points p for which ®(p) = 0.
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Now consider the situation in which ®: X = Y satisfies the
constrained convergent subsequence criterion and p is some point
of X for which ®(p) # (). Let K = ®(p). Then K is a compact
non-empty subset of Y. Let V be an open set in Y that satisfies
®(p) C V. Suppose that there did not exist any positive real
number ¢ with the property that ®(x) C V for all x € X satisfying
|x — p| < d. It would then follow that there would exist infinite
sequences

X1,X2,X3,...

and
Y1,Y2,Y¥3,--.

in X and Y respectively for which |x; — p| < 1//, y; € ®(x;) and
yj V.
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Then lim x; = p, and thus the constrained convergent
J—+00

subsequence criterion satisfied by the correspondence ® would
ensure the existence of a subsequence

YiisYkos Ykss - - -

of y1,¥2,¥3, ... converging to some point q of ®(p). But then

q ¢ V, because yi, ¢ V for all positive integers j, and the
complement Y\ V of V is closed in Y. But ¢(p) C V, and

q € ®(p), and therefore q € V. Thus a contradiction would arise
were there not to exist a positive real number § with the property
that ®(x) C V for all x € X satisfying |[x — p| < . Thus such a
real number  must exist, and thus the constrained convergent
subsequence criterion ensures that the correspondence ¢: X = Y
is upper hemicontinuous at p.
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It remains to show that any compact-valued upper hemicontinuous
correspondence ®: X =2 Y satisfies the constrained convergent
subsequence criterion. Let ®: X = Y be compact-valued and
upper hemicontinuous. It follows from Lemma 2.14 that

{x € X :d(x) # 0}

is closed in X.
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Let
X1,X2,X3; ...

and
Y1,Y2,Y¥3,--.

be infinite sequences in X and Y respectively, where y; € ®(x;) for

all positive integers j and lim x; = p. Then ®(p) is non-empty,
J—+00

because

{x e X :d(x)#0}

is closed in X (see Lemma 2.14). Let K = ®(p). Then K is
compact, because ®: X == Y is compact-valued by assumption.
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For each integer j let d(y;, K) denote the greatest lower bound on
the distances from y; to points of K. There then exists an infinite
sequence

Z1,Z23,23,...

of points of K such that |y; — z;| < 2d(yj, K). for all positive
integers j. (Indeed if d(y;, K) = 0 then y; € K, because the
compact set K is closed, and in that case we can take z; = y;.
Otherwise 2d(y, K) is strictly greater than the greatest lower
bound on the distances from y; to points of K, and we can
therefore find z; € K with |y; — z;| < 2d(y;, K).)
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Now the upper hemicontinuity of ®: X = Y ensures that

d(yj, K) = 0 as j — +o0. Indeed, given any positive real

number ¢, the set By (K, ¢) of points of Y that lie within a
distance € of a point of K is an open set containing ®(p). It
follows from the upper hemicontinuity of ® that there exists some
positive real number § such that ®(x) C By (K, ) whenever

|x —p| < d. Now x; — p as j — +oo. It follows that there exists
some positive integer N such that |x; — p| < 6 whenever j > N.
But then y; € ®(x;) and therefore d(y;, K) < € whenever j > N.
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Now the compactness of K ensures that the infinite sequence

Z1,Z3,23,...

of points of K has a subsequence

Zkl,Zkz,Zk37 e

that converges to some point q of K. Now |y; — z;| < 2d(y;, K)
for all positive integers j, and d(y;, K) — 0 as j — 4o0. It follows
that yx, — q as j — +oc0. Morever q € ®(p). We have therefore
verified that the constrained convergent subsequence criterion is
satisfied by any correspondence ®: X == Y that is compact-valued
and upper hemicontinuous. This completes the proof. |}



2. Correspondences and Hemicontinuity (continued)

Proposition 2.18

Let X and Y be subsets of R" and R respectively, and let

®: X =2 Y be a correspondence from X to Y that is both upper
hemicontinuous and compact-valued. Let U be an open set in

X x Y. Then

{xe X :(x,y) € U forally € &(x)}

is open in X.
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Proof of Proposition 2.18 using Proposition 2.17
Let
W={xeX:(x,y)e Uforally € d(x)},

and let p € W. Suppose that there did not exist any strictly
positive real number § with the property that x € W for all x € X
satisfying [x — p| < d. Then, given any positive real number ¢,
there would exist points x of X and y of Y such that |x — p| < ¢,
y € ®(x) and (x,y) & U. Therefore there would exist infinite
sequences

X1,X2,X3,...

and
Y1,Y2,¥3,--.

in X and Y respectively such that x; — p as j — +o0 and
yj € ®(x;) and (x;,y;) € U for all positive integers ;.
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The correspondence ®: X = Y is compact-valued and upper
hemicontinuous. Proposition 2.17 would therefore ensure the
existence of a subsequence

yk1)yk25yk37 s

of Y converging to some point q of ®(p). Now the complement of
Uin X x Y isclosed in X x Y, because U is open in X x Y and
(xj,yj) € U. It would therefore follow that (p,q) & U (see
Proposition 2.6). But this gives rise to a contradiction, because

q € ®(p) and (p,y) € U for all y € ®(p). In order to avoid the
contradiction, there must exist some positive real number § with
the property that with the property that (x,y) € U for all x € X
and y € Y satisfying |[x — p| < d and y € ®(x). The result

follows. |}
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Remark

It should be noted that other results proved in this section do not
necessarily generalize to correspondences ®: X = Y mapping the
topological space X into an arbitrary topological space Y. For
example all closed-valued upper hemicontinuous correspondences
between metric spaces have closed graphs. The appropriate
generalization of this result states that any closed-valued upper
hemicontinuous correspondence ®: X = Y from a topological
space X to a regular topological space Y has a closed graph. To
interpret this, one needs to know the definition of what is meant by
saying that a topological space is regular. A topological space Y is
said to be regular if, given any closed subset F of Y, and given any
point p of the complement Y \ F of F, there exist open sets V
and Win Y suchthat FC V, pe W and VN W = (). Metric
spaces are regular. Also compact Hausdorff spaces are regular.



2. Correspondences and Hemicontinuity (continued)

2.4. A Criterion characterizing Lower Hemicontinuity

Proposition 2.19

Let X and Y be subsets of R" and R™ respectively. A
correspondence ®: X = Y is lower hemicontinuous at a point p of
X if and only if given any infinite sequence

X1,X2,X3, ...

in X for which lim x; = p and given any point q of ®(p), there

J—+00
exists an infinite sequence

Y1,Y2,Y3,--.

of points of Y such that y; € ®(x;) for all positive integers j and
lim y;=q.

Jj—+oo




2. Correspondences and Hemicontinuity (continued)

Proof

First suppose that ®: X — Y is lower hemicontinuous at some
point p of X. Let q € ®(p), and let some positive number ¢ be
given. Then the open ball By(q,¢) in Y of radius ¢ centred on the
point q is an open set in Y. It follows from the lower
hemicontinuity of ®: X — Y that there exists some positive real
number § such that ®(x) N By(q, &) is non-empty whenever

|x — p| < 0. Then, given any point x of X satisfying |x — p| <
there exists some y € ®(x) that satisfies |y — q| < . In particular,
given any positive integer s, there exists some positive integer ds
such that, given any point x of X satisfying |x — p| < ds, there
exists some y € ®(x) that satisfies |y — q| < 1/s.
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Now x; — p as j — +o00. It follows that there exist positive
integers k(1), k(2), k(3), ..., where

k(1) < k(2) < k(3) < ---

such that |x; — p| < ds for all positive integers j satisfying
J > k(s). There then exists an infinite sequence

Y1,Y2,Y¥3,--.

such that y; € ®(x;) for all positive integers j and |y; —q| < 1/s

for all positive integers j and s satisfying k(s) <j < k(s +1).

Then lim y; = q. We have thus shown that if ®: X — Y'is
J—+0o0

lower hemicontinuous at the point p, if X1, X2, X3,... is a sequence
in X converging to the point p, and if q € ®(p), then there exists
an infinite sequence y1,y2,y3,... in Y such that y; € ®(x;) for all
positive integer j and lim y; =q.

J—+0o0
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Next suppose that the correspondence ®: X = Y is not lower
hemicontinuous at p. Then there exists an open set V in Y such
that ®(p) N V is non-empty but there does not exist any positive
real number ¢ with the property that ®(x) NV # () for all x € X
satisfying |p — x| < d. Let q € ®(p) N V. There then exists an
infinite sequence

X1,X2,X3,...

converging to the point p with the property that ®(x;) NV = () for
all positive integers j. It is not then possible to construct an
infinite sequence
¥1,¥2,¥3,---
such that y; € ®(x;) for all positive integers j and lim y; =q.
J—+oo

The result follows. |}
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2.5. Intersections of Correspondences

Let X and Y be subsets of R” and R” respectively, and let
®: X =Y and V: X — Y be correspondences between X and Y.
The intersection ® NV of the correspondences ® and WV is defined

such that
(P NWV)(x) = P(x) N W(x)

for all x € X.
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Proposition 2.20

Let X and Y be subsets of R" and R respectively, let : X =2 Y
and V: X = Y be correspondences from X to Y, where the
correspondence ®: X = Y is compact-valued and upper
hemicontinuous and the correspondence W: X = Y has closed
graph. Let ®NWV: X == Y be the correspondence defined such that

(PNW)(x) = d(x) N WY(x)

for all x € X. Then the correspondence Let PNV: X = Y is
compact-valued and upper hemicontinuous.
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Proof
Let
W={(xy) e X xY:y&WV(x)}.

Then W is the complement of the graph Graph(V¥) of W in

X x Y. The graph of W is closed in X x Y, by assumption. It
follows that W is open in X x Y.

Let x € X. The subset W(x) of Y is closed in Y, because the
graph of the correspondence W is closed. It follows from the
compactness of ®(x) that ®(x) N W(x) is a closed subset of the
compact set ®(x), and must therefore be compact. Thus the
correspondence ® NV is compact-valued.
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Now let p be a point of X, and let V' be any open set in Y for
which ®(p) N W(p) C V. In order to prove that & NV is upper
hemicontinuous we must show that there exists some positive real
number § such that ®(x) N W(x) C V for all x € X satisfying

|x — p| < 4. Let

U={(x,y) € X x Y :eithery € Vorelsey & V(x)}.

Then U is the union of the subsets X x V and W of X x Y, where
both these subsets are open in X x Y. It follows that U is open in
X x Y. Moreover if y € ®(p) then either y € ®(p) N ¥(p), in
which case y € V, or else y ¢ W(p). It follows that (p,y) € U for
ally € ¢(p).
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Now it follows from Proposition 2.18 that
{xe X:(x,y) € Uforally € ®(x)}

is open in X. Therefore there exists some positive real number §
such that (x,y) € U for all (x,y) € X x Y satisfying |[x — p| < ¢
and y € ®(x). Now if (x,y) satisfies |[x — p| < ¢ and

y € ®(x) N W(x) then (x,y) € U but (x,y) & W. It follows from
the definition of U thaty € V. Thus ®(x) N W(x) C V whenever
|x — p| < d. The result follows. |}
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2.6. Berge’s Maximum Theorem

Let X and Y be subsets of R" and R respectively, and let

®: X =2 Y be a correspondence from X to Y that is both upper
hemicontinuous and compact-valued. Let f: X X Y — R be a
continuous real-valued function on X x Y, and let ¢ be a real
number. Then

{xe X :f(x,y) <cforally € ®(x)}

is open in X.
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Proof
Let
U={(xy) e X xY:f(x,y) <c}

It follows from the continuity of the function f that U is open in
X x Y. It then follows from Proposition 2.18 that

{xe X :(x,y) € Uforally € d(x)}

is open in X. The result follows. |
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Let X and Y be subsets of R" and R™ respectively, and let

®: X = Y be a correspondence from X to Y that is lower
hemicontinuous. Let f: X X Y — R be a continuous real-valued
function on X X Y, and let ¢ be a real number. Then

{x € X : there exists y € ®(x) for which f(x,y) > c}

is open in X.
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Proof
Let
U={(xy) e X x Y :f(x,y)>c},

and let
W = {x € X : there exists y € ®(x) for which f(x,y) > c},

Let p € W. Then there exists y € ®(p) for which (p,y) € U.
There then exist subsets Wx of X and Wy of Y, where Wx is
open in X and Wy is open in Y, such that p € Wx, y € Wy and
Wx x Wy C U (see Lemma 2.5). There then exists some positive
real number ¢; such that x € Wx whenever |x — p| < ¢;.
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Now ®(p) N Wy # (), because y € ®(p) N Wy . It follows from the
lower hemicontinuity of the correspondence @ that there exists
some positive real number 0, such that ®(x) N Wy # () whenever
|x — p| < 2. Let § be the minimum of §; and d,. If x € X satisfies
|x — p| < J then there exists y € ®(x) for which y € Wy. But then
(x,y) € Wx x Wy and therefore (x,y) € U, and thus f(x,y) > c.
The result follows. |
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Theorem 2.23 (Berge’s Maximum Theorem)

Let X and Y be subsets of R" and R™ respectively, let

f: XxY — R be a continuous real-valued function on X x Y,
and let ®: X = Y be a correspondence from X to Y. Suppose
that ®(x) is both non-empty and compact for all x € X and that
the correspondence ®: X — Y is both upper hemicontinuous and
lower hemicontinuous. Let

m(x) = sup{f(x,y) : y € ®(x)}
for all x € X, and let
M(x) = {y € ®(x) : f(x,y) = m(x)}

for all x € X. Then m: X — R is continuous, M(x) is a
non-empty compact subset of Y for all x € X, and the
correspondence M: X == Y is upper hemicontinuous.
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Proof

Let x € X. Then ®(x) is a non-empty compact subset of Y. It is
thus a closed bounded subset of R™. It follows from the Extreme
Value Theorem (Theorem 1.17) that there exists at least one point
y* of ®(x) with the property that f(x,y*) > f(x,y) for all

y € ®(x). Then m(x) = f(x,y*) and y* € M(x). Moreover

M(x) = {y € ®(x) : f(x,y) = m(x)}.

It follows from the continuity of f that the set M(x) is closed in Y
(see Corollary 1.15). It is thus a closed subset of the compact set
®(x) and must therefore itself be compact.
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Let some positive number ¢ be given. Then f(p,y) < m(p) + ¢ for
all y € ®(p). It follows from Lemma 2.21 that

{xe X :f(x,y) < m(p)+¢forally € (x)}

is open in X, and thus there exists some positive real number §;
such that f(x,y) < m(p) + ¢ for all x € X satisfying |x — p| < d1
and y € ®(x) Then m(x) < m(p) + ¢ for all x € X satisfying

‘X — p] < d1.
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The correspondence ®: X =2 Y is also lower hemicontinuous. It
therefore follows from Lemma 2.22 that there exists some positive
real number & such that, given any x € X satisfying |x — p| < 02,
there exists some y € ®(x) for which f(x,y) > m(p) —e. It follows
that m(x) > m(p) — ¢ whenever x € X satisfies |[x — p| < d2. Let §
be the minimum of §; and 5. Then § > 0, and

m(p) —e < m(x) < m(p) +¢

whenever x € X satisfies [x — p| < 4. Thus the function
m: X — R is continuous on X.
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It only remains to prove that the correspondence M: X = Y is
upper hemicontinuous. Let

V(x) ={y € Y: f(x,y) = m(x)}
for all x € X. Then
Graph(V) = {(x,y) € X x Y : f(x,y) = m(x)}

Thus Graph(V) is the preimage of zero under the continuous
real-valued function that sends (x,y) € X x Y to f(x,y) — m(x).
It follows that Graph(W) is a closed subset of X x Y.

Now M(x) = ®(x) N W (x) for all x € X, where the
correspondence ® is compact-valued and upper hemicontinuous
and the correspondence W has closed graph. It follows from
Proposition 2.20 that the correspondence M must itself be both
compact-valued and upper hemicontinuous. This completes the
proof of Berge's Maximum Theorem. |}
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