MAU34804—Fixed Point Theorems and Economic Equilibria School of Mathematics, Trinity College Hilary Term 2024 Appendix E: Some Notational Conventions involving Vectors and Matrices

David R. Wilkins

E. Notational Conventions involving Vectors and Matrices

E.1. Notation for Inequalities involving Vectors

We establish some notation that will be used throughout this section.

Let *m* and *n* be positive integers. Given any $m \times n$ matrix *T*, we denote by $(T)_{i,j}$ the coefficient in the *i*th row and *j*th column of the matrix *T* for i = 1, 2, ..., m and j = 1, 2, ..., n. Also given any *n*-dimensional vector **v**, we denote by $(\mathbf{v})_j$ the *j*th coefficient of the vector *j* for j = 1, 2, ..., n.

Definition

A matrix T is said to be *non-negative* if all its coefficients are non-negative real numbers.

Definition

A matrix T is said to be *positive* if all its coefficients are strictly positive real numbers.

Let S and T be $m \times n$ matrices. If $(S)_{i,j} \leq (T)_{i,j}$ for i = 1, 2, ..., m and j = 1, 2, ..., n, then we denote this fact by writing $S \leq T$, or by writing $T \geq S$. If $(S)_{i,j} < (T)_{i,j}$ for i = 1, 2, ..., m and j = 1, 2, ..., n, then we denote this fact by writing $S \ll T$, or by writing $T \gg S$.

Let **u** and **u** be *n*-dimensional vectors. If $(\mathbf{u})_j \leq (\mathbf{v})_j$ for j = 1, 2, ..., n, then we denote this fact by writing $\mathbf{u} \leq \mathbf{v}$, or by writing $\mathbf{v} \geq \mathbf{u}$. If $(\mathbf{u})_j < (\mathbf{v})_j$ for j = 1, 2, ..., n, then we denote this fact by writing $\mathbf{u} \ll \mathbf{v}$, or by writing $\mathbf{v} \gg \mathbf{u}$.

A matrix T with real coefficients is thus *non-negative* if and only if $T \ge 0$. A matrix T with real coefficients is *positive* if and only if T >> 0.