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6. Perron-Frobenius Theory

6.1. Eigenvectors of Non-Negative Matrices

We establish some notation that will be used throughout this
section.

Let m and n be positive integers. Given any m × n matrix T , we
denote by (T )i ,j the coefficient in the ith row and jth column of
the matrix T for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Also given
any n-dimensional vector v, we denote by (v)j the jth coefficient of
the vector j for j = 1, 2, . . . , n.



6. Perron-Frobenius Theory (continued)

Definition

A matrix T is said to be non-negative if all its coefficients are
non-negative real numbers.

Definition

A matrix T is said to be positive if all its coefficients are strictly
positive real numbers.
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Let S and T be m × n matrices. If (S)i ,j ≤ (T )i ,j for
i = 1, 2, . . . ,m and j = 1, 2, . . . , n, then we denote this fact by
writing S ≤ T , or by writing T ≥ S . If (S)i ,j < (T )i ,j for
i = 1, 2, . . . ,m and j = 1, 2, . . . , n, then we denote this fact by
writing S << T , or by writing T >> S .

Let u and u be n-dimensional vectors. If (u)j ≤ (v)j for
j = 1, 2, . . . , n, then we denote this fact by writing u ≤ v, or by
writing v ≥ u. If (u)j < (v)j for j = 1, 2, . . . , n, then we denote
this fact by writing u << v, or by writing v >> u.

A matrix T with real coefficients is thus non-negative if and only if
T ≥ 0. A matrix T with real coefficients is positive if and only if
T >> 0.
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Lemma 6.1

Let T be an m × n matrix with real coefficients. Then T is a
non-negative matrix if and only if Tv ≥ 0 for all v ∈ Rn satisfying
v ≥ 0.

Proof
Suppose that the matrix T is non-negative. Let v ∈ Rn satisfy
v ≥ 0. Then

(Tv)j =
n∑

k=1

(T )j ,k(v)k ≥ 0

for each integer j between 1 and m, because (T )j ,k(v)k ≥ 0 for
k = 1, 2, . . . , n. Therefore Tv ≥ 0.
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Conversely suppose that T is an m × n matrix with with real
coefficients which has the property that if and only if Tv ≥ 0 for
all non-zero n-dimensional vectors v with non-negative real
coefficients. Let e1, e2, . . . , en be the standard basis of Rn with

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1).

Then Tek ≥ 0 for k = 1, 2, . . . , n, and therefore
(T )j ,k = (Tek)j ≥ 0 for j = 1, 2, . . . ,m and k = 1, 2, . . . , n. The
result follows.
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Lemma 6.2

Let T be an m × n matrix with real coefficients. Then T is a
positive matrix if and only if Tv >> 0 for all v ∈ Rn satisfying
both v 6= 0 and v ≥ 0.

Proof
Suppose that the matrix T is positive. Then Tj ,k > 0 for
i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Let v ∈ Rn satisfy both v 6= 0
and v ≥ 0. Then

(Tv)j =
n∑

k=1

(T )j ,k(v)k > 0

for each integer j between 1 and m, because (T )j ,k(v)k ≥ 0 for
k = 1, 2, . . . , n and (T )j ,k(v)k > 0 for at least one integer k
between 1 and n. Therefore Tv >> 0.
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Conversely suppose that T is an m × n matrix with with real
coefficients which has the property that if and only if Tv >> 0 for
all non-zero n-dimensional vectors v with non-negative real
coefficients. Let e1, e2, . . . , en be the standard basis of Rn with

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1).

Then Tek >> 0 for k = 1, 2, . . . , n, and therefore
(T )j ,k = (Tek)j > 0 for j = 1, 2, . . . ,m and k = 1, 2, . . . , n. The
result follows.
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Proposition 6.3

Let T be a non-negative n × n (square) matrix. Then there exists
a well-defined non-negative real number µ (referred to as the
Perron root of T) that may be characterized as the greatest real
number ρ for which there exists a non-zero vector v with real
coefficients satisfying the conditions v ≥ 0 and Tv ≥ ρv.
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Proof
Let

∆ = {v ∈ Rn : v ≥ 0,
n∑

j=1

(v)j = 1},

and, for each non-negative real number ρ, let Eρ be the subset of
∆ defined so that

Eρ = {v ∈ Rn : v ≥ 0,
n∑

j=1

(v)j = 1 and Tv ≥ ρv}.
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Clearly E0 = ∆. Also if ρ exceeds the largest coefficient of the
matrix T then clearly Eρ is the empty set. Let

I = {ρ ∈ R : ρ ≥ 0 and Eρ 6= ∅}.

Then I is a non-empty set of real numbers which is bounded
above. It follows from the Least Upper Bound Principle that the
set I has a least upper bound sup I . Let µ = sup I .
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Let ρ be a real number satisfying 0 ≤ ρ < µ. Then there exists
ρ′ ∈ I satisfying ρ < ρ′ ≤ µ. The set Eρ′ must then be non-empty,
and moreover Eρ′ ⊂ Eρ. It follows that Eρ 6= ∅, and thus ρ ∈ I . It
follows that

{ρ ∈ R : 0 ≤ ρ < µ} ⊂ I ,

and thus the subset I of R is an interval. We next prove that µ ∈ I .

Now the characterization of the non-negative real number µ as the
least upper bound of the interval I ensures the existence of an
infinite sequence ρ1, ρ2, ρ3, . . . of real numbers belonging to I for
which lim

s→+∞
ρs = µ. Then Eρs 6= ∅ for all positive integers s, and

therefore there exists an infinite sequence v1, v2, v3, . . . of vectors
belonging to the simplex ∆ such that vs ∈ Eρs for all positive
integers s. Then Tvs ≥ ρsvs for all positive integers s.
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Now the sequence v1, v2, v3, . . . of vectors belonging to the
simplex ∆ is a bounded sequence of vectors, because ∆ is a
bounded set. The multidimensional Bolzano-Weierstrass Theorem
(Theorem 1.2) now ensures the existence of a subsequence
vs1 , vs2 , vs3 , . . . of the sequence v1, v2, v3, . . . which converges to
some vector u. Moreover u ∈ ∆, because ∆ is a closed set.
Now

Tu = lim
r→+∞

Tvsr .

Also
Tvsr − ρsr vsr ≥ 0

for all positive integers r . Taking limits as r → +∞, we find that

Tu− µu ≥ 0,

and thus Tu ≥ µu.
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The vector u is then a non-zero vector with non-negative
coefficients, and Tu ≥ ρu for all real numbers ρ satisfying
0 ≤ ρ ≤ µ.

Now every non-zero n-dimensional vector with non-negative real
coefficients is a scalar multiple of some vector belonging to the
simplex ∆. We conclude therefore that if ρ is a non-negative real
number, if v is a non-zero vector with non-negative coefficients,
and if Tv ≥ ρv then ρ ≤ µ. The result follows.
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Definition

Let T be a non-negative square matrix. The Perron root (or
Perron-Frobenius eigenvalue) of T is the unique non-negative real
number µ of T that can be characterized as the greatest real
number for which there exists a non-zero vector v with real
coefficients satisfying the conditions v ≥ 0 and Tv ≥ µv.
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Remark
Proposition 6.3 ensures that every non-negative square matrix has
a well-defined Perron root. The alternative name Perron-Frobenius
eigenvalue for the Perron root seems to imply that the Perron root
of a non-negative square matrix is an eigenvalue of that matrix.
This result is indeed true. It will be proved for positive square
matrices in Proposition 6.4, and the result will be extended to
non-negative square matrices in Proposition 6.5. The eigenvalues
of a square matrix over the field of complex numbers are the roots
of the characteristic polynomial of that matrix.
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Proposition 6.4

Let T be a positive square matrix, and let µ be the Perron root of
T . Then µ > 0, and there exists b ∈ Rn satisfying the conditions
b >> 0 and Tb = µb. Moreover, given any u ∈ Rn satisfying
Tu ≥ µu, there exists a real number t for which u = tb, and thus
Tu = µu.
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Proof
The definition of the Perron root µ of T ensures that there exists a
non-zero vector b with the properties that b ≥ 0 and Tb ≥ µb.
Suppose it were the case that Tb 6= µb. Let v = Tb. Then

Tv − µv = T (Tb− µb) >> 0,

because Tb− µb ≥ 0, Tb− µb 6= 0 and T >> 0 (see
Lemma 6.2). But then there would exist real numbers ρ satisfying
ρ > µ that were sufficiently close to µ to ensure that
Tv − ρv >> 0 and thus Tv ≥ ρv. This would contradict the
condition on the statement of the proposition that characterizes
the value of µ. We conclude therefore that Tb = µb.

Moreover Tb >> 0, because T >> 0 and b ≥ 0. It follows that
µ > 0 and b >> 0.
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Next let u be an n-dimensional vector with real coefficients for
which Tu ≥ µu. If s is positive and sufficiently large then
sb− u >> 0. On the other hand if s is negative and |s| is
sufficiently large then sb− u << 0. It follows from this that there
exists a well-defined real number t defined so that

t = inf{s ∈ R : sb− u ≥ 0}.

Then tb− u ≥ 0, and moreover there exists some integer j
between 1 and n for which t(b)j − (u)j = 0. Now

T (tb− u) = µtb− Tu ≤ µ(tb− u),

and therefore (T (tb− u))j ≤ 0. If it were the case that tb− u 6= 0
then the inequalities tb− u ≥ 0 and T >> 0 would ensure that
T (tb− u) >> 0 (Lemma 6.2), from which it would follow that
(T (tb− u))j > 0. Because this latter inequality does not hold, it
must be the case that tb− u = 0, and thus u = tb. The result
follows.
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Proposition 6.5

Let T be a non-negative square matrix, and let µ be the Perron
root of T . Then µ is an eigenvalue of T , and there exists a
non-negative eigenvector b associated with the eigenvalue µ.

Proof
Let T be an non-negative n × n matrix. Then there exists an
infinite sequence T1,T2,T3, . . . of positive n× n matrices such that
Tr >> T for all positive integers r and Tr → T as r → +∞. Let
µr be the Perron root of Tr and let br be the associated positive

eigenvector, normalized to satisfy the condition
n∑

j=1
(br )j = 1.
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The multidimensional Bolzano-Weierstrass Theorem
(Theorem 1.2) ensures the existence of an infinite subsequence
Tr1 ,Tr2 ,Tr3 , . . ., a real number µ′ and a vector b ∈ Rn such that
µrs → µ and brs → b. Replacing the original sequence T1,T2,T3

by a subsequence, if necessary, we may assume, without loss of
generality, that µr → µ′ and br → b as r → +∞. Then µ′ ≥ 0,

(b)j ≥ 0 for j = 1, 2, . . . , n and
n∑

j=1
(b)j = 1. Then

Tb− µ′b = lim
r→+∞

(Trbr − µrbr ) = 0.

Thus µ′ is an eigenvalue of T , and b is a non-zero non-negative
eigenvector of T associated to the eigenvalue µ′.
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It remains to show that µ′ = µ. Let ρ be a non-negative real
number. Suppose that there exists a non-zero vector v ∈ Rn such
that v ≥ 0 and Tv ≥ ρv. Then, for each integer r , Trv ≥ ρv,
because Tr >> T , and therefore ρ ≤ µr . It follows that ρ ≤ µ′,
because µ′ = lim

r→+∞
µr . Also Tb = µ′b. It follows that µ′ is the

largest real number for which there exists a non-zero vector v ∈ Rn

such that v ≥ 0 and Tv ≥ ρv. Thus µ′ = µ. The result
follows.



6. Perron-Frobenius Theory (continued)

Lemma 6.6

Let T be a non-negative n× n (square) matrix, let λ be a complex
number, let u be an non-zero n-dimensional vector with complex
coefficients, and let v be the n-dimensional vector with
non-negative real coefficients defined such that (v)j = |(u)j | for
j = 1, 2, . . . , n. Suppose that u is an eigenvector of T with
eigenvalue λ, so that Tu = λu. Then Tv ≥ |λ|v. Moreover if
T >> 0, and if Tv = |λ|v, then λ is a positive real number, and
there exists some complex number ω satisfying |ω| = 1 for which
u = ωv.
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Proof
There exist real numbers θ1, θ2, . . . , θn and ϕ such that uj = e iθj vj
for j = 1, 2, . . . , n and λ = e iϕ|λ|, where i =

√
−1. (Here

e iα = cosα + i sinα for all real numbers α.) The identity
Tu = λu ensures that

|λ|vj = e−iϕ−iθjλuj = e−iϕ−iθj
n∑

k=1

Tj ,kuk =
n∑

k=1

e−iϕ+iθk−iθjTj ,kvk .

Taking real parts, we see that

|λ|vj =
n∑

k=1

cos(−ϕ+ θk − θj)Tj ,kvk ≤
n∑

k=1

Tj ,kvk .

It follows that Tv ≥ |λ|v. Moreover if Tv = |λ|v then
cos(−ϕ+ θk − θj) = 1 for all integers j and k between 1 and n for
which vk > 0 and Tj ,k > 0.
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Now suppose that T >> 0 and Tv = |λ|v. Then v 6= 0, because
u 6= 0. Also v ≥ 0. Therefore Tv >> 0 (Lemma 6.2). It follows
that λ 6= 0 and v >> 0. Then Tj ,k > 0 and vk > 0 for all integers
j and k between 1 and n, and therefore cos(−ϕ+ θk − θj) = 1 for
all integers j and k. Applying this result with j = k , we find that
cos(−ϕ) = 1, and therefore ϕ is an integer multiple of 2π. It then
follows that θj − θk is an integer multiple of 2π for all j and k . But
these real numbers ϕ, θj and θk are only determined up to addition
of an integer multiple of 2π. Let ω = e iθ1 . Then e iϕ = 1 and and
e iθj = ω for j = 1, 2, . . . , n. It follows that λ is real and positive,
and u = ωv, where ω is a complex number satisfying |ω| = 1, as
required.



6. Perron-Frobenius Theory (continued)

Proposition 6.7

Let T be a non-negative square matrix, and let µ be the Perron
root of T . Then every eigenvalue λ of T satisfies the inequality
|λ| ≤ µ.

Proof
Let λ be an eigenvalue of T , and let u be an eigenvector of T with
eigenvalue λ. The number λ and the coefficients of the vector u
may be real or complex. Let v ∈ Rn be defined such that
(v)j = |(u)j)| for j = 1, 2, . . . , n. Now Tu = λu. It follows from
Lemma 6.6 that Tv ≥ |λ|v. The definition of the Perron root µ
then ensures that |λ| ≤ µ, as required.
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Proposition 6.8

Let T be a non-negative n × n (square) matrix, and let µ denote
the Perron root of T . Let I denote the identity n × n matrix.
Then, given any σ is a non-negative real number satisfying
µσ < 1, the matrix I − σT is invertible and (1− σT )−1 is a
non-negative matrix.

Proof
We use some basic results of linear algebra and complex analysis.
Let z be a complex number. Then the eigenvectors of the matrix
I − zT are the same as those of the matrix T , and therefore the
eigenvalues of I − zT are of the form 1− zλ as λ ranges of the
eigenvales of T .
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Now the modulus of any eigenvalue of the non-negative matrix T
is bounded above by the Perron root of T (Proposition 6.7).
Therefore the eigenvalues of I − zT have real part not less than
1− |z |µ. A square matrix is invertible if zero is not an eigenvalue
of that matrix. It follows that the matrix I − zT is invertible for all
complex numbers z satisfying µ|z | < 1.

The determinant of the matrix I − zT is a polynomial function
of z . It follows that if µ > 0 then all coefficients of the matrix
(I − zT )−1 are holomorphic functions of the complex variable z
throughout the disk {z ∈ C : |z | < µ−1}, and if µ = 0 then all
coefficients of the matrix (I − zT )−1 are holomorphic functions of
the complex variable z throughout entire complex plane. A basic
theorem of complex analysis therefore ensures that each coefficient
of the matrix (I − zT )−1 may be represented as a power series in
the complex plane z that converges for all complex numbers z
satisfying µ|z | < 1.
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Now

(1− zT )(1 + zT + z2T 2 + z3T 3 + · · ·+ zkT k) = 1− zk+1T k+1,

and thus

(1− zT )−1 = 1 + zT + z2T 2 + z3T 3 + · · ·+ zkT k

+ zk+1T k+1(I − zT )−1

when µ|z | < 1.
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Now it has already been shown that (1− zT )−1 can be represented
by a power series in z that converges whenever µ|z | < 1. we can
therefore conclude that

(1− zT )−1 = 1 + zT + z2T 2 + z3T 3 + · · ·

for all complex numbers z satisfying µ|z | < 1.
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In particular

(1− σT )−1 = 1 + σT + σ2T 2 + σ3T 3 + · · ·

for all non-negative real numbers σ satisfying µσ < 1. But each
summand on the right side of this power series representation of
(1− σT )−1 is a non-negative matrix. It follows that I − σT is
invertible and (1− σT )−1 is a non-negative matrix for all
non-negative real numbers σ satisfying σρ < 1, as required.
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Proposition 6.9

Let T be a non-negative n × n (square) matrix, let µ denote the
Perron root of T . Then the Perron root of the transpose TT is
equal to the Perron root µ of T , and there exists a non-zero vector
p ∈ Rn satisfying p ≥ 0 and pTT = µpT , where pT , the transpose
of p is the row vector components are the components of the
column vector p.
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Proof
The transpose TT of the non-negative square matrix T is itself a
non-negative square matrix with the same characteristic
polynomial as T , and thus with the same eigenvalues as T . The
Perron root of the transpose TT of T is a non-negative real
eigenvalue of TT (Proposition 6.5), and moreover it is an upper
bound on the modulus of every eigenvalue of TT (Proposition 6.7.
It follows that the non-negative square matrix T and its transpose
TT have the same Perron root. Moreover the Perron root is an
eigenvalue of TT , and therefore there exists a non-zero vector
p ∈ Rn for which p ≥ 0 and TTp = µp. Taking the transpose of
this equation, we find that pTT = µpT , as required.
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Proposition 6.10

Let T be a non-negative n × n (square) matrix, let µ denote the
Perron root of T , and let σ is a non-negative real number. Then
there exists a non-zero vector w ∈ Rn satisfying w ≥ 0 and
w >> σTw if and only if µσ < 1.

Proof
Let v ∈ Rn satisfy v >> 0, and let w = (I − σT )−1v, where I
denotes the identity n × n matrix. It follows from Proposition 6.8
that if µσ < 1 then (I − σT )−1 a non-negative matrix, and
therefore w ≥ 0. Also

w − σTw = (I − σT )w = v >> 0,

and therefore w >> σTw. We have thus shown that if µσ < 1
then there exists a vector w with the required properties.
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Conversely suppose that σ is a non-negative real number and that
w ∈ Rn is a non-zero vector for which w ≥ 0 and w >> σTw. It
follows from Proposition 6.9 that there exists a non-zero vector
p ∈ Rn satisfying p ≥ 0 and pTT = µpT , where pT denotes the
transpose of p. Then

(1− σµ)pTw = pTw − σµpTw = pT (w − σTw) > 0.

It follows that pTw > 0 and σµ < 1, as required. This completes
the proof.
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6.2. Perron’s Theorem for Positive Matrices

In 1907 Oskar Perron (1880–1975) proved a fundamental theorem
concerning the eigenvalues and eigenvectors of a positive square
matrix, in particular showing that the positive real number now
referred to as the Perron root (or Perron-Frobenius eigenvalue) of
the matrix is a simple eigenvector, with a one-dimensional
eigenspace spanned by a positive eigenvector, and that any other
eigenvalues of the matrix has a modulus strictly less than the
Perron root. In 1912, Georg Frobenius (1849-1917) generalized
Perron’s Theorem to a particular class of non-negative square
matrices that are said to be unzerlegbar (i.e., “indecomposible” or
“irreducible”). These discoveries initiated the development of a
body of results concerning non-negative square matrices that is
today referred to as Perron-Frobenius Theory
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Before stating and proving Perron’s Theorem, we review (without
proof) some standard results from linear algebra, related to the
Jordan normal form of a square matrix, that are relevant to the
proof of Perron’s Theorem.
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Let T be a linear operator defined on a finite-dimensional complex
vector space V . Then the vector space V can be decomposed as a
direct sum of subspaces that are invariant under the action of T
and cannot be further decomposed as direct sums of invariant
subspaces. Then

V = V1 ⊕ V2 ⊕ · · · ⊕ Vm

where, for each integer r between 1 and m, the linear operator T
maps the subspace Vr of V into itself. Moreover the subspace Vr

has no proper non-zero vector subspace that is invariant under the
action of T . Associated with each subspace Vr is a complex
number λr that is the unique eigenvalue of the restriction of the
linear operator T to Vr .
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The characteristic polynomial χ of T on V is defined such that
χ(z) = det(zIV − T ), where IV denotes the identity operator on
V . It can be shown that

χ(z) =
m∏
r=1

(z − λr )dr ,

where dr = dimC Vr for r = 1, 2, . . . ,m. It follows that a complex
number λ is a simple root of the characteristic polynomial χ of T
if and only if the following two conditions are satisfied: there exists
exactly one integer r between 1 and m for which λ = λr ; for this
value of r , dr = 1.
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The theory of the Jordan Normal Form ensures that each subspace
Vr has a basis of the form

e1, e2, . . . , edr ,

with the property that Te1 = λres and Tes = λres + es−1 for
1 < s ≤ dr . All eigenvectors of T contained in Vr are scalar
multiples of e1. Moreover if dr > 1 then (T − λr IVr )

2e2 = 0 but
Te2 6= λre2.

These results of linear algebra, summarized without detailed proof,
yield the result stated in the following lemma.
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Lemma 6.11

Let T be a linear operator acting on a finite-dimensional complex
vector space V , and let λ be an eigenvalue of T . Then λ is a
simple root of the characteristic polynomial of T if and only if the
following two conditions are satisfied:

the eigenspace associated with the eigenvalue λ is
one-dimensional;

if v ∈ V satisfies the identity (T − λIV )2v = 0 then Tv = λv.
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Theorem 6.12 (Perron)

Let T be a positive square matrix, and let µ be the Perron root of
T . Then the following properties are satisfied:—

(i) there exists an eigenvector of T with associated eigenvalue µ
whose coefficients are all strictly positive;

(ii) the eigenvalue µ is a simple root of the characteristic
polynomial of T , and the corresponding eigenspace is
therefore one-dimensional;

(iii) all eigenvalues λ (real or complex) of T that are distinct from
µ satisfy the inequality |λ| < µ.
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Proof
Let the positive square matrix T be an n × n matrix, and let µ
denote the Perron root of T . Proposition 6.4 establishes that the
Perron root µ of T is well-defined and is an eigenvalue of T with
which is associated an eigenvector b with positive coefficients.
Moreover Proposition 6.4 ensures that the following properties are
then satisfied:—

(iv) b >> 0 and Tb = µb;

(v) if ρ is a non-negative real number, if v is a non-zero
n-dimensional vector with non-negative coefficients, and if
Tv ≥ ρv, then ρ ≤ µ.

(vi) given any n-dimensional vector u with real coefficients for
which Tu ≥ µu, there exists a real number t for which
u = tb, and thus Tu = µu.
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Now because the coefficients of the matrix T are all real, and µ is
also a real number, the real and imaginary parts of any eigenvector
of T with associated eigenvalue µ must themselves be eigenvectors
with eigenvalue µ. The result just obtained therefore ensures that
any convex eigenvector of T with eigenvalue µ must be a complex
scalar multiple of the eigenvector b. Thus the eigenspace of T
associated with the eigenvalue µ is one-dimensional, when
considered over the field of complex numbers.
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Let I denote the identity n × n matrix, and let v be real
n-dimensional vector for which (T − µI )2v = 0. Then Tv − µv is
an eigenvector of T with associated eigenvalue µ. It follows from
property (vi) above that there must exist some real number α for
which Tv − µv = αb. Now b >> 0. It follows that if α ≥ 0 then
Tv ≥ µv. But property (vi) stated at the commencement of the
proof then ensures that v = tb for some real number t. But then
Tv = µv and α = 0. Similarly if α ≤ 0 then T (−v) ≥ µ(−v), and
this also ensures that α = 0. It follows that if v is a real
n-dimensional vector satisfying (T − µI )2v = 0 then Tv = µv.
The criterion stated in Lemma 6.11 therefore establishes that µ is
a simple root of the characteristic polynomial of T .
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We have now verified (i) and (ii). It remains to verify that all
eigenvalues λ of T distinct from µ satisfy the inequality |λ| < µ.
Now it follows from Proposition 6.7 that all eigenvalues λ of T
satisfy the inequality |λ| ≤ µ.

Now suppose that |λ| = µ. It then follows from property (vi),
stated at the commencement of the proof, that Tv = µv = |λ|v.
It then follows from Lemma 6.6 that λ is a positive real number,
and therefore λ = µ. This completes the proof of (iii), and
therefore completes the proof of the theorem.
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