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7. Game Theory and Nash Equilibria

7.1. Zero-Sum Two-Person Games

Example
Consider the following hand game. This is a zero-sum two-person
game. At each go, the two players present simultaneously either
and open hand or a fist. If both players present fists, or if both
players present open hands, then no money changes hands. If one
player presents a fist and the other player presents an open hand
then the player presenting the fist receives ten cents from the
player presenting the open hand.
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The payoff for the first player can be represented by the following
payoff matrix: (

0 −10
10 0

)
.

In this matrix the entry in the first row represent the payoffs when
the first player presents an open hand; those in the second row
represent the payoffs when the first player presents a fist. The
entries in the first column represent the payoff when the second
player presents an open hand; those in the second column
represent the payoffs when the second player presents a fist. In this
game the second player, choosing the best strategy, is always going
to play a fist, because that reduces the payoff for the first player,
whatever the first player chooses to play. Similarly the first player,
choosing the best strategy, is going to play a fist, because that
maximizes the payoff for the first player whatever the second player
does. Thus in this game, both players choosing the best strategies,
play fists.
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It should be noticed that, in this situation, if the second player
always plays a fist, the first player would not be tempted to move
from a strategy of always playing a fist in order get a better payoff.
Similarly if the first player always plays a fist, then the second
player would not be tempted to move from a strategy of always
playing a fist in order to reduce the payoff to the first player. This
is a very simple example of a Nash Equilibrium. This equilibrium
arises because the element in the second row and second column of
the payoff matrix is simultaneously the largest element in its
column and the smallest element in its row. Matrix elements with
this property as said to be saddle points of the matrix.
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Example
Now consider the game of Rock, Paper, Scissors. This game has a
long history, and versions of this game were well-established in
China and Japan in particular for many centuries.

Two players simultaneously present hand symbols representing
Rock (a closed fist), Paper (a flat hand), or Scissors (first two
fingers outstretched in a ‘V’). Paper beats Rock, Scissors beats
Paper, Rock beats Scissors. If both players present the same hand
symbol then that round is a draw.
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Ordering the strategies for the playes in the order Rock (1st),
Paper (2nd) and Scissors (3rd), the payoff matrix for the first
player is the following:— 0 −1 1

1 0 −1
−1 1 0

 .

The entry in the ith row and jth column of this payoff matrix
represents the return to the first player on a round of the game if
the first player plays strategy i and the second player plays
strategy j .
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A pure strategy would be one in which a player presents the same
hand symbol in every round. But it is not profitable for any player
in this game to adopt a pure strategy. If the first player adopts a
strategy of playing Paper, then the second player, on observing
this, would adopt a strategy of always playing Scissors, and would
beat the first player on every round. A preferable strategy, for each
player, is the mixed strategy of playing Rock, Paper and Scissors
with equal probability, and seeking to ensure that the sequence of
plays is as random as possible.
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Let us denote by M the payoff matrix above. A mixed strategy for
the first player is one in which, on any given round Rock is played
with probability p1, Paper is played with probability p2 and Scissors
is played with probability p3. The mixed strategies for the first
player can therefore be represented by points of a triangle ∆P ,
where

∆P =
{

(p1, p2, p3) ∈ R3 :

p1 ≥ 0, p2 ≥ 0, p3 ≥ 0, p1 + p2 + p3 = 1
}
.
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A mixed strategy for the second player is one in which Rock is
played with probability q1, Paper with probability q2 and Scissors
with probability q3. The mixed strategies for the second player can
therefore be represented by points of a triangle ∆Q , where

∆Q =
{

(q1, q2, q3) ∈ R3 :

q1 ≥ 0, q2 ≥ 0, q3 ≥ 0, q1 + q2 + q3 = 1
}
.
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Let p ∈ ∆P represent the mixed strategy chosen by the first player,
and q ∈ ∆Q the mixed strategy chosen by the second player, where

p = (p1, p2, p3), q = (q1, q2, q3).

Let Mij the payoff for the first player when the first player plays
strategy i and the second player plays strategy j . Then Mij is the
entry in the ith row and jth column of the payoff matrix M. In
matrix equations we consider p and q to be column vectors,
denoting their transposes by the row matrices pT and qT . The
expected payoff for the first player is then f (p,q), where

f (p,q) = pTMq =
3∑

i=1

3∑
j=1

piMijqj .
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Let p∗ = (p∗1 , p∗2 , p∗3), where

p∗1 = p∗2 = p∗3 = 1
3 .

Then p∗TM = (0, 0, 0), and therefore

f (p∗,q) = 0

for all q ∈ ∆Q . Similarly let q∗ = (q∗1 , q∗2 , q∗3), where

q∗1 = q∗2 = q∗3 = 1
3 .

Then
f (p,q∗) = 0

for all p ∈ ∆Q . Thus the inequalities

f (p,q∗) ≤ f (p∗,q∗) ≤ f (p∗,q)

are satisfied for all p ∈ ∆P and q ∈ ∆q, because each of the
quantities occurring is equal to zero.
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Were the first player to adopt a mixed strategy p, where
p = (p1, p2, p3), pi ≥ 0 for i = 1, 2, 3 and p1 + p2 + p3 = 1, the
second player could adopt mixed strategy q, where
q = (q1, q2, q3) = (p3, p1, p2). The payoff f (p,q) is then

f (p,q) = −p1q2 + p1q3 − p2q3 + p2q1 − p3q1 + p3q2

= −p2
1 + p1p2 − p2

2 + p2p3 − p2
3 + p3p1

= −1
6

(
(2p1 − p2 − p3)2 + (2p2 − p3 − p1)2

+ (2p3 − p1 − p2)2
)

≤ 0.



7. Game Theory and Nash Equilibria (continued)

Moreover if f (p,q) = 0, where q1 = p3, q2 = p1 and q3 = p2, then

(2p1 − p2 − p3)2 + (2p2 − p3 − p1)2 + (2p3 − p1 − p2)2 = 0

and therefore 2p1 = p2 + p3, 2p2 = p3 + p1 and 2p3 = p1 + p2.
But then

3p1 = 3p2 = 3p3 = p1 + p2 + p3 = 1,
and thus p = p∗. It follows that if p ∈ ∆Q and p 6= p∗ then there
exists q ∈ ∆Q for which f (p,q) < 0. Thus if the first player
adopts a mixed strategy other than the strategy p∗ in which Rock,
Paper, Scissors are played with equal probability on each round,
there is a mixed strategy for the second player that ensures that
the average payoff for the first player is negative, and thus the first
player will lose in the long run over many rounds. Thus strategy p∗
is the only sensible mixed strategy that the first player can adopt.
The corresponding strategy q∗ is the only sensible mixed strategy
that the second player can adopt. The average payoff for each
player is then equal to zero.
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7.2. Von Neumann’s Minimax Theorem

In 1920, John Von Neumann published a paper entitled “Zur
Theorie der Gesellschaftsspielle” (Mathematische Annalen, Vol.
100 (1928), pp. 295–320). The title translates as “On the Theory
of Social Games”. This paper included a proof of the following
“Minimax Theorem”, which made use of the Brouwer Fixed Point
Theorem. An alternative proof using results concerning convexity
was presented in the book On the Theory of Games and Economic
Behaviour by John Von Neumann and Oskar Morgenstern
(Princeton University Press, 1944). George Dantzig, in a paper
published in 1951, showed how the theorem could be solved using
linear programming methods (see Joel N. Franklin, Methods of
Mathematical Economics, (Springer Verlag, 1980, republished by
SIAM in 1982).
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Theorem 7.1 (Von Neumann’s Minimax Theorem)

Let M be an m × n matrix, let

∆P =
{

(p1, p2, . . . , pm) ∈ Rm : pi ≥ 0 for i = 1, 2, . . . ,m, and

m∑
i=1

pi = 1
}
,

∆Q =
{

(q1, q2, . . . , qn) ∈ Rn : qi ≥ 0 for i = 1, 2, . . . , n, and

n∑
j=1

qj = 1
}
,
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and let

f (p,q) = pTMq =
m∑
i=1

n∑
j=1

Mi ,jpiqj

for all p ∈ ∆P and q ∈ ∆Q . Then there exist p∗ ∈ ∆P and
q∗ ∈ ∆Q such that

f (p,q∗) ≤ f (p∗,q∗) ≤ f (p∗,q)

for all p ∈ ∆P and q ∈ ∆Q .
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Proof
Let f (p,q) = pTMq for all p ∈ ∆P and q ∈ ∆Q . Given q ∈ ∆Q ,
let

µP(q) = sup{f (p,q) : p ∈ ∆P}

and let
P(q) = {p ∈ ∆P : f (p,q) = µP(q)}.

Similarly given p ∈ ∆P , let

µQ(p) = inf{f (p,q) : q ∈ ∆Q}

and let
Q(p) = {q ∈ ∆Q : f (p,q) = µQ(q)}.
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An application of Berge’s Maximum Theorem (Theorem 2.23)
ensures that the functions µP : ∆P → R and µQ : ∆Q → R are
continuous, and that the correspondences P : ∆Q ⇒ ∆P and
Q : ∆P ⇒ ∆Q are non-empty, compact-valued and upper
hemicontinuous. These correspondences therefore have closed
graphs (see Proposition 2.11). Morever P(q) is convex for all
q ∈ ∆Q and Q(p) is convex for all p ∈ ∆P . Let X = ∆P ×∆Q ,
and let Φ: X ⇒ X be defined such that

Φ(p,q) = P(q)× Q(p)

for all (p,q) ∈ X . Kakutani’s Fixed Point Theorem (Theorem 5.4)
then ensures that there exists (p∗,q∗) ∈ X such that
(p∗,q∗) ∈ Φ(p∗,q∗). Then p∗ ∈ P(q∗) and q∗ ∈ Q(p∗) and
therefore

f (p,q∗) ≤ f (p∗,q∗) ≤ f (p∗,q)

for all p ∈ ∆P and q ∈ ∆Q , as required.
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7.3. Quasiconvex Functions

Definition
Let K be a convex set in some real vector space. A real-valued
function f : K → R is said to be quasiconvex if

f ((1− t)u + tv) ≤ max
(
f (u), f (v)

)
for all u, v ∈ K and for all real numbers t satisfying 0 ≤ t ≤ 1.
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Definition
Let K be a convex set in some real vector space. A real-valued
function f : K → R is said to be quasiconcave if

f ((1− t)u + tv) ≥ min
(
f (u), f (v)

)
for all u, v ∈ K and for all real numbers t satisfying 0 ≤ t ≤ 1.

Linear functionals are quasiconvex and quasiconcave.

A function f : K → R defined over a convex subset K of a real
vector space is quasiconcave if and only if the function −f is
quasiconvex.
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Lemma 7.2

Let K be a convex set in a real vector space, and let f : K → R be
a quasiconcave function. Then, for each real number s, the
preimage f −1([s,+∞)) of the interval [s,+∞) is a convex subset
of K , where

f −1([s,+∞)) = {x ∈ K : f (x) ≥ s}.

Proof
Let u, v ∈ f −1([s,+∞)), and let t be a real number satisfying
0 ≤ t ≤ 1. Then f (u) ≥ s and f (v) ≥ s. It follows from the
definition of quasiconcavity that

f ((1− t)u + tv) ≥ min
(
f (u), f (v)

)
≥ s,

and therefore (1− t)u + tv ∈ f −1([s,+∞)), as required.
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7.4. Nash Equilibria

We consider a game with n players. Each player choses a strategy
from an appropriate strategy sets. The strategies chosen by the
players in the game constitute a strategy profile. The utility, or
payoff, of the game, for each player is determined by the strategy
profile chosen by the players in the game. The technical details
involved are explored and specified in more detail in the following
discussion.
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We suppose that, in an n-player game, the ith player choses
strategies from a strategy set Si , where Si is represented as a
non-empty compact convex set in Rmi for some positive
integer mi . (The convexity requirement would typically be satisfied
in games where players can adopt mixed strategies.) We let
S = S1 × S1 × · × Sn. The elements of the set S are referred to as
strategy profiles. The strategy profile set S is a compact convex
subset of Rm, where

m = m1 + m2 + · · ·+ mn.
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For each integer i between 1 and n let us define

S−1 = S2 × S3 × S4 × · · · × Sn,

S−2 = S1 × S3 × S4 × · · · × Sn,

S−3 = S1 × S2 × S4 × · · · × Sn,
...

S−n = S1 × S2 × S3 × · · · × Sn−1,

so that
S−i = S1 × · · · × Si−1 × Si+1 × · · · × Sn

for all integers i between 1 and n (making the appropriate
interpretation of the right hand side of this expression, as specified
above, in the cases i = 1 and i = n). The set S−i is then a
compact convex subset of Rm−mi for i = 1, 2, . . . , n.
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We define projections πi : S → Si and π−i : S → S−i for
i = 1, 2, . . . , n in the obvious fashion so that

πi (x1, x2, . . . , xn) = xi

and

π−1(x1, x2, . . . , xn) = (x2, x3, x4, . . . , xn),
π−2(x1, x2, . . . , xn) = (x1, x3, x4, . . . , xn),
π−3(x1, x2, . . . , xn) = (x1, x2, x4, . . . , xn),

...
π−n(x1, x2, . . . , xn) = (x1, x2, x3, . . . , xn−1).
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We now consider the utility, or payoff, of the game for the players.
We suppose that, for each integer i between 1 and n, the utility of
the game, from the perspective of the ith player, is determined by
a utility function ui : Si × S−i → R defined so that, for each
element x−i of S−i representing a choice of strategies by players of
the game other than the ith player, the real number ui (xi , x−i )
represents the utility, or payoff, for the ith player on adopting the
strategy i. We impose the following two requirements on these
utility functions:

the utility function ui : Si × S−i → R is continuous on
Si × S−i ;
for fixed x−i , the function sending xi to ui (xi , x−i ) is
quasiconcave on Si , and thus

ui ((1− t)x′i + tx′′i , x−i ) ≥ min
(
ui (x′i , x−i ), ui (x′′i , x−i )

)
for all x′i , x′′i ∈ Si , x−i ∈ S−i and real numbers t satisfying
0 ≤ t ≤ 1.
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Let x′i and x′′i elements of the strategy set Si , representing
strategies for the ith player, and let x−i be an element of S−i ,
representing a profile of strategies adopted by the other players.
Then the ith player actively prefers the outcome of strategy
profile x′′i to that of strategy profile x′i if and only if

ui (x′i , x−i ) < ui (x′′i , x−i ).

The ith player is indifferent between the outcomes of the strategy
profiles x′i and x′′i if and only if

ui (x′i , x−i ) = ui (x′′i , x−i ).
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Definition
In an n-player game, let S1,S2, . . . ,Sn denote the strategy sets for
the players in the game, and let ui : Si × S−i → R denote the
utility function for the ith player in the game (where the set S−i is
defined for i = 1, 2, . . . , n as described above). A strategy profile

(x∗1, x∗2, . . . , x∗n)

is said to be a Nash equilibrium for the game if

ui (xi , x∗−i ) ≤ ui (x∗i , x∗−i ).

for all integers i between 1 and n and for all xi ∈ Si .
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Given any element x−i of S−i (representing a choice of strategies
that might be adopted by the other players of the game), there will
be a subset Bi (x−i ) of Si that represents the best strategies that
the ith player can adopt when the other players are adopting the
strategies represented by the element x−i of S−i . These best
strategies are those strategies that maximize the utility function for
the ith player, and we denote the value of the utility function ui for
those best strategies by bi (x−i ). Accordingly

bi (x−i ) = sup{ui (xi , x−i ) : xi ∈ Si},
Bi (x−i ) = {xi ∈ Si : ui (xi , x−i ) = b(x−i )}.

We obtain in this fashion a single-valued function bi : S−i → Si
and a correspondence Bi : S−i ⇒ Si .
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Now, for each integer i between 1 and n, the constant
correspondence that sends each element of S−i to the strategy
set Si is clearly both upper hemicontinuous and lower
hemicontinuous. The function ui : Si × S−i → R is required to be
continuous. Moreover, for each xi−1 ∈ S−i , the Extreme Value
Theorem ensures that the set Bi (x−i ) is non-empty, and the
continuity of the utility function ui ensures that Bi (x−i ) is a closed
subset of the compact set Si . It follows that the the
correspondence B : S−i ⇒ Si is both non-empty and compact. It
therefore follows from Berge’s Maximum Theorem (Theorem 2.23)
that the function b : S−i → R is continuous on S−i , Bi (x−i ) is a
compact subset of Si for all x−i ∈ S−i , and the correspondence
B : S−i ⇒ Si is upper hemicontinuous in S−i . Now every upper
hemicontinuous closed-valued correspondence has a closed graph
(Proposition 2.11). We conclude therefore that the correspondence
B : S−i ⇒ Si has a closed graph.
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Now, for each i , and for each x−i ∈ S−i , the quasiconcavity
requirement imposed on the utility function i ensures that the
non-empty compact set Bi (x−i ) is convex. Indeed the definition of
bi (x−i ) and Bi (x−i ) ensures that ui (z, x−i ) ≤ bi (x−i ) for all
z ∈ Si , and ui (z, x−i ) = bi (x−i ) for all z ∈ Bi (x−i ). It follows that

Bi (x−i ) = {z ∈ Si : ui (z, x−i ) ≥ b(x−i )}.

The quasiconcavity condition on the function ui ensures that, for
all z, z′ ∈ Bi (x−i ) and for all real numbers t satisfing 0 ≤ t ≤ 1,

ui ((1− t)z′ + tz′′, x−i ) ≥ min
(
ui (z′, x−i ), ui (z′′, x−i )

)
≥ b(x−i ),

and therefore (1− t)z′ + tz′′ ∈ Bi (x−i ). (This justification of the
convexity of Bi (x−i ) essentially repeats the argument presented in
the proof of Lemma 7.2.)
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We have now shown that, for each integer i between 1 and n, the
correspondence Bi : S−i → Si that assigns to each element x−i of
S−i the set of best strategies that the ith player can adopt in the
event that the other players adopt the strategies represented by
x−i has closed graph, and maps each element x−i of S−i to a
subset Bi (x−i ) that is non-empty, compact and convex.

Now the Kakutani Fixed Point Theorem (Theorem 5.4) applies to
correspondences with closed graph that map elements of a
non-empty, compact and convex subset to non-empty convex
subsets of that set. Thus in order to obtain a proof of the
existence of Nash equilibria that utilizes the Kakutani Fixed Point
Theorem, we must construct such a correspondence from a
non-empty compact convex set to itself.
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We recall that the strategy profile set S is defined to be the
Cartesian product S1 × S2 × · · · × Sn of the strategy sets for the
players of the game. Let Φ: S ⇒ S be the correspondence from
the strategy profile set S to itself defined so that

Φ(x) =
(
B1(π−1(x)),B2(π−2(x)), · · ·Bn(π−n(x))

)
for i = 1, 2, . . . , n. Then

{(x, y) ∈ S × S : y ∈ Φ(x)} =
n⋂

i=1
Gi ,

where
Gi = {(x, y) ∈ S × S : πi (y) ∈ Bi (π−i (x))}

for i = 1, 2, . . . , n.
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Now, for each i , the set

{(x−i , yi ) ∈ S−i × Si : yi ∈ Bi (x−i )}

is closed in S−i × Si , because the correspondence Bi : S−i ⇒ Si has
closed graph. It follows that each set Gi is closed in S × S , because
the set Gi is the preimage of a closed set under the continuous
mapping from S × S to S−i × Si that sends each ordered pair (x, y)
in S × S to (π−i (x), πi (y)). The graph of the correspondence Φ is
the intersection of the closed sets G1,G2, . . . ,Gn. It is therefore
itself a closed set. Thus the correspondence Φ: S ⇒ S has closed
graph. Moreover S is a non-empty compact convex set, and Φ(x)
is a non-empty convex subset of S for all x ∈ S . It follows from
the Kakutani Fixed Point Theorem (Theorem 5.4) that there exists
a fixed point x∗ for the correspondence Φ. This fixed point is
strategy profile that satisfies x∗ ∈ Φ(x∗).
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Let x∗i = πi (x∗) and x∗−i = π−i (x∗) for i = 1, 2, . . . , n. Then
x∗i ∈ Bi (x∗−i ) for i = 1, 2, . . . , n, because x∗ ∈ Φ(x∗). It follows
from the definition of Bi (x∗−i that

ui (xi , x∗−i ) ≤ ui (x∗i , x∗−i )

for all integers i between 1 and n and for all xi ∈ Si . The strategy
profile (x∗1, x∗2, . . . , x∗n) therefore represents a Nash equilibrium for
the game.
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Theorem 7.3 (Existence of Nash Equilibria)
Consider an n-person game in which, for each integer i between 1
and n, the strategy set Si is a compact convex subset of a
Euclidean space, and in which the utility function
ui : Si × Si−1 → R that determines the utility for the ith player,
given a strategy profile x−i representing strategies chosen by the
other players, is a continuous function that, for any fixed
x−i ∈ S−i , determines a quasiconcave function mapping xi to
ui (xi , x−i ) as xi varies over the strategy set Si . Then there exists a
Nash equilibrium (x∗1, x∗2, . . . , x∗n) for the game. Accordingly

ui (xi , x∗−i ) ≤ ui (x∗i , x∗−i )

for all integers i between 1 and n and for all xi ∈ Si .
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