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1.1. Basic Properties of Vectors and Norms

We denote by Rn the set consisting of all n-tuples (x1, x2, . . . , xn)
of real numbers. The set Rn represents n-dimensional Euclidean
space (with respect to the standard Cartesian coordinate system).
Let x and y be elements of Rn, where

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn),

and let λ be a real number. We define

x + y = (x1 + y1, x2 + y2, . . . , xn + yn),

x− y = (x1 − y1, x2 − y2, . . . , xn − yn),

λx = (λx1, λx2, . . . , λxn),

x · y = x1y1 + x2y2 + · · ·+ xnyn,

|x| =
√
x21 + x22 + · · ·+ x2n .
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The quantity x · y is the scalar product (or inner product) of x and
y, and the quantity |x| is the Euclidean norm of x. Note that
|x|2 = x · x. The Euclidean distance between two points x and y of
Rn is defined to be the Euclidean norm |y − x| of the vector y − x.

Let x and y be elements in Rn, Let p(t) = |tx + y|2 for all real
numbers t. Then

p(t) = (tx + y) . (tx + y)

= t2|x|2 + 2tx . y + |y|2

for all real numbers t. But p(t) ≥ 0 for all real numbers t. It
follows that |x · y| ≤ |x||y|. This inquality is known as Schwarz’s
Inequality.
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Moreover, given any elements x and y of Rn,

|x + y|2 = (x + y).(x + y) = |x|2 + |y|2 + 2x · y
≤ |x|2 + |y|2 + 2|x||y| = (|x|+ |y|)2.

It follows that |x + y| ≤ |x|+ |y|. It follows from this inequality that

|x− z| ≤ |x− y|+ |y − z|

for all x, y, z ∈ Rn. This identity is known as the Triangle
Inequality. It expresses the geometric result that the length of any
side of a triangle in a Euclidean space of any dimension is the sum
of the lengths of the other two sides of that triangle.
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Definition

A sequence x1, x2, x3, . . . of points in Rn is said to converge to a
point p if and only if the following criterion is satisfied:—

given any real number ε satisfying ε > 0 there exists
some positive integer N such that |xj − p| < ε whenever
j ≥ N.

We refer to p as the limit lim
j→+∞

xj of the sequence x1, x2, x3, . . . .
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Lemma 1.1

Let p be a point of Rn, where p = (p1, p2, . . . , pn). Then a
sequence x1, x2, x3, . . . of points in Rn converges to p if and only
if the ith components of the elements of this sequence converge to
pi for i = 1, 2, . . . , n.

A proof of Lemma 1.1 is to be found in Appendix A.
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Definition

Let x1, x2, x3, . . . be an infinite sequence of points in n-dimensional
Euclidean space Rn. A subsequence of this infinite sequence is a
sequence of the form xj1 , xj2 , xj3 , . . . where j1, j2, j3, . . . is an infinite
sequence of positive integers with

j1 < j2 < j3 < · · · .
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Theorem 1.2 (Multidimensional Bolzano-Weierstrass
Theorem)

Every bounded sequence of points in a Euclidean space has a
convergent subsequence.

A proof of Theorem 1.2 is to be found in Appendix A.
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Definition

Let X be a subset of Rn. Given a point p of X and a non-negative
real number r , the open ball BX (p, r) in X of radius r about p is
defined to be the subset of X defined so that

BX (p, r) = {x ∈ X : |x− p| < r}.

(Thus BX (p, r) is the set consisting of all points of X that lie
within a sphere of radius r centred on the point p.)

Definition

Let X be a subset of Rn. A subset V of X is said to be open in X
if, given any point p of V , there exists some strictly positive real
number δ such that BX (p, δ) ⊂ V , where BX (p, δ) is the open ball
in X of radius δ about on the point p. The empty set ∅ is also
defined to be an open set in X .
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Lemma 1.3

Let X be a subset of Rn, and let p be a point of X . Then, for any
positive real number r , the open ball BX (p, r) in X of radius r
about p is open in X .

A proof of Lemma 1.3 is to be found in Appendix A.
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Proposition 1.4

Let X be a subset of Rn. The collection of open sets in X has the
following properties:—

(i) the empty set ∅ and the whole set X are both open in X ;

(ii) the union of any collection of open sets in X is itself open in
X ;

(iii) the intersection of any finite collection of open sets in X is
itself open in X .

A proof of Proposition 1.4 is to be found in Appendix A.
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Proposition 1.5

Let X be a subset of Rn, and let U be a subset of X . Then U is
open in X if and only if there exists some open set V in Rn for
which U = V ∩ X .

A proof of Proposition 1.5 is to be found in Appendix A.
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Lemma 1.6

A sequence x1, x2, x3, . . . of points in Rn converges to a point p if
and only if, given any open set U which contains p, there exists
some positive integer N such that xj ∈ U for all j satisfying j ≥ N.

A proof of Lemma 1.6 is to be found in Appendix A.
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Definition

Let X be a subset of Rn. A subset F of X is said to be closed in X
if and only if its complement X \ F in X is open in X . (Recall that
X \ F = {x ∈ X : x 6∈ F}.)
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Proposition 1.7

Let X be a subset of Rn. The collection of closed sets in X has the
following properties:—

(i) the empty set ∅ and the whole set X are both closed in X ;

(ii) the intersection of any collection of closed sets in X is itself
closed in X ;

(iii) the union of any finite collection of closed sets in X is itself
closed in X .

A proof of Proposition 1.7 is to be found in Appendix A.
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Lemma 1.8

Let X be a subset of Rn, and let F be a subset of X which is
closed in X . Let x1, x2, x3, . . . be a sequence of points of F which
converges to a point p of X . Then p ∈ F .

A proof of Lemma 1.8 is to be found in Appendix A.
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Definition

Let X and Y be a subsets of Rm and Rn respectively. A function
f : X → Y from X to Y is said to be continuous at a point p of X
if and only if the following criterion is satisfied:—

given any strictly positive real number ε, there exists
some strictly positive real number δ such that
|f (x)− f (p)| < ε whenever x ∈ X satisfies |x− p| < δ.

The function f : X → Y is said to be continuous on X if and only
if it is continuous at every point p of X .
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Lemma 1.9

Let X , Y and Z be subsets of Rm, Rn and Rk respectively, and let
f : X → Y and g : Y → Z be functions satisfying f (X ) ⊂ Y .
Suppose that f is continuous at some point p of X and that g is
continuous at f (p). Then the composition function g ◦ f : X → Z
is continuous at p.

A proof of Lemma 1.9 is to be found in Appendix A.
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Lemma 1.10

Let X and Y be a subsets of Rm and Rn respectively, and let
f : X → Y be a continuous function from X to Y . Let
x1, x2, x3, . . . be a sequence of points of X which converges to
some point p of X . Then the sequence f (x1), f (x2), f (x3), . . .
converges to f (p).

A proof of Lemma 1.10 is to be found in Appendix A.

Let X and Y be a subsets of Rm and Rn respectively, and let
f : X → Y be a function from X to Y . Then

f (x) = (f1(x), f2(x), . . . , fn(x))

for all x ∈ X , where f1, f2, . . . , fn are functions from X to R,
referred to as the components of the function f .
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Proposition 1.11

Let X and Y be a subsets of Rm and Rn respectively, and let
p ∈ X . A function f : X → Y is continuous at the point p if and
only if its components are all continuous at p.

A proof of Proposition 1.11 is to be found in Appendix A.
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Proposition 1.12

Let X be a subset of Rn, and let f : X → R and g : X → R be
continuous functions from X to R. Then the functions f + g ,
f − g and f · g are continuous. If in addition g(x) 6= 0 for all
x ∈ X then the quotient function f /g is continuous.

A proof of Proposition 1.12 is to be found in Appendix A.



1. Review of Basic Results of Analysis in Euclidean Spaces (continued)

Lemma 1.13

Let X be a subset of Rm, let f : X → Rn be a continuous function
mapping X into Rn, and let |f | : X → R be defined such that
|f |(x) = |f (x)| for all x ∈ X . Then the real-valued function |f | is
continuous on X .

A proof of Proposition 1.13 is to be found in Appendix A.
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Given any function f : X → Y , we denote by f −1(V ) the preimage
of a subset V of Y under the map f , defined by
f −1(V ) = {x ∈ X : f (x) ∈ V }.

Proposition 1.14

Let X and Y be subsets of Rm and Rn, and let f : X → Y be a
function from X to Y . The function f is continuous if and only if
f −1(V ) is open in X for every open subset V of Y .

A proof of Proposition 1.14 is to be found in Appendix A.

Let X be a subset of Rn, let f : X → R be continuous, and let c
be some real number. Proposition 1.14 ensures that the sets
{x ∈ X : f (x) > c} and {x ∈ X : f (x) < c} are open in X .
Moreover given real numbers a and b satisfying a < b, the set
{x ∈ X : a < f (x) < b} is open in X .
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Corollary 1.15

Let X and Y be subsets of Rn and Rm respectively, and let
ϕ : X → Y be a continuous function from X to Y . Then ϕ−1(F )
is closed in X for every subset F of Y that is closed in Y .

A proof of Corollary 1.15 is to be found in Appendix A.
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Lemma 1.16

Let X be a closed subset of n-dimensional Euclidean space Rn.
Then a subset of X is closed in X if and only if it is closed in Rn.

A proof of Lemma 1.16 is to be found in Appendix A.
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1.3. The Multidimensional Extreme Value Theorem

Theorem 1.17 (The Multidimensional Extreme Value
Theorem)

Let X be a non-empty closed bounded set in Rm, and let
f : X → R be a continuous real-valued function defined on X .
Then there exist points u and v of X such that
f (u) ≤ f (x) ≤ f (v) for all x ∈ X .

A proof of Theorem 1.17 is to be found in Appendix A.
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1.4. The Glueing Lemma

The following result, together with its generalizations, is sometimes
referred to as the Glueing Lemma.

Lemma 1.18 (Glueing Lemma)

Let ϕ : X → Rn be a function mapping a subset X of Rm into Rn.
Let F1,F2, . . . ,Fk be a finite collection of subsets of X such that
Fi is closed in X for i = 1, 2, . . . , k and

F1 ∪ F2 ∪ · · · ∪ Fk = X .

Then the function ϕ is continuous on X if and only if the
restriction of ϕ to Fi is continuous on Fi for i = 1, 2, . . . , k.
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Proof
Suppose that ϕ : X → Rn is continuous. Then it follows directly
from the definition of continuity that the restriction of ϕ to each
subset of X is continuous on that subset. Therefore the restriction
of ϕ to Fi is continuous on Fi for i = 1, 2, . . . , k .
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Conversely we must prove that if the restriction of the function ϕ
to Fi is continuous on Fi for i = 1, 2, . . . , k then the function
ϕ : X → Rm is continuous. Let p be a point of X , and let some
positive real number ε be given. Then there exist positive real
numbers δ1, δ2, . . . δk satisfying the following conditions:—

(i) if p ∈ Fi , where 1 ≤ i ≤ k , and if x ∈ Fi satisfies |x− p| < δi
then |ϕ(x)− ϕ(p)| < ε;

(ii) if p 6∈ Fi , where 1 ≤ i ≤ k , and if x ∈ X satisfies |x− p| < δi
then x 6∈ Fi .

Indeed the continuity of the function ϕ on each set Fi ensures that
δi may be chosen to satisfy (i) for each integer i between 1 and k
for which p ∈ Fi . Also the requirement that Fi be closed in X
ensures that X \ Fi is open in X and therefore δi may be chosen to
to satisfy (ii) for each integer i between 1 and k for which p 6∈ Fi .
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Let δ be the minimum of δ1, δ2, . . . , δk . Then δ > 0. Let x ∈ X
satisfy |x− p| < δ. If p 6∈ Fi then the choice of δi ensures that if
x 6∈ Fi . But X is the union of the sets F1,F2, . . . ,Fk , and therefore
there must exist some integer i between 1 and k for which x ∈ Fi .
Then p ∈ Fi , and the choice of δi ensures that |ϕ(x)− ϕ(p)| < ε.
We have thus shown that |ϕ(x)− ϕ(p)| < ε for all points x of X
that satisfy |x− p| < δ. It follows that ϕ : X → Rn is continuous,
as required.
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1.5. Lebesgue Numbers

Definition

Let X be a subset of n-dimensional Euclidean space Rn. A
collection of subsets of Rn is said to cover X if and only if every
point of X belongs to at least one of these subsets.

Definition

Let X be a subset of n-dimensional Euclidean space Rn. An open
cover of X is a collection of subsets of X that are open in X and
cover the set X .
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Proposition 1.19

Let X be a closed bounded set in n-dimensional Euclidean space,
and let V be an open cover of X . Then there exists a positive real
number δL with the property that, given any point u of X , there
exists a member V of the open cover V for which

{x ∈ X : |x− u| < δL} ⊂ V .

Proof
Let

BX (u, δ) = {x ∈ X : |x− u| < δ}

for all u ∈ X and for all positive real numbers δ. Suppose that
there did not exist any positive real number δL with the stated
property.
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Then, given any positive number δ, there would exist a point u of
X for which the set BX (u, δ) would not be wholly contained within
any open set V belonging to the open cover V. Consequently there
would exist an infinite sequence

u1,u2,u3, . . .

of points of X with the property that, for each positive integer j ,
the set BX (uj , 1/j) would not be wholly contained within any open
set V belonging to the open cover V. The multidimensional
Bolzano-Weierstrass Theorem (Theorem 1.2) would then ensure
the existence of a convergent subsequence

uj1 ,uj2 ,uj3 , . . .

of this infinite sequence.
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Let p be the limit of this convergent subsequence. Then the
point p would then belong to X , because X is closed (see
Lemma 1.8). But then the point p would belong to an open set V
belonging to the open cover V. It would then follow from the
definition of open sets that there would exist a positive real
number δ for which BX (p, 2δ) ⊂ V . Let j = jk for a positive
integer k large enough to ensure that both 1/j < δ and
uj ∈ BX (p, δ). The Triangle Inequality would then ensure that
every point of X within a distance 1/j of the point uj would lie
within a distance 2δ of the point p, and therefore

BX (uj , 1/j) ⊂ BX (p, 2δ) ⊂ V .
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But we supposed that the point uj was chosen so as to ensure that
the set BX (uj , 1/j) was not wholly contained within any open
set V belonging to the open cover V. Thus a logical contradiction
as resulted from the assumption that there is no positive real
number δL with the property that, given any point u of X , the set
BX (u, δL) is not wholly contained within any open set belonging to
the open cover V. Consequently some positive real number δL
satisfying this property must exist, and thus the required result has
been proved.
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Definition

Let X be a subset of n-dimensional Euclidean space, and let V be
an open cover of X . A positive real number δL is said to be a
Lebesgue number for the open cover V if, given any point p of X ,
there exists some member V of the open cover V for which

{x ∈ X : |x− p| < δL} ⊂ V .

Proposition 1.19 ensures that, given any open cover of a closed
bounded subset of n-dimensional Euclidean space, there exists a
positive real number that is a Lebesgue number for that open
cover.
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Definition

The diameter diam(A) of a bounded subset A of n-dimensional
Euclidean space is defined so that

diam(A) = sup{|x− y| : x, y ∈ A}.

It follows from this definition that diam(A) is the smallest real
number K with the property that |x− y| ≤ K for all x, y ∈ A.
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Lemma 1.20

Let X be a bounded subset of n-dimensional Euclidean space, and
let δ be a positive real number. Then there exists a finite collection
A1,A2, . . . ,As of subsets of X such that the diam(Ai ) < δ for
i = 1, 2, . . . , s and

X = A1 ∪ A2 ∪ · · · ∪ Ak .

Proof
Let b be a real number satisfying 0 <

√
n b < δ and, for each

n-tuple (j1, j2, . . . , jn) of integers, let H(j1,j2,...,jn) denote the
hypercube in Rn defined such that

H(j1,j2,...,jn) = {(x1, x2, . . . , xn) ∈ Rn :

jib ≤ xi ≤ (ji + 1)b for i = 1, 2, . . . , n}.
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Note that if u and v are points of H(j1,j2,...,jn) for some n-tuple
(j1, j2, . . . , jn) of integers then |ui − vi | < b for i = 1, 2, . . . , n, and
therefore |u− v| ≤

√
n b < δ. Therefore the diameter of each

hypercube H(j1,j2,...,jn) is less than δ.
The boundedness of the set X ensures that there are only finitely
many n-tuples (j1, j2, . . . , jn) of integers for which X ∩H(j1,j2,...,jn) is
non-empty. It follows that X is covered by a finite collection
A1,A2, . . . ,Ak of subsets of X , where each of these subsets is of
the form X ∩H(j1,j2,...,jn) for some n-tuple (j1, j2, . . . , jn) of integers.
These subsets all have diameter less than δ. The result follows.
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Definition

Let V and W be open covers of some subset X of a Euclidean
space. Then W is said to be a subcover of V if and only if every
open set belonging to W also belongs to V.

Definition

A subset X of a Euclidean space is said to be compact if and only
if every open cover of X possesses a finite subcover.
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Theorem 1.21 (The Multidimensional Heine-Borel Theorem)

A subset of n-dimensional Euclidean space Rn is compact if and
only if it is both closed and bounded.

Proof
Let X be a compact subset of Rn and let

Vj = {x ∈ X : |x| < j}

for all positive integers j . Then the sets V1,V2,V3, . . . constitute
an open cover of X . This open cover has a finite subcover, and
therefore there exist positive integers j1, j2, . . . , jk such that

X ⊂ Vj1 ∪ Vj2 ∪ · · · ∪ Vjk .

Let M be the largest of the positive integers j1, j2, . . . , jk . Then
|x| ≤ M for all x ∈ X . Thus the set X is bounded.



1. Review of Basic Results of Analysis in Euclidean Spaces (continued)

Let q be a point of Rn that does not belong to X , and let

Wj =

{
x ∈ X : |x− q| > 1

j

}
for all positive integers j . Then the sets W1,W2,W3, . . . constitute
an open cover of X . This open cover has a finite subcover, and
therefore there exist positive integers j1, j2, . . . , jk such that

X ⊂Wj1 ∪Wj2 ∪ · · · ∪Wjk .

Let δ = 1/M, where M is the largest of the positive integers
j1, j2, . . . , jk . Then |x− q| ≥ δ for all x ∈ X and thus the open ball
of radius δ about the point q does not intersect the set X . We
conclude that the set X is closed. We have now shown that every
compact subset of Rn is both closed and bounded.
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We now prove the converse. Let X be a closed bounded subset of
Rn, and let V be an open cover of X . It follows from
Proposition 1.19 that there exists a Lebesgue number δL for the
open cover V. It then follows from Lemma 1.20 that there exist
subsets A1,A2, . . . ,As of X such that diam(Ai ) < δL for
i = 1, 2, . . . , s and

X = A1 ∪ A2 ∪ · · · ∪ As .
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We may suppose that Ai is non-empty for i = 1, 2, . . . , s (because
if Ai = ∅ then Ai could be deleted from the list). Choose pi ∈ Ai

for i = 1, 2, . . . , s. Then Ai ⊂ BX (pi , δL) for i = 1, 2, . . . , s. The
definition of the Lebesgue number δL then ensures that there exist
members V1,V2, . . . ,Vs of the open cover V such that
BX (pi , δL) ⊂ Vi for i = 1, 2, . . . , s. Then Ai ⊂ Vi for
i = 1, 2, . . . , s, and therefore

X ⊂ V1 ∪ V2 ∪ · · · ∪ Vs .

Thus V1,V2, . . . ,Vs constitute a finite subcover of the open
cover U . We have therefore proved that every closed bounded
subset of n-dimensional Euclidean space is compact, as
required.
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