MAU34804—Fixed Point Theorems and Economic Equilibria
School of Mathematics, Trinity College Hilary Term 2022
Appendix D: Further Results Concerning Barycentric Subdivision

David R. Wilkins

D. Further Results Concerning Barycentric Subdivision

D.1. The Barycentric Subdivision of a Simplex

Proposition D.1

Let σ be a simplex in \mathbb{R}^N with vertices $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_q$, and let m_0, m_1, \dots, m_r be integers satisfying

$$0 \leq m_0 < m_1 < \cdots < m_r \leq q.$$

Let ρ be the simplex in \mathbb{R}^N with vertices $\hat{\tau}_0, \hat{\tau}_1, \ldots, \hat{\tau}_r$, where $\hat{\tau}_k$ denotes the barycentre of the simplex τ_k with vertices $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_{m_k}$ for $k = 1, 2, \ldots, r$. Then the simplex ρ is the set consisting of all points of \mathbb{R}^N that can be represented in the form $\sum_{j=0}^q t_j \mathbf{v}_j$, where t_0, t_1, \ldots, t_q are real numbers satisfying the following conditions:

(i)
$$0 \le t_i \le 1$$
 for $j = 0, 1, ..., q$;

(ii)
$$\sum_{j=0}^{q} t_j = 1;$$

- (iii) $t_0 \geq t_1 \geq \cdots \geq t_q$;
- (iv) $t_j = t_{m_0}$ for all integers j satisfying $j \leq m_0$;
- (v) $t_j = t_{m_k}$ for all integers j and k satisfying $0 < k \le r$ and $m_{k-1} < j \le m_k$;
- (vi) $t_j = 0$ for all integers j satisfying $j > m_r$.

Moreover the interior of the simplex ρ is the set consisting of all points of \mathbb{R}^N that can be represented in the form $\sum_{j=0}^q t_j \mathbf{v}_j$, where t_0, t_1, \ldots, t_q are real numbers satisfying conditions (i)–(iv) above together with the following extra condition:

(vii) $t_{m_{k-1}} > t_{m_k} > 0$ for all integers k satisfying $0 < k \le r$.

Proof

Let $\mathbf{w}_k = \hat{\tau}_k$ for $k = 0, 1, \dots, r$. Then

$$\mathbf{w}_k = \frac{1}{m_k + 1} \sum_{j=0}^{m_k} \mathbf{v}_j.$$

Let $\mathbf{x} \in \rho$, and let the real numbers u_0, u_1, \ldots, u_r be the barycentric coordinates of the point \mathbf{x} with respect to the vertices $\mathbf{w}_0, \mathbf{w}_1, \ldots, \mathbf{w}_r$ of ρ , so that $0 \leq u_k \leq 1$ for $k = 0, 1, \ldots, r$, $\sum_{k=0}^r u_k \mathbf{w}_k = \mathbf{x}, \text{ and } \sum_{k=0}^r u_k = 1.$

Also let

$$K(j) = \{k \in \mathbb{Z} : 0 \le k \le r \text{ and } m_k \ge j\}$$

for $j=0,1,\ldots,q$. Then $\mathbf{x}=\sum\limits_{i=0}^{q}t_{j}\mathbf{v}_{j}$, where

$$t_j = \sum_{k \in K(j)} \frac{u_k}{m_k + 1}$$

when $0 \le j \le m_r$, and $t_j = 0$ when $m_r < j \le q$.

Moreover

$$\sum_{j=0}^{q} t_{j} = \sum_{j=0}^{m_{r}} \sum_{k \in K(j)} \frac{u_{k}}{m_{k} + 1} = \sum_{(j,k) \in L} \frac{u_{k}}{m_{k} + 1}$$
$$= \sum_{k=0}^{r} \sum_{j=0}^{m_{k}} \frac{u_{k}}{m_{k} + 1} = \sum_{k=0}^{r} u_{k} = 1,$$

where

$$L = \{(j,k) \in \mathbb{Z}^2 : 0 \le j \le q, \ 0 \le k \le r \text{ and } j \le m_k\}.$$

Now $t_j \geq 0$ for j = 0, 1, ..., q, because $u_k \geq 0$ for k = 0, 1, ..., r, and therefore

$$0 \leq t_j \leq \sum_{j=0}^q t_j = 1.$$

Also $t_{j'} \leq t_j$ for all integers j and j' satisfying $0 \leq j < j' \leq m_r$, because $K(j') \subset K(j)$. If $0 \leq j \leq m_0$ then $K(j) = K(m_0)$, and therefore $t_j = t_{m_0}$. Similarly if $0 < k \leq r$, and $m_{k-1} < j \leq m_k$ then $K(j) = K(m_k)$, and therefore $t_j = t_{m_k}$. Thus the real numbers t_0, t_1, \ldots, t_k satisfy conditions (i)–(vi) above.

Now let t_0, t_1, \ldots, t_q be real numbers satisfying conditions (i)-(vi), let

$$u_r = (m_r + 1)t_{m_r}$$

and

$$u_k = (m_k + 1)(t_{m_k} - t_{m_{k+1}})$$

for k = 0, 1, ..., r - 1. Then

$$t_{m_k} = \sum_{k'=k}^r \frac{u_{k'}}{m_{k'}+1}$$

for k = 0, 1, ..., r. Also $u_k \ge 0$ for k = 0, 1, ..., r, and

$$\sum_{k=0}^{r} u_{k} = \sum_{k=0}^{r-1} (m_{k} + 1)(t_{m_{k}} - t_{m_{k+1}}) + (m_{r} + 1)t_{m_{r}}$$

$$= (m_{0} + 1)t_{m_{0}} + \sum_{k=1}^{r-1} (m_{k} + 1)t_{m_{k}} - \sum_{k=0}^{r-2} (m_{k} + 1)t_{m_{k+1}}$$

$$- (m_{r-1} + 1)t_{m_{r}} + (m_{r} + 1)t_{m_{r}}$$

$$= (m_{0} + 1)t_{m_{0}} + \sum_{k=1}^{r-1} (m_{k} + 1)t_{m_{k}} - \sum_{k=1}^{r-1} (m_{k-1} + 1)t_{m_{k}}$$

$$+ (m_{r} - m_{r-1})t_{m_{r}}$$

$$= (m_{0} + 1)t_{m_{0}} + \sum_{k=1}^{r} (m_{k} - m_{k-1})t_{m_{k}},$$

But

$$\sum_{j=0}^{q} t_q = \sum_{j=0}^{m_0} t_j + \sum_{k=1}^{r} \sum_{j=m_{k-1}+1}^{m_k} t_j$$

$$= (m_0 + 1)t_{m_0} + \sum_{k=1}^{r} (m_k - m_{k-1})t_{m_k},$$

because conditions (i)-(vi) satisfied by the real numbers t_0, t_1, \ldots, t_q ensure that $t_j = t_{m_0}$ when $0 \le j \le m_0$, $t_j = t_{m_k}$ when $1 \le k \le r$, and $m_{k-1} < j \le m_k$ and $t_j = 0$ when $j > m_r$. Thus

$$\sum_{k=0}^{r} u_k = (m_0 + 1)t_{m_0} + \sum_{k=1}^{r} (m_k - m_{k-1})t_{m_k} = \sum_{i=0}^{q} t_i = 1.$$

It follows that u_0, u_1, \ldots, u_r are the barycentric coordinates of a point of the simplex with vertices $\mathbf{w}_0, \mathbf{w}_1, \ldots, \mathbf{w}_r$.

Moreover

$$t_j = \sum_{k \in K(j)} \frac{u_k}{m_k + 1}$$

for $j = 0, 1, \dots, q$, and therefore

$$\sum_{k=0}^{r} u_k \mathbf{w_k} = \sum_{k=0}^{r} \sum_{j=0}^{m_k} \frac{u_k}{m_k + 1} \mathbf{v}_j$$

$$= \sum_{(j,k)\in L} \frac{u_k}{m_k + 1} \mathbf{v}_j$$

$$= \sum_{j=0}^{q} \sum_{k \in K(j)} \frac{u_k}{m_k + 1} \mathbf{v}_j$$

$$= \sum_{j=0}^{q} t_j \mathbf{v}_j.$$

We conclude the the simplex ρ is the set of all points of \mathbb{R}^N that are representable in the form $\sum\limits_{j=0}^q t_j \mathbf{v}_j$, where the coefficients t_0, t_1, \ldots, t_q are real numbers satisfying conditions (i)–(vi).

Now the point $\sum\limits_{j=0}^q t_j \mathbf{v}_j$ belongs to the interior of the simplex ρ if and only if $u_k>0$ for $k=0,1,\ldots,r$, where $u_r=(m_r+1)t_{m_r}$ and $u_k=(m_k+1)(t_{m_k}-t_{m_{k+1}})$ for $k=0,1,\ldots,r-1$.

This point therefore belongs to the interior of the simplex ρ if and only if $t_{m_r} > 0$ and $t_{m_k} > t_{m_{k+1}}$ for $k = 0, 1, \ldots, r-1$. Thus the interior of the simplex ρ consists of those points $\sum\limits_{j=0}^q t_j \mathbf{v}_j$ of σ whose barycentric coordinates t_0, t_1, \ldots, t_q with respect to the vertices $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q$ of σ satisfy conditions (i)–(vii), as required.

Corollary D.2

Let σ be a simplex in some Euclidean space \mathbb{R}^N , and let K_σ be the simplicial complex consisting of the simplex σ together with all of its faces. Let $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q$ be the vertices of σ , and let t_0, t_1, \ldots, t_q be the barycentric coordinates of some point \mathbf{x} of σ , so that $0 \le t_j \le 1$ for $j = 0, 1, \ldots, q$, $\sum_{i=0}^q t_j \mathbf{v}_j = \mathbf{x}$ and $\sum_{i=0}^q t_j = 1$.

Then there exists a permutation π of the set $\{0,1,\ldots,q\}$ and

Then there exists a permutation π of the set $\{0,1,\ldots,q\}$ and integers m_0,m_1,\ldots,m_r satisfying

$$0 \leq m_0 < m_1 < \cdots < m_r \leq q.$$

such the following conditions are satisfied:

- (iii) $t_{\pi(0)} \geq t_{\pi(1)} \geq \cdots \geq t_{\pi(q)}$;
- (iv) $t_{\pi(j)} = t_{\pi(m_0)}$ for all integers j satisfying $j \leq m_0$;
- (v) $t_{\pi(j)} = t_{\pi(m_k)}$ for all integers j and k satisfying $0 < k \le r$ and $m_{k-1} < j \le m_k$;
- (vi) $t_{\pi(j)} = 0$ for all integers j satisfying $j > m_r$.
- (vii) $t_{\pi(m_{k-1})} > t_{\pi(m_k)} > 0$ for all integers k satisfying $0 < k \le r$.

Let ρ be the simplex of the first barycentric subdivision K'_{σ} of the simplical complex K_{σ} with vertices $\hat{\tau}_0, \hat{\tau}_1, \ldots, \hat{\tau}_r$, where $\hat{\tau}_k$ is the barycentre of the simplex τ_k with vertices $\mathbf{v}_{\pi(0)}, \mathbf{v}_{\pi(1)}, \ldots, \mathbf{v}_{\pi(m_k)}$ for $k=0,1,\ldots,r$. Then ρ is the unique simplex of K'_{σ} that contains the point \mathbf{x} in its interior.

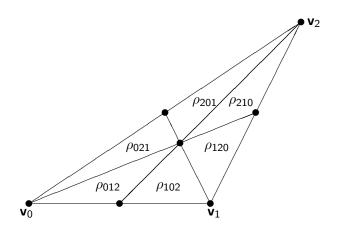
Proof

The required permutation π can be any permutation that rearranges the barycentric coordinates in descending order, so that $1 \geq t_{\pi(0)} \geq t_{\pi(1)} \geq \ldots \geq t_{\pi(q)} \geq 0$. The required result then follows immediately on applying Proposition D.1.

Corollary D.2 may be applied to determine the simplices of the first barycentric subdivision K'_{σ} of the simplicial complex K_{σ} that consists of some simplex σ together with all of its faces.

Example

Let K be the simplicial complex consisting of a triangle with vertices \mathbf{v}_0 , \mathbf{v}_1 and \mathbf{v}_2 , together with all its edges and vertices, and let K' be the first barycentric subdivision of the simplicial complex K. Then K' consists of six triangles ρ_{012} , ρ_{102} , ρ_{021} , ρ_{120} , ρ_{201} and ρ_{210} , together with all the edges and vertices of those triangles, where



$$\begin{array}{lll} \rho_{012} & = & \left\{ \sum_{j=0}^2 t_j \mathbf{v}_j : 1 \geq t_0 \geq t_1 \geq t_2 \geq 0 \text{ and } \sum_{j=0}^2 t_j = 1 \right\}, \\ \\ \rho_{102} & = & \left\{ \sum_{j=0}^2 t_j \mathbf{v}_j : 1 \geq t_1 \geq t_0 \geq t_2 \geq 0 \text{ and } \sum_{j=0}^2 t_j = 1 \right\}, \\ \\ \rho_{021} & = & \left\{ \sum_{j=0}^2 t_j \mathbf{v}_j : 1 \geq t_0 \geq t_2 \geq t_1 \geq 0 \text{ and } \sum_{j=0}^2 t_j = 1 \right\}, \\ \\ \rho_{120} & = & \left\{ \sum_{j=0}^2 t_j \mathbf{v}_j : 1 \geq t_1 \geq t_2 \geq t_0 \geq 0 \text{ and } \sum_{j=0}^2 t_j = 1 \right\}, \end{array}$$

$$ho_{201} = \left\{ \sum_{j=0}^2 t_j \mathbf{v}_j : 1 \ge t_2 \ge t_0 \ge t_1 \ge 0 \text{ and } \sum_{j=0}^2 t_j = 1 \right\},$$
 $ho_{210} = \left\{ \sum_{j=0}^2 t_j \mathbf{v}_j : 1 \ge t_2 \ge t_1 \ge t_0 \ge 0 \text{ and } \sum_{j=0}^2 t_j = 1 \right\}.$

The intersection of any two of those triangles is a common edge or vertex of those triangles. For example, the intersection of the triangles ρ_{012} and ρ_{102} is the edge $\rho_{012} \cap \rho_{102}$, where

$$\rho_{012}\cap\rho_{102}=\left\{\sum_{j=0}^2 t_j \mathbf{v}_j: 1\geq t_0=t_1\geq t_2\geq 0 \text{ and } \sum_{j=0}^2 t_j=1\right\}.$$

And the intersection of the triangle ρ_{012} and ρ_{120} is the barycentre of the triangle \mathbf{v}_0 \mathbf{v}_1 \mathbf{v}_2 , and is thus the point $\sum\limits_{j=0}^2 t_j \mathbf{v}_j$ whose barycentric coordinates t_0, t_1, t_2 satisfy $t_0 = t_1 = t_2 = \frac{1}{3}$.

Let σ be a q-simplex with vertices $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_q$, let K_σ be the simplicial complex consisting of the simplex σ , together with all its faces, and let K'_σ be the first barycentric subdivision of the simplicial complex K_σ . Then the q-simplices of K'_σ are the simplices of the form $\rho_{m_0 \ m_1 \ \ldots \ m_q}$, where the list m_0, m_1, \ldots, m_q is a rearrangement of the list $0, 1, \ldots, q$ (so that each integer between 0 and q occurs exactly one in the list m_0, m_1, \ldots, m_q), and where

$$ho_{m_0 \, m_1 \, \ldots \, m_q} = \left\{ \sum_{j=0}^q t_j \mathbf{v}_j : 1 \geq t_{m_0} \geq t_{m_1} \geq \cdots \geq t_{m_q} \geq 0 \text{ and } \sum_{j=0}^q t_j = 1
ight\}.$$

A point of σ belongs to the interior of one of the simplices of K'_{σ} if and only if its barycentric coordinates t_0, t_1, \ldots, t_q are all distinct and strictly positive. Moreover if a point $\sum_{j=0}^q t_j \mathbf{v}_j$ of σ with barycentric coordinates t_0, t_1, \ldots, t_q belongs to the interior of some r-simplex of K'_{σ} then there are exactly r+1 distinct values amongst the real numbers t_0, t_1, \ldots, t_q (i.e., $\{t_0, t_1, \ldots, t_q\}$ is a set with exactly r+1 elements).